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Abstract: With distributed generation (DG) being continuously connected into distribution networks,
the stochastic and fluctuating nature of its power generation brings ever more problems than be-
fore, such as increasing operating costs and frequent voltage violations. However, existing robust
scheduling methods of flexible resources tend to make rather conservative decisions, resulting in high
operation costs. In view of this, a two-stage robust optimal scheduling method for flexible distribution
networks is proposed in this paper, based on the pairwise convex hull (PWCH) uncertainty set. A
two-stage robust scheduling model is first formulated considering coordination among on-load tap
changers, energy storage systems and flexible distribution switches. In the first stage, the temporal
correlated OLTCs and energy storage systems are globally scheduled using day-ahead forecasted
DG outputs. In the second stage, FDSs are scheduled in real time in each time period based on the
first-stage decisions and accurate short-term forecasted DG outputs. The spatial correlation and
uncertainties of the outputs of multiple DGs are modeled based on the PWCH, such that the decision
conservativeness can be reduced by cutting regions in the box with low probability of occurrence. The
improved column-and-constraint generation algorithm is then used to solve the robust optimization
model. Through alternating iterations of auxiliary variables and dual variables, the nonconvex
bilinear terms induced by the PWCH are eliminated, and the subproblem is significantly accelerated.
Test results on the 33-bus distribution system and a realistic 104-bus distribution system validate
that the proposed PWCH-based method can obtain much less conservative scheduling schemes than
using the box uncertainty set.

Keywords: flexible distribution network; flexible distribution switch; pairwise convex hull;
column-and-constraint generation; robust optimization

1. Introduction

With distributed generation (DG) being continuously connected into distribution
networks, the stochastic and fluctuating nature of its power generation brings ever more
problems than before, such as increasing operating costs, voltage violations, etc. Therefore,
exploiting the potential of flexible resources to improve the DG penetration level and
reduce the carbon emission level is urgent.

Dispatchable flexible resources, such as mechanical switches, on-load tap changers
(OLTCs) and capacitor banks in traditional distribution networks, can neither be fast nor
continuously adjusted. At the same time, they cannot be frequently controlled due to the
life span reason, which limits their ability to cope with the increasing integration of DG.
In recent years, the back-to-back voltage source converter (VSC)-based flexible distribu-
tion switch (FDS) has picked up momentum to overcome the drawbacks of mechanical
devices [1,2]. The replacement of traditional mechanical switches with FDSs converts
traditional distribution networks into flexible distribution networks (FDN), where fast and
accurate power flow control can be realized.
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The scheduling problem of FDNs has been studied for years. In [3], a coordinated
voltage and VAR control method based on FDSs is proposed for distribution networks
to minimize operation costs and eliminate voltage violations. The nonconvex mixed-
integer nonlinear optimization model is converted into a mixed-integer second-order cone
programming (MISOCP) model, which can be efficiently solved. In [4], an FDS-based
operation strategy for unbalanced distribution networks is proposed to simultaneously
reduce power losses and mitigate the three-phase unbalance problem. The nonconvex,
nonlinear optimization model is converted into a semidefinite programming formulation.

However, deterministic scheduling neglects the uncertainty of load demands and
intermittent DG outputs and may lead to inappropriate control schemes and even result
in the violation of security constraints. Thus, it is required that these uncertainties are
dealt with to ensure the feasibility and reliability of the system operation. Current re-
search on dispatch methods of distribution networks with DG uncertainties mainly fall into
two categories, i.e., stochastic optimization (SO) and robust optimization (RO) [5–7]. Com-
pared with SO, which depends on the probability density function of uncertain parameters,
the only information needed for RO is the ranges of uncertain parameters, which are much
easier to obtain in reality. In [8], a two-stage RO model is proposed to coordinate the OLTC
ratios, reactive power compensators and charge–discharge power of energy storage systems
(ESSs). The column-and-constraint generation (CCG) algorithm is applied to solve the
two-stage RO model. In [9], a two-stage robust optimal dispatch model is presented for an
islanded AC/DC hybrid microgrid, where the first stage determines the startup/shutdown
state of the diesel engine generator and the operating state of the bidirectional converter
of the microgrid, while the second stage optimizes the power dispatch of individual units
in the microgrid. In [10], an RO model is established for AC/DC distribution networks to
co-optimize the slopes of active and reactive power droop control of VSCs, with the aim to
minimize the total network loss while ensuring the system security. In [11], a two-stage RO
model is built for day-ahead dispatching of FDSs to tackle the uncertainties of PV outputs,
eliminate voltage violations and reduce power losses. However, the FDS is considered to
be the only flexible resource, while the coordination with other control devices is neglected.
In [12], a bilevel RO model is proposed for the service restoration problem of FDNs to
obtain the optimal service restoration scheme, i.e., the switch statuses and range of power
transmitted by FDS terminals.

Uncertain parameters in RO are usually modeled using uncertainty sets such as
box, ellipsoid, polyhedron and convex hull. The box uncertainty set cannot characterize
the correlation among random variables, and the results tend to be conservative. The
polyhedral uncertainty set (or the budget uncertainty set) and the ellipsoidal uncertainty
set can take the correlation among uncertain parameters into account and at the same
time have a linear structure; thus, they are widely used [5–7,9,11]. However, polyhedral
and ellipsoidal uncertainty sets cannot characterize the nonlinear correlation of uncertain
parameters. Furthermore, the ellipsoidal uncertainty set converts linear constraints into
quadratic constraints and the original linear programming model is transformed into a
quadratic programming model and the complexity increases a lot. In [13], an RO-based
economic dispatch method is proposed for active distribution networks based on extreme
scenarios to adapt to historical data sets and reduce the decision conservativeness. However,
it still assumes that the uncertainty data lie in a specified uncertainty set and the complex,
asymmetric correlation among uncertain parameters cannot be handled. The convex hull is
the smallest convex set that can cover the historical data set and enjoys the least decision
conservativeness. However, it has limited application due to excessive linear constraints,
large computational effort and computational complexity in case of high-dimensional
data. To this end, the pairwise convex hull (PWCH) is proposed in [14,15], which is
computationally efficient and is linearly expensive for high-dimensional data.

A comparative table on existing RO-based scheduling methods is shown in Table 1,
in the aspects of first-stage decisions, second-stage decisions, uncertainty set and solution
algorithm, to give a clearer clarity to this state-of-the-art method.
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Table 1. Comparison of existing RO-based scheduling methods.

Reference First Stage Decision Second Stage
Decision Uncertainty Set Solution

Algorithm

[5] Network topology \ Polyhedron CCG
[6] Network topology \ Polyhedron CCG

[7] Network topology, reactive output of VAR
compensators and OLTC ratios

DG installation
capacity Polyhedron CCG

[8] OLTC ratios, discrete VAR compensators
and charge–discharge power of ESSs

Continuous VAR
compensators Box CCG

[9] Startup/shutdown state of diesel engine
generator, operating state of the converters Individual units Polyhedron CCG

[10] Slopes of power droop control of VSCs \ Box CCG
[11] Power injection of soft open points \ Polyhedron CCG

[12] Network topology and power injection of
soft open points

Power injection of soft
open points Box CCG

[13] Switching capacitor and OLTC ratios SVG Data-adaptive
polyhedron Extreme Scenario

[15] Non-AGC units AGC units PWCH CG
[16] Capacitor banks and OLTC ratios PV inverters Polyhedron CCG

In this paper, a two-stage robust optimal scheduling method is proposed for FDNs.
The contributions are summarized as follows:

(1) A two-stage robust optimal scheduling model is formulated for FDNs, considering
coordination among OLTCs, ESSs and FDSs. In the first stage, the temporal correlated
OLTCs and ESSs are globally scheduled using day-ahead forecasted DG outputs, while
in the second stage, FDSs are scheduled in real time in each time period, based on the
first-stage decisions and accurate short-term forecasted DG outputs.

(2) The spatial correlation of the outputs of multiple DGs is modeled based on the
PWCH, such that the high-dimensional convex hull is relaxed into an intersection of finite
PWCHs. By cutting regions in the box with low probability of occurrence, the decision
conservativeness can be reduced.

(3) The improved CCG algorithm is then used to solve the RO model. Through
alternating iterations of auxiliary variables and dual variables, the nonconvex bilinear terms
induced by the PWCH are eliminated, and the subproblem is significantly accelerated.

The rest of this paper is organized as follows. Section 2 presents the deterministic
scheduling model for FDNs. Section 3 presents the PWCH uncertainty set. Section 4
presents the proposed two-stage robust optimal scheduling model and solution algorithm
for FDNs. Section 4 describes the simulation results, and conclusions are drawn in Section 5.

2. Deterministic Optimal Scheduling for FDNs
2.1. Objective Function

The objective is to minimize the daily loss of the distribution network as follows:

min ∑
t∈ΩT

 ∑
i∈Ωb

Pi,t + ∑
v∈ΩFDS

∑
i∈Ωb(v)

Ploss
i,t,FDS + ∑

i∈ΩESS

Ploss
i,t,ESS

∆t (1)

where Pi,t is the real power injection of bus i during time period t; Ploss
i,t,FDS is the VSC power

loss of the multiterminal FDS near the terminal of bus i during time period t; Ploss
i,t,ESS is the

charging and discharging power loss of the ESS installed at bus i during time period t; ΩT
is the set of all time periods; Ωb is the set of all buses; ΩFDS is the set of all FDSs; Ωb(v) is
the set of all buses associated with the vth FDS; and ΩESS is the set of all buses with ESS
installed; ∆t is the interval (h) of each time period.
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2.2. Constraints
2.2.1. Steady-State Operational Constraints of FDSs

The multiterminal back-to-back FDS consists of multiple VSCs, and the control vari-
ables are the real and reactive power transmitted by each VSC, which is operated at the
four-quadrant operation mode. Assuming the FDS power is positive, if it is injected into
the network, then the following steady-state operational constraints need to be satisfied for
the vth FDS:

Ploss
i,t,FDS = Aloss,FDS

√
(Pi,t,FDS)

2 + (Qi,t,FDS)
2, ∀i ∈ Ωb(v) (2)

∑
i∈Ωb(v)

(Pi,t,FDS + Ploss
i,t,FDS) = 0 (3)

Qmin,FDS ≤ Qi,t,FDS ≤ Qmax,FDS, ∀i ∈ Ωb(v) (4)√
(Pi,t,FDS)

2 + (Qi,t,FDS)
2 ≤ Smax,FDS, ∀i ∈ Ωb(v) (5)

where Pi,t,FDS and Qi,t,FDS are the real and reactive power injections of the FDS into bus i
during time period t, respectively; Aloss,FDS is the FDS loss factor; Qmin,FDS and Qmax,FDS
are the upper and lower limits of the reactive power through each FDS, respectively; and
Smax,FDS is the maximum apparent power allowed through the FDS. Equation (3) makes
the sum of the real power injection into all associated feeders by the FDS and the power
loss of the FDS come out to zero. Equation (4) makes the reactive power injection of the
FDS not exceed its adjustable reactive power limit. Equation (5) makes the apparent power
of the FDS not exceed its capacity.

2.2.2. Steady-State Operational Constraints of ESSs

During steady state, the following steady-state operational constraints need to be
satisfied for the ESS installed at bus i:

0 ≤ P+
i,t,ESS ≤ P+

i,max, 0 ≤ P−i,t,ESS ≤ P−i,max (6)

Ei,t = Ei,t−1 + ηc
i P+

i,t,ESS∆t− (1/ηd
i )P−i,t,ESS∆t (7)

Ei,0 = Ei,T (8)

Ei,ESS · SOCi,min ≤ Ei,t ≤ Ei,ESS · SOCi,max (9)

where P+
i,t,ESS and P−i,t,ESS are the charging and discharging real power of the ESS installed

at bus i during time period t, respectively; P+
i,max and P−i,max are the maximum charging

and discharging real power of the ESS installed at bus i, respectively; Ei,t is the remaining
energy of the ESS installed at bus i during time period t; ηc

i and ηd
i are the charging and

discharging efficiency of the ESS installed at bus i, respectively; Ei,ESS is the energy capacity
of the ESS installed at bus i; and SOCi,max and SOCi,min are the maximum and minimum
state of charge (SOC) of the ESS installed at bus i. Equation (6) makes the charging and
discharging power not exceed the maximum value at any time period; Equation (7) makes
the remaining energy satisfy the continuity constraint. Equation (8) makes the remaining
energy at the end of each day equal to the initial energy of that day. Equation (9) makes the
ESS free from deep charging or discharging.

2.2.3. Operational Constraints of OLTCs

As shown in Figure 1, an OLTC is split into series of an impedance branch i-m
and an ideal transformer branch m-j, and the following constraints need to be satisfied
during operation:

Vm,t = τij,tVj,t (10)

τij,t = τij,min + Nij,t∆τij (11)

0 ≤ Nij,t ≤ Nij,max (12)
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∑
t∈ΩT,t>1

∣∣Nij,t − Nij,t−1
∣∣ ≤ βij,max (13)

where τij is the ratio of the OLTC branch i-j; τij,min is the minimum ratio of the OLTC
branch i-j; Nij,t is the tap position of the OLTC branch i-j during time period t; Nij,max is the
maximum tap position number of the OLTC branch i-j; βij,max is the maximum allowed
number of daily actions of the OLTC branch i-j; and ∆τij is the difference in the ratios
between adjacent tap positions of the OLTC branch i-j. For example, if there are five upper
tap positions and five lower tap positions, then Nij,max = 11, Nij,t takes the integers 0~10
and ∆τij takes the values 0.01~0.10.
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2.2.4. Power Flow Constraints

Using the DistFlow model, the nodal power flow balance equation should be satisfied
for each non-slack bus as follows:

Pi,t = Pi,t,DG − Pi,t,L + Pi,t,FDS − P+
i,t,ESS + P−i,t,ESS

Qi,t = −Qi,t,L + Qi,t,FDS
∑

(k,i)∈Ωl

(Pki,t − I2
ij,trki)− ∑

(i,j)∈Ωl

Pij,t = −Pi,t

∑
(k,i)∈Ωl

(Qki,t − I2
ij,txki)− ∑

(i,j)∈Ωl

Qij,t = −Qi,t

V2
j,t = V2

i,t − 2(Pij,trij + Qij,txij) + (r2
ij + x2

ij)I2
ij,t

P2
ij,t + Q2

ij,t = V2
i,t I2

ij,t

(14)

where Pij,t, Qij,t and Iij,t are the real and reactive power at the “from” end and current
amplitude of branch i-j during time period t, respectively; Pi,t,DG and Pi,t,L are the DG real
power injection and real power load at bus i during time period t, respectively; Qi,t,DG and
Qi,t,L are the DG reactive power injection and reactive power load at bus i during time
period t, respectively; rij and xij are the resistance and reactance of branch i-j, respectively;
and Ωl is the set of all lines.

2.2.5. Thermal Limit Constraint

The current amplitude of each branch should not exceed the ampacity:

0 ≤ (Iij,t)
2 ≤ (Iij,max)

2 (15)

where Iij,max is the ampacity of branch i-j.

2.2.6. Bus Voltage Constraints

The node voltage magnitude should not exceed the upper and lower bound:

Vi ≤ Vi ≤ Vi (16)

where Vi and Vi are the upper and lower limits of the voltage magnitude of bus i, respectively.
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2.3. Model Reformulation as a MISOCP Problem

Since the power flow Equation (14) is nonconvex and, at the same time, nonconvex
bilinear terms exist in the OLTC constraint (10), the optimization model (1)~(16) is a
nonconvex mixed-integer nonlinear programming problem, which is difficult to solve.
Therefore, this section converts the original problem into a MISOCP model which can be
efficiently solved.

2.3.1. Reformulation of the Power Flow Constraints

First, auxiliary variables wij,t and ui,t are introduced to replace I2
ij,t and V2

i,t, and with
the help of the big-M relaxation technique, the last two equations in Equation (13) become:

‖[2Pt,ij 2Qt,ij lt,ij − ut,ij]
T‖2 ≤ wt,ij + ut,ij

ui,t − uj,t = 2(Pij,trij + Qij,txij)− (r2
ij + x2

ij)wij,t

0 ≤ wij,t ≤ (Iij,max)
2

(17)

where M is a larger positive number.

2.3.2. Reformulation of the FDS Constraints

The FDS capacity constraint (5) can be relaxed as the following cone constraint:

‖[Pi,t,FDSQi,t,FDS]
T‖2 ≤ Ploss

i,t,FDS/Aloss,FDS (18)

2.3.3. Reformulation of the OLTC Constraints

Using the square of the voltage magnitude and the square of the OLTC ratio, constraint
(10) becomes:

um,t = τ2
ij,tuj,t (19)

For (11), the binary variable Bij,s,t is introduced as the flag of the sth tap position for
the OLTC branch i-j during time period t. Then, Nij,t can be expressed as the cumulative
sum of the Bij,s,t for each tap position, and the OLTC constraints become:

Nij,t =

Nij,max

∑
s=1

Bij,s,t, Bij,s,t ∈ {0, 1} (20)

Bij,s,t − Bij,s−1,t ≤ 0 (21)

um,t =

τ2
ij,min +

Nij,max

∑
s=1

Bij,s,t∆τ2
ij,s

uj,t = τ2
ij,minuj,t +

Nij,max

∑
s=1

Bij,s,tuj,t∆τ2
ij,s (22)

where Bij,s,t is the flag of the sth tap position for the OLTC branch i-j during time period t;
Bij,s,t = 1 indicates that the tap position s is lower or equal to the actual position; and Bij,s,t = 0
indicates that the tap position s is higher than the actual position. The values of ∆τs and ∆τs

2

for different tap position s are shown in Table 2.

Table 2. OLTC tap positions.

s 0 1 2 3 4 5 6 7 8 9 10

τs 0.95 0.96 0.97 0.98 0.99 1 1.01 1.02 1.03 1.04 1.05
∆τs / 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
τs

2 0.9025 0.9216 0.9409 0.9604 0.9801 1 1.201 1.404 1.609 1.0816 1.1025
∆τs

2 / 0.0191 0.0193 0.0195 0.0197 0.0199 0.0201 0.0203 0.0205 0.0207 0.0209
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Constraint (22) still contains a nonconvex bilinear term Bij,s,t,uj,t, so we introduce
λij,s,t = Bij,s,t,uj,t. Using the big-M relaxation technique, (22) becomes:

um,t = τ2
ij,minuj,t +

Nij,max

∑
s=1

λij,s,t∆τ2
ij,s (23)

0 ≤ λij,s,t ≤ M · Bij,s,t (24)

0 ≤ uj,t − λij,s,t ≤ M · (1− Bij,s,t) (25)

The final OLTC constraints include (12)–(13), (20)–(21) and (23)–(25), all of which are
easily handled linear constraints.

At this point, the deterministic optimal scheduling model is transformed into a MIS-
OCP problem, which can be efficiently solved using a commercial solver.

3. The PWCH Uncertainty Set
3.1. The Convex Hull Uncertainty Set

Assume that D buses in the distribution network are installed with DG, and N his-
torical data points (scenarios) are recorded in history for each DG bus. The ith scenario
can be represented as a D-dimensional column vector ui = [ui,1, ui,2, . . . , ui,D]T∈RD, i.e.,
a point in the D-dimensional Euclidean space. Then, the N historical scenarios can be
represented as a high-dimensional point set Ωu = {u1, u2, . . . , uN}, consisting of N points
in the D-dimensional Euclidean space. A high-dimensional convex hull enclosing all the
points can be constructed as:

H =
{

u ∈ RD
∣∣∣Au ≤ b; A ∈ RM×D, b ∈ RM

}
(26)

The number of hyperplanes M of this convex hull will grow exponentially with increasing
D. If it is used for RO, the model solving will suffer a huge computational burden.

3.2. The PWCH Uncertainty Set

The idea of the PWCH uncertainty set is that the points in the D-dimensional Eu-
clidean space are projected to different two-dimensional (2D) planes, which will yield
CD

2 = D(D − 1)/2 axial PWCHs. Then, the intersection of all PWCHs can be used as the
outer approximation of the original convex hull, as shown in Figure 2 (D = 3), where the
intersection of the red, black and blue PWCHs can be used as the outer approximation of
the original convex hull. Specifically, after projecting to the 2D plane corresponding to the
mth and the nth dimension (1 ≤ m < n ≤ D), a 2D convex hull can be constructed for the
set of points in the 2D plane, and the range of all dimensions except m and n is relaxed to
(−∞, +∞), denoted as

H(m,n) =
{

u ∈ RD
∣∣∣A(m,n)u(m,n) ≤ b(m,n), −∞ < [u]k < +∞ for k /∈ {m, n}

}
(27)

where u and u(m,n) are the scenario vectors in the D-dimensional Euclidean space and the
2-D vectors after projection in the 2D plane corresponding to the mth and the nth dimension,
respectively, and A(m,n) and b(m,n) are the coefficient matrices and the right-side vector of
the to the linear inequality constraint for the corresponding 2D convex hull, respectively.
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Figure 2. Illustration of the PWCH uncertainty set.

It can be proved that the original high-dimensional convex hull is contained within the
intersection of all PWCHs, and this outer-approximation is contained within a
D-dimensional box, i.e.,

H ⊆
{
HPWCH = ∩

(m,n)∈{(m,n)|∀1≤m<n≤D}
H(m,n)

}
⊆ HBox (28)

The PWCH can relax the original high-dimensional convex hull into the intersec-
tion of finite PWCHs, which can significantly reduce the number of constraints and the
computational effort when used for RO.

4. Two-Stage Robust Optimal Scheduling for FDNs
4.1. The Two-Stage Framework

Based on the deterministic optimal dispatching model, a two-stage robust optimal
scheduling model is established in this section using the PWCH uncertainty set. In the
first stage, OLTC action strategy and ESS charging/discharging power are used as control
variables to solve a multiperiod coupled model for the whole day, and the first-stage
decisions are passed to the next stage as a fixed value. In the second stage, the real and
reactive powers through the FDS are used as control variables for fast and continuous
power regulation based on more accurate ultra-short-term forecasted DG outputs. The
control variables in the first stage are selected due to the following considerations:

(1) the ESS states and the OLTC tap positions are temporally coupled in different
time periods;

(2) Some ESSs do not belong to the utility and their charging/discharging power
should be determined in advance;

(3) OLTC is a slow-acting device that should avoid being controlled in real time.
Therefore, global optimization is required for the first stage by integrating the day-

ahead DG prediction information of all time periods throughout the day and making
decisions of ESS charging/discharging power and OLTC action strategies before the next
day comes. In addition, during the first stage, the real-time response capability of FDSs
to DG output uncertainty in the intraday redispatch stage should also be considered, and
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FDS real and reactive power are also involved as control variables in the first stage, but the
solved FDS power need not be passed to the second stage.

4.2. Mathematical Formulation

For simplicity of clarity, the RO model is built as the following compact form:

min
x

max
d∈HPWCH

L(x, d) = min
x

max
d∈HPWCH

min
y

∑
i∈Ωb

f

s.t.
{

x ∈ X
y ∈ Y(x, d), ∀d ∈ HPW−CH

(29)

where x is the first-stage control variable vector; y is the joint vector of the second-stage
control variables and the second-stage state variables; d is the scenario variable vector;
L(x,d) is the objective function under the first-stage decision x and the scenario d; X is
the set of all feasible day-ahead decisions, including OLTC action strategies and ESS
charging/discharging power during each period; and Y(x, d) is the set of all feasible
second-stage solutions under the first-stage decision x and the scenario d, defined as

Y(x, d) :=

y

∣∣∣∣∣∣
Dy ≥ f−Ax
Cy = d
‖Gy‖2 ≤ gTy

 (30)

where the three equations present the linear inequality constraints, the linear equality
constraints and the second-order cone constraints, respectively; D, f and A are the coefficient
matrices and right-side vector after all linear inequality constraints are rewritten into the
matrix-vector form; C is the coefficient matrix after all linear equality constraints are
rewritten into the matrix-vector form; and G and g are the coefficient matrix and vector
after all second-order cone constraints are rewritten into the matrix-vector form.

4.3. Solution Algorithm

Using the CCG algorithm framework [17], the model can be divided into a master
problem and a subproblem, both of which are MISOCP problems. The master problem
solves the first-stage decisions, considering the constraints of the worst-case scenarios
returned by the subproblem, and updates the lower bound of the objective function. The
subproblem solves the worst-case scenario under the first-stage decisions, returns the worst-
case scenario back to the master problem, and updates the upper bound of the objective
function. The master problem is:

min
x,y(s),L

∑
t∈ΩT

L

s.t.


x ∈ X
L ≥ L(x, d(s)), ∀s = 1, · · · , k
y(s) ∈ Y(x, d(s)), ∀s = 1, · · · , k
L ≥ 0

(31)

where k is the number of the worst-case scenarios returned by the subproblem, and is also
used to indicate the current iteration index.

Each time the master problem is solved, the lower bound of the objective function is
updated, and the first-stage OLTC and ESS decisions are passed to the subproblem. In the
second stage, the control variable is only the FDS power, so the subproblem is no longer
temporally coupled among time periods and can be solved for each time period in parallel.
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The objective function of the subproblem is the sum of objectives for all time periods. The
form of the subproblem is shown as follows:

L(x) := ∑
t∈ΩT

max
d∈HPWCH

min
y

bTy

s.t.


Dy ≥ f−Ax∗ (λ)

Cy = d (π)
‖Gy‖2 ≤ gTy (σ, µ)

(32)

where b is the coefficient vector after the objective function is rewritten in the matrix-vector
form; π,λ, σ and µ are the Lagrange multiplier (dual variables) vectors of the corresponding
constraints; and the superscript * indicates the results of the master problem.

Since the subproblem is a max–min problem, the min problem needs to be transformed
into the following max problem by constructing a Lagrangian function. The transformed
model is as follows:

L(x∗) := max
d,π,λ,σ,µ

(f−Ax∗)Tλ + dTπ

s.t.


DTλ + CTπ + ∑ (GTy + gTµ) = b
‖σ‖2 ≤ µ
π, µ ≥ 0

(33)

Once the subproblem is solved, the lower bound of the objective function is updated.
If the termination condition is not satisfied, the solved worst-case scenario is returned to
the master problem, and a group of variables and constraints for this worst-case scenario
are added to the master problem.

4.4. Subproblem Solution Algorithm

It is noted that there is a nonconvex bilinear termdTπ in the objective function of
model (33). For the nonconvex bilinear term, although the Gurobi 9 solver succeeds in
solving the model solution through the spatial branching method, it is still rather time-
consuming. Therefore, we decompose the subproblem into a linear programming (LP)
problem and a second-order cone programming (SOCP) problem by alternating direction
iteration of auxiliary and dual variables.

The main parts of the algorithm are listed as follows, where, during the second stage,
the outer loop is solved sequentially for 24 time periods, and the inner loop is an alternating
direction iteration for each time period:

(1) Use the forecasted scenario as the initial scenario in the master problem, i.e., set
d* = d0. Set the upper bound of the objective function as a larger number.

(2) Fix the dual variables (π, λ, δ and µ), solve the following inner LP problem, update
the upper bound of the inner loop, and pass the solved auxiliary variable d to the inner
SOCP problem:

L(x∗, d0) := max
π∗ ,λ∗ ,σ∗ ,µ∗

(f−Ax∗)Tλ + d0
Tπ∗

s.t. DTλ∗ + CTπ∗ + ∑ (GTy + gTµ∗) = b
(34)

(3) Fix the auxiliary variable d, solve the following inner SOCP problem, update the
lower bound of the inner loop and pass the solved dual variables (π, λ, δ and µ) to the
inner LP problem:

L(x∗, d∗) := max
π,λ,σ,µ

(f−Ax∗)Tλ + d∗Tπ

s.t.


DTλ + CTπ + ∑ (GTy + gTµ) = b
‖σ‖2 ≤ µ
π, µ ≥ 0

(35)

(4) If the inner loop iteration for time period t converges, solve the next time period
until all time periods are completed; otherwise, return to step (2).
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If all 24 time periods are completed (i.e., the subproblem is completed), the upper bound
of the outer loop is updated as the sum of the 24 problems’ optimal objective values, and the
worst-case scenario solved by the subproblem is passed to the master problem for the next
outer iteration. The overall flowchart of the improved CCG algorithm is shown in Figure 3.
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5. Results
5.1. The 33-Bus Distribution Network

In this section, the modified 33-bus distribution network is used to test the
proposed method.

5.1.1. Simulation Settings

Load, PV, ESS and FDS configurations are shown in Figure 4. Flexible interconnection
is realized among buses 8, 22 and 33 through a three-terminal FDS, whose capacity and
transmission efficiency are 1.5 MVA and 98%, respectively. OLTC is installed between buses
1 and 2 with 11 taps (±5 × 1%). The maximum permissible number of daily operations is
five. Five PVs are installed at buses 4, 7, 16, 21 and 24 with capacity 2 MW. ESS is installed
at bus 6. The capacity, maximum charging/discharging power, maximum/minimum SOC
and charging/discharging efficiency are 3 MWh, 1000 kW, 90%/20% and 95%, respectively.
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Figure 4. The 33-bus distribution network.

The proposed robust scheduling method based on the PWCH uncertainty set is com-
pared with an existing robust scheduling method based on the polyhedral uncertainty set.
The budget parameter Г is set to five, such that it is equivalent with the box uncertainty set,
which encloses all historical data points. The PV outputs are set to fluctuate ±15% from the
forecasted values. The allowed range of voltage amplitudes is set to 0.95~1.05 p.u. Both
methods are implemented using the AMPL modeling language [18] and the Gurobi 9.5.1
solver [19]. The test environment is a desktop computer with i7-9700 CPU, 2.40 GHz and
16 GB RAM.

5.1.2. Worst-Case Scenario Analysis

Figure 5 shows the historical data points of three PVs and the convex hull that enclose
them. As seen from the figure, the convex hull uncertainty set is smaller in size compared to
the minimal box uncertainty set that encloses this convex hull and has the potential to reduce
decision conservativeness by cutting regions in the box with low probability of occurrence.
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The worst-case scenarios selected by the CCG subproblem during the last iteration
in the 8~16th time periods using the box uncertainty set and the PWCH uncertainty set
are shown in Tables 3 and 4. It can be seen that the worst scenarios obtained by the
two methods are different. Each worst scenario obtained by the box uncertainty set is a
vertex of the box set of the corresponding time period, which corresponds to the upper limits
of all PVs’ outputs in that time period and cannot reflect the geographical correlation among
the PVs’ outputs. A 2-D illustration is shown in Figure 6, which intuitively describes the
different worst scenarios obtained using two uncertainty sets. On the other side, each worst
scenario selected by the PWCH uncertainty set is much worse, which, in fact, corresponds
to a vertex of the intersection of all PWCHs in that time period. In other words, the worst
scenario obtained from the box uncertainty set is worse and has a much lower probability
of occurrence. If it is added to the CCG master problem, a more costly and conservative
scheduling decision will be obtained, while if the worst scenario obtained by the PWCH
uncertainty set is added to the CCG master problem, the scheduling decision will be less
costly and conservative.
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Table 3. Worst scenarios using the PWCH uncertainty set.

Time Period PV1 PV2 PV3 PV4 PV5

8 0.684169 0.681293 0.679652 0.675548 0.671436
9 1.227029 1.227765 1.213053 1.221142 1.196871
10 1.552959 1.558479 1.534559 1.548357 1.50604
11 1.746943 1.741806 1.731539 1.742832 1.698664
12 1.950833 1.902491 1.940068 1.947342 1.883357
13 2.171167 2.089821 2.13277 2.068701 2.037691
14 1.655152 1.650435 1.668362 1.609861 1.563627
15 1.37165 1.347866 1.36587 1.360097 1.320059
16 0.868731 0.86399 0.869861 0.867248 0.851022

Table 4. Worst scenarios using the Box uncertainty set.

Time Period PV1 PV2 PV3 PV4 PV5

8 0.708400 0.708400 0.708400 0.708400 0.708400
9 1.268833 1.268833 1.268833 1.268833 1.268833
10 1.587000 1.587000 1.587000 1.587000 1.587000
11 1.771767 1.771767 1.771767 1.771767 1.771767
12 2.008667 2.008667 2.008667 2.008667 2.008667
13 2.246333 2.246333 2.246333 2.246333 2.246333
14 1.627633 1.627633 1.627633 1.627633 1.627633
15 1.344733 1.344733 1.344733 1.344733 1.344733
16 0.838733 0.838733 0.838733 0.838733 0.838733
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5.1.3. OLTC Scheduling Strategy Analysis

Figures 7 and 8 show the OLTC action strategy and the ESS SOC for each time period
obtained by the two scheduling methods, respectively. It can be seen that:
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be seen that: 

Figure 8. SOC comparison of the ESS using two scheduling methods.

(1) During time periods 0~6, the ESS discharges and the OLTC tap position is adjusted
to the highest level so that the voltage at each bus is higher than the allowed lower limit;

(2) During time periods 8~11, the OLTC turns down the tap position. This is because
the PV outputs increase during these time periods and there is a risk that the voltage of the
PV buses violate the upper limit. Therefore, the OLTC cooperates with the FDS to absorb
the PV power. As the efficiency of the ESS is lower than the FDS, the ESS SOC remains
unchanged, and the excessive PV power is only consumed by cooperated control of the
OLTC and the FDS;

(3) During time periods 12~16, the PV output reaches the maximum, and the cooperation
between OLTC and FDS cannot achieve full PV consumption, so the ESS joins to cooperate
with the FDS to absorb the excessive real power and avoid the risk of voltage violation;

(4) During time periods 17~24, the PV output gradually decreases to zero, while
the load increases during these periods, so the OLTC turns down the tap position and
cooperates with the FDS to consume the PV output;

(5) During time periods 17~24, the PV output gradually decreases to zero, and the
load continues to increase during these periods, so the OLTC tap position is adjusted back
to a high level, while the ESS discharges to supply the load consumption.

5.1.4. Analysis of Bus Voltage Levels

The bus voltage levels at each time period under the two scheduling methods are
shown in Figure 9. It can be seen that during all time periods, the voltage level of each
bus obtained by the two scheduling methods are within the safe range, thanks to the
coordination of the OLTC, ESS and FDS.
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5.1.5. FDS Scheduling Strategy Analysis

The scheduling strategies of the FDS using two scheduling methods for each time
period are shown in Figure 10. Combining the ESS and OLTC scheduling strategies, it can
be seen that:
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(1) The FDS control strategies obtained by the two scheduling methods have basically
the same trend during the PV unproductive periods, while there is a big difference between
the two FDS scheduling strategies during time periods 10~13;

(2) During time periods 8~17, the FDS mainly extracts real power from lightly loaded
side at bus 18 and injects them into the heavily loaded side at bus 22, 33 so that the loading
levels of both sides can be balanced, and the voltage violations can be removed;

(3) During most time periods, both methods let the FDS inject reactive power to all
sides to support the voltage levels;

(4) Compared with the PWCH-based method, the box-based method transmits more
real/reactive power and makes a more conservative decision.

5.1.6. Daily Network Loss Comparison

The overall results of the two scheduling methods are shown in Table 5. It can be seen
that the scheduling strategy based on the box uncertainty set is more conservative than the
optimal scheduling strategy based on the PWCH uncertainty set in terms of network loss,
FDS loss and ESS loss. The reason is that the worst scenarios selected by the box uncertainty
set are much worse that scarcely happen, so a more conservative scheduling strategy is
made to handle this scenario. At the same time, the more conservative scheduling strategy
also loses some economy and flexibility. In addition, the algorithm time of both methods
are comparable in terms of computational efficiency.
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Table 5. Results comparison of two scheduling methods.

PWCH Box

Objective function (MW) 2.783 3.695
CPU time (s) 483 511

Iterations number 2 2
ESS loss (MW) 0.175 0.195
FDS loss (MW) 0.492 0.513

Network loss (MW) 2.115 2.987

5.2. A Realistic 104-Bus Distribution Network

In this section, a larger 104-bus distribution network is used to test the proposed method.

5.2.1. Simulation Settings

The system comes from a realistic 10 kV distribution network from the China Southern
Grid. Load, PV, ESS and FDS configurations are shown in Figure 11. The maximum and
minimum real and reactive load are 22.26 MW and 10.48 MVar, respectively. Flexible
interconnection is realized among buses 17, 46, 53 and 104 through a four-terminal FDS,
whose capacity and transmission efficiency are 3 MVA and 98%, respectively. Five PVs are
installed at buses 9, 32, 58, 91 and 92 with capacity 3 MW. Four ESSs are installed at buses 7,
56, 76 and 90. The capacity, maximum charging/discharging power, maximum/minimum
SOC and charging/discharging efficiency are 1.5 MWh, 300 kW, 90%/20% and 97%, respec-
tively. Similarly with the previous section, robust scheduling methods based on the PWCH
uncertainty set and the box uncertainty set are compared under the same environment with
that used by the 33-bus distribution network.
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5.2.2. OLTC/ESS Scheduling Strategy Analysis

Figures 12 and 13 show the OLTC action strategy and the ESS SOC of the 104-bus
system using two scheduling methods, respectively. It can be seen that:
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Figure 13. SOC comparison of the ESSs using two scheduling methods (the 104-bus system). (a) ESS
1 at bus 7; (b) ESS 2 at bus 56; (c) ESS 3 at bus 76; (d) ESS 4 at bus 90.

(1) For ESS 1 at bus 7, both scheduling methods give the same charging/discharging
strategies, which coincides with the loading patterns and PV output patterns such that
peak shifting (the 13th time period when the PV output is the largest) and valley filling (the
20th time period when the load level is the heaviest) can be achieved;

(2) For ESS 2 at bus 56, both scheduling methods prefer to not charge/discharge this
ESS due to operation costs when no voltage violation exits;

(3) For ESS 4 at bus 90, as this ESS is very close to PVs, the box-based strategy decides
to release ESS 4′s energy in advance during time periods 1~10 to prepare for absorbing
excessive PV output in time period 13. However, discharging ESS 4 only is not enough
to fully prevent any voltage violation risk, thus the OLTC turns down the tap position
during time period 13 and cooperates with the upstream ESS 3 at bus 76 to help consume
the excessive PV output. On the other side, the PWCH-based strategy neither discharge
ESS 4 in advance nor operate the OLTC. The upstream ESS 3 at bus 76 also does not
charge/discharge for all time periods. This is because the worst scenario selected from
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the PWCH uncertainty set is not such harsh as that selected from the box uncertainty set.
Therefore, the control strategy is less conservative.

In summary, the scheduling strategy based on the PWCH uncertainty set is clearly
more flexible and leads to lower ESS losses.

5.2.3. Analysis of Bus Voltage Levels

The bus voltage levels at each time period under the two scheduling methods are
shown in Figure 14. It can be seen that the voltages of all buses fall in acceptable ranges
using both scheduling methods, although both strategies can find the optimal operation
strategy to satisfy the voltage level constraints. However, it is obvious that the voltage
profile based on the PWCH uncertainty set is smoother, i.e., it is closer to the rated voltage
level of the system.
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5.2.4. FDS Scheduling Strategy Analysis

The FDS scheduling strategies of the 104-bus system using two scheduling methods
are shown in Figure 15. It can be seen that:

(1) Both scheduling methods give the same results during the PV unproductive time
periods 1~8, i.e., the FDS does not need to transmit any real/reactive power, while there
is a big difference between the two FDS scheduling strategies during PV productive time
periods 10~13 and heavily loaded time periods 17~23. The real power scheduling shows
an obvious bimodal distribution with the fluctuation of load and PV output, and coincides
with the bimodal peak of load fluctuation;

(2) During time periods 10~13, the FDS mainly extracts real power from lightly loaded
side at bus 104 and injects them into the heavily loaded side at bus 46 so that the loading
levels of both sides can be balanced, and the voltage violations can be removed. The FDS
action strategy based on the PWCH uncertainty set only starts to act at time period 10,
while the FDS action strategy based on the box uncertainty set already starts to act at time
period 8 (just after the appearance of light). The FDS control strategy based on the box
uncertainty set reaches the transmission limit at the 13th time period, while the FDS control
strategy based on the PWCH uncertainty set reaches the maximum transmission power
but does not reach the transmission limit at this time. Although the FDS control strategy
based on the box uncertainty set reduces the voltage peaks at the 13~14th time period by
increasing the real power transfer, it still cannot make the voltages at the 13~14th time
period reach the ideal range due to the transmission capacity limit and the high PV output
at noon, so the ESS charging power also reaches the maximum.

(3) During time periods 17~23, the FDS mainly extracts real power from lightly loaded
side at bus 53 and injects them into the heavily loaded side at bus 17, 46 so that the loading
levels of all sides can be balanced, and the voltage violations can be removed;
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(4) During most time periods, both methods let the FDS inject reactive power to all sides
to support the voltage levels; Unlike the real power strategy of the FDS, the PWCH uncertainty
set-based FDS control strategy provides more reactive power compared to the box uncertainty
set-based FDS control strategy when the PV output does not reach a higher maximum.

(5) Compared with the PWCH-based method, the box-based method transmits much
more real/reactive power and makes more conservative decisions.
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5.2.5. Daily Network Loss Comparison

Finally, the overall results of the 104-bus system using both scheduling methods are
shown in Table 6. Similarly, it can be seen that the scheduling strategy based on the box
uncertainty set is more conservative than the scheduling strategy based on the PWCH
uncertainty set in terms of network loss, FDS loss and ESS loss. Specifically, the decision
scheme with PWCH uncertainty set reduces the network loss by 6.53% compared with
the decision scheme with box uncertainty set, which verifies again the effectiveness of the
PWCH uncertainty set in reducing decision conservativeness and improving economy and
flexibility over the box uncertainty set.

Table 6. Results comparison of two scheduling methods (the 104-bus system).

PWCH Box

Objective function (MW) 4.0734 4.3914
Iterations number 2 2

ESS loss (MW) 0.0281 0.0823
FDS loss (MW) 0.1713 0.2976

Network loss (MW) 3.8740 4.0115
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6. Conclusions

In this paper, a two-stage RO model is established for flexible distribution networks
based on a novel PW-CH uncertainty set, considering the coordination of energy storage
systems, OLTCs and FDSs. The temporal correlated OLTCs and ESSs are globally scheduled
in the first stage using day-ahead forecasted DG outputs, while FDSs are scheduled in the
second stage in real time in each time period based on the first-stage decisions and accurate
short-term forecasted DG outputs. An improved column-and-constraint generation algo-
rithm is used to solve the RO model in an efficient manner. Specifically, the geographical
correlation of the outputs of multiple DGs is modeled based on the PWCH, such that the
decision conservativeness can be reduced.

Test results show that the worst scenarios selected from the box uncertainty set are
much worse but scarcely happen. Therefore, a more conservative scheduling strategy
should be made to handle this scenario, resulting in higher operation costs and low flexibil-
ity. On the other side, by cutting regions in the box with low probability of occurrence, the
proposed PWCH-based method can obtain much less conservative scheduling schemes
with much lower operation costs.

In the future, more advanced optimization algorithms, including hybrid heuristics and
metaheuristics, adaptive algorithms, self-adaptive algorithms and island
algorithms [20–25], can be used for scheduling of flexible resources in distribution systems
with better performance.
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