Two-Stage Robust Optimal Scheduling of Flexible Distribution Networks Based on Pairwise Convex Hull
Abstract
:1. Introduction
2. Deterministic Optimal Scheduling for FDNs
2.1. Objective Function
2.2. Constraints
2.2.1. Steady-State Operational Constraints of FDSs
2.2.2. Steady-State Operational Constraints of ESSs
2.2.3. Operational Constraints of OLTCs
2.2.4. Power Flow Constraints
2.2.5. Thermal Limit Constraint
2.2.6. Bus Voltage Constraints
2.3. Model Reformulation as a MISOCP Problem
2.3.1. Reformulation of the Power Flow Constraints
2.3.2. Reformulation of the FDS Constraints
2.3.3. Reformulation of the OLTC Constraints
3. The PWCH Uncertainty Set
3.1. The Convex Hull Uncertainty Set
3.2. The PWCH Uncertainty Set
4. Two-Stage Robust Optimal Scheduling for FDNs
4.1. The Two-Stage Framework
4.2. Mathematical Formulation
4.3. Solution Algorithm
4.4. Subproblem Solution Algorithm
5. Results
5.1. The 33-Bus Distribution Network
5.1.1. Simulation Settings
5.1.2. Worst-Case Scenario Analysis
5.1.3. OLTC Scheduling Strategy Analysis
5.1.4. Analysis of Bus Voltage Levels
5.1.5. FDS Scheduling Strategy Analysis
5.1.6. Daily Network Loss Comparison
5.2. A Realistic 104-Bus Distribution Network
5.2.1. Simulation Settings
5.2.2. OLTC/ESS Scheduling Strategy Analysis
5.2.3. Analysis of Bus Voltage Levels
5.2.4. FDS Scheduling Strategy Analysis
5.2.5. Daily Network Loss Comparison
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cao, W.; Wu, J.; Jenkins, N.; Wang, C.; Green, T. Benefits analysis of soft open points for electrical distribution network operation. Appl. Energy 2016, 165, 36–47. [Google Scholar] [CrossRef] [Green Version]
- Bai, L.; Jiang, T.; Li, F.; Chen, H.; Li, X. Distributed energy storage planning in soft open point based active distribution networks incorporating network reconfiguration and DG reactive power capability. Appl. Energy 2017, 210, 1082–1091. [Google Scholar] [CrossRef]
- Li, P.; Ji, H.; Wang, C.; Zhao, J.; Song, G.; Ding, F.; Wu, J. Coordinated control method of voltage and reactive power for active distribution networks based on soft open point. IEEE Trans. Sustain. Energy 2017, 8, 1430–1442. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Ji, H.; Wang, C.; Zhao, J.; Song, G.; Ding, F.; Wu, J. Optimal operation of soft open points in active distribution networks under three-phase unbalanced conditions. IEEE Trans. Smart Grid 2019, 10, 380–391. [Google Scholar] [CrossRef]
- Lee, C.; Liu, C.; Mehrotra, S.; Bie, Z. Robust distribution network reconfiguration. IEEE Trans. Smart Grid 2014, 6, 836–842. [Google Scholar] [CrossRef]
- Haghighat, H.; Zeng, B. Distribution system reconfiguration under uncertain load and renewable generation. IEEE Trans. Power Syst. 2016, 31, 2666–2675. [Google Scholar] [CrossRef]
- Chen, X.; Wu, W.; Zhang, B. Robust capacity assessment of distributed generation in unbalanced distribution networks incorporating ANM techniques. IEEE Trans. Sustain. Energy 2017, 9, 651–663. [Google Scholar] [CrossRef] [Green Version]
- Gao, H.; Liu, J.; Wang, L. Robust coordinated optimization of active and reactive power in active distribution systems. IEEE Trans. Smart Grid 2018, 9, 4436–4447. [Google Scholar] [CrossRef]
- Zhao, B.; Qiu, H.; Qin, R.; Zhang, X.; Gu, W.; Wang, C. Robust optimal dispatch of AC/DC hybrid microgrids considering generation and load uncertainties and energy storage loss. IEEE Trans. Power Syst. 2018, 33, 5945–5957. [Google Scholar] [CrossRef]
- Sun, F.; Ma, J.; Yu, M.; Wei, W. A robust optimal coordinated droop control method for multiple VSCs in AC–DC distribution network. IEEE Trans. Power Syst. 2019, 34, 5002–5011. [Google Scholar] [CrossRef]
- Ji, H.; Wang, C.; Li, P.; Ding, F.; Wu, J. Robust operation of soft open points in active distribution networks with high penetration of photovoltaic integration. IEEE Trans. Sustain. Energy 2019, 10, 280–289. [Google Scholar] [CrossRef]
- Liu, W.; Fu, M.; Yang, M.; Yang, Y.; Wang, L.; Wang, R.; Zhao, T. A bi-level interval robust optimization model for service restoration in flexible distribution networks. IEEE Trans. Power Syst. 2020, 30, 906–913. [Google Scholar] [CrossRef]
- Zhang, Y.; Ai, X.; Wen, J.; Fang, J.; He, H. Data-adaptive robust optimization method for the economic dispatch of active distribution networks. IEEE Trans. Smart Grid 2019, 10, 3791–3800. [Google Scholar] [CrossRef] [Green Version]
- Zeng, L.; Chiang, H.-D.; Wang, T. A pairwise convex hull approach for effective representation of uncertainty for system analysis and its application to power grids. IEEE Trans. Circuits Syst. II Exp. Briefs 2021, 68, 2498–2502. [Google Scholar] [CrossRef]
- Zeng, L.; Chiang, H.D.; Liang, D. Robust optimal power flow under renewable uncertainty with pairwise convex hull. Elect. Power Syst. Res. 2022, 210, 782–793. [Google Scholar] [CrossRef]
- Zhang, C.; Xu, Y.; Dong, Z.; Ravishankar, J. Three-stage robust inverter-based voltage/var control for distribution networks with high-level PV. IEEE Trans. Smart Grid 2019, 10, 782–793. [Google Scholar] [CrossRef]
- Zeng, B.; Zhao, L. Solving two-stage robust optimization problems using a column-and-constraint generation method. Oper. Res. Lett. 2013, 41, 457–461. [Google Scholar] [CrossRef]
- Fourer, R.; Gay, D.; Kernighan, B. A modeling language for mathematical programming. Manag. Sci 1990, 36, 519–554. [Google Scholar] [CrossRef] [Green Version]
- Gurobi Optimization. Gurobi Optimizer Reference Manual. Available online: http://www.gurobi.com (accessed on 1 January 2021).
- Zhao, H.; Zhang, C. An online-learning-based evolutionary many-objective algorithm. Inf. Sci. 2020, 509, 1–21. [Google Scholar] [CrossRef]
- Dulebenets, M.A. An adaptive polyploid memetic algorithm for scheduling trucks at a cross-docking terminal. Inf. Sci. 2021, 565, 390–421. [Google Scholar] [CrossRef]
- Kavoosi, M.; Dulebenets, M.A.; Abioye, O.; Pasha, J.; Theophilus, O.; Wang, H.; Kampmann, R.; Mikijeljević, M. Berth scheduling at marine container terminals: A universal island-based metaheuristic approach. Marit. Bus. Rev. 2019, 5, 30–66. [Google Scholar] [CrossRef]
- Pasha, J.; Nwodu, A.L.; Fathollahi-Fard, A.M.; Tian, G.; Li, Z.; Wang, H.; Dulebenets, M.A. Exact and metaheuristic algorithms for the vehicle routing problem with a factory-in-a-box in multi-objective settings. Adv. Eng. Inform. 2022, 52, 101623. [Google Scholar] [CrossRef]
- Dulebenets, M.A. A novel memetic algorithm with a deterministic parameter control for efficient berth scheduling at marine container terminals. Marit. Bus. Rev. 2017, 2, 302–330. [Google Scholar] [CrossRef] [Green Version]
- Rabbani, M.; Oladzad-Abbasabady, N.; Akbarian-Saravi, N. Ambulance routing in disaster response considering variable patient condition: NSGA-II and MOPSO algorithms. J. Ind. Manag. Optim. 2022, 18, 1035. [Google Scholar] [CrossRef]
Reference | First Stage Decision | Second Stage Decision | Uncertainty Set | Solution Algorithm |
---|---|---|---|---|
[5] | Network topology | \ | Polyhedron | CCG |
[6] | Network topology | \ | Polyhedron | CCG |
[7] | Network topology, reactive output of VAR compensators and OLTC ratios | DG installation capacity | Polyhedron | CCG |
[8] | OLTC ratios, discrete VAR compensators and charge–discharge power of ESSs | Continuous VAR compensators | Box | CCG |
[9] | Startup/shutdown state of diesel engine generator, operating state of the converters | Individual units | Polyhedron | CCG |
[10] | Slopes of power droop control of VSCs | \ | Box | CCG |
[11] | Power injection of soft open points | \ | Polyhedron | CCG |
[12] | Network topology and power injection of soft open points | Power injection of soft open points | Box | CCG |
[13] | Switching capacitor and OLTC ratios | SVG | Data-adaptive polyhedron | Extreme Scenario |
[15] | Non-AGC units | AGC units | PWCH | CG |
[16] | Capacitor banks and OLTC ratios | PV inverters | Polyhedron | CCG |
s | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|---|
τs | 0.95 | 0.96 | 0.97 | 0.98 | 0.99 | 1 | 1.01 | 1.02 | 1.03 | 1.04 | 1.05 |
Δτs | / | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
τs2 | 0.9025 | 0.9216 | 0.9409 | 0.9604 | 0.9801 | 1 | 1.201 | 1.404 | 1.609 | 1.0816 | 1.1025 |
Δτs2 | / | 0.0191 | 0.0193 | 0.0195 | 0.0197 | 0.0199 | 0.0201 | 0.0203 | 0.0205 | 0.0207 | 0.0209 |
Time Period | PV1 | PV2 | PV3 | PV4 | PV5 |
---|---|---|---|---|---|
8 | 0.684169 | 0.681293 | 0.679652 | 0.675548 | 0.671436 |
9 | 1.227029 | 1.227765 | 1.213053 | 1.221142 | 1.196871 |
10 | 1.552959 | 1.558479 | 1.534559 | 1.548357 | 1.50604 |
11 | 1.746943 | 1.741806 | 1.731539 | 1.742832 | 1.698664 |
12 | 1.950833 | 1.902491 | 1.940068 | 1.947342 | 1.883357 |
13 | 2.171167 | 2.089821 | 2.13277 | 2.068701 | 2.037691 |
14 | 1.655152 | 1.650435 | 1.668362 | 1.609861 | 1.563627 |
15 | 1.37165 | 1.347866 | 1.36587 | 1.360097 | 1.320059 |
16 | 0.868731 | 0.86399 | 0.869861 | 0.867248 | 0.851022 |
Time Period | PV1 | PV2 | PV3 | PV4 | PV5 |
---|---|---|---|---|---|
8 | 0.708400 | 0.708400 | 0.708400 | 0.708400 | 0.708400 |
9 | 1.268833 | 1.268833 | 1.268833 | 1.268833 | 1.268833 |
10 | 1.587000 | 1.587000 | 1.587000 | 1.587000 | 1.587000 |
11 | 1.771767 | 1.771767 | 1.771767 | 1.771767 | 1.771767 |
12 | 2.008667 | 2.008667 | 2.008667 | 2.008667 | 2.008667 |
13 | 2.246333 | 2.246333 | 2.246333 | 2.246333 | 2.246333 |
14 | 1.627633 | 1.627633 | 1.627633 | 1.627633 | 1.627633 |
15 | 1.344733 | 1.344733 | 1.344733 | 1.344733 | 1.344733 |
16 | 0.838733 | 0.838733 | 0.838733 | 0.838733 | 0.838733 |
PWCH | Box | |
---|---|---|
Objective function (MW) | 2.783 | 3.695 |
CPU time (s) | 483 | 511 |
Iterations number | 2 | 2 |
ESS loss (MW) | 0.175 | 0.195 |
FDS loss (MW) | 0.492 | 0.513 |
Network loss (MW) | 2.115 | 2.987 |
PWCH | Box | |
---|---|---|
Objective function (MW) | 4.0734 | 4.3914 |
Iterations number | 2 | 2 |
ESS loss (MW) | 0.0281 | 0.0823 |
FDS loss (MW) | 0.1713 | 0.2976 |
Network loss (MW) | 3.8740 | 4.0115 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, H.; Yuan, S.; Wang, Z.; Liang, D. Two-Stage Robust Optimal Scheduling of Flexible Distribution Networks Based on Pairwise Convex Hull. Sustainability 2023, 15, 6093. https://doi.org/10.3390/su15076093
Yang H, Yuan S, Wang Z, Liang D. Two-Stage Robust Optimal Scheduling of Flexible Distribution Networks Based on Pairwise Convex Hull. Sustainability. 2023; 15(7):6093. https://doi.org/10.3390/su15076093
Chicago/Turabian StyleYang, Haiyue, Shenghui Yuan, Zhaoqian Wang, and Dong Liang. 2023. "Two-Stage Robust Optimal Scheduling of Flexible Distribution Networks Based on Pairwise Convex Hull" Sustainability 15, no. 7: 6093. https://doi.org/10.3390/su15076093