A Submodel as a Plug-in for the Assessment of Energy Consumption and CO2 Emissions in Urban Mobility Plans
Abstract
:1. Introduction
2. Literature Review
3. Methodology
3.1. Characterization of the Five Routs and Driving Cycles
3.2. Composition of the Fleet for Fuel Consumption and Emissions
3.3. Vehicles Used on Routes
3.4. Numerical Simulations of Vehicles on Routes
3.5. Proposed Functions of Fuel Consumption and CO2 Emissions
3.6. Proposed Model for Energy/Fuel Consumption and CO2 Emissions
4. Results
4.1. Driving Cycles, Fuel Consumption, and CO2 Emissions of Vehicles on Route
4.2. Fuel Consumption and CO2 Emissions Correlation Functions
4.3. Histogram of the Average Speed Profile on the Routes
5. Proposed Model Scenarios
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- CETESB. Relatório de Qualidade Do Ar Do Estado de São Paulo 2018. 2019; 134. Available online: https://cetesb.sp.gov.br/ar/wp-content/uploads/sites/28/2019/07/Relat%C3%B3rio-de-Qualidade-do-Ar-2018.pdf (accessed on 30 July 2023).
- Empresa de Pesquisa Energética. Relatório Síntese Balanço Energético Nacional Relatório Síntese. Rio de Janeiro. 2021. Available online: https://www.epe.gov.br/sites-pt/publicacoes-dadosabertos/publicacoes (accessed on 18 April 2022).
- De Salvo Junior, O.; de Souza, M.T.S. A Regulamentação Como Indutora de Tecnologias Ambientais Para a Redução de Emissões Tóxicas Em Veículos Leves No Brasil. Cad. EBAPE BR 2018, 16, 748–760. [Google Scholar] [CrossRef]
- Bright, B.; Revankar, P.P. Modeling of Vehicular Based Electric Power Generation System Using MATLAB/Simulink. Int. J. Appl. Or. Innov. Eng. Manag. (IJAIEM) 2016, 5, 7. [Google Scholar]
- Wu, X.; Freese, D.; Cabrera, A.; Kitch, W.A. Electric vehicles’ energy consumption measurement and estimation. Transp. Res. D Transp. Environ. 2015, 34, 52–67. [Google Scholar] [CrossRef]
- Xu, J. Individual and Environmental Determinants of Traffic Emissions and Near-Road Air Quality; University of Toronto: Toronto, ON, Canada, 2020. [Google Scholar]
- De Melo, W.C.; Silva, E.F.F.; de Brasil, A.C.M. Model to Estimate the Impact of Future CO2 Emissions Due to the Increase in the Electric Vehicle Fleet—The Case of the Brazilian Capital. 2023. Available online: https://www.inderscience.com/info/ingeneral/forthcoming.php?jcode=writr (accessed on 9 January 2023).
- De Amorim, I.C.O.M. Avaliação Do Potencial de Planos de Mobilidade Urbana Para o Desenvolvimento Sustentável de Cidades e Regiões Metropolitanas. 2019. Available online: https://repositorio.ufpe.br/bitstream/123456789/33205/1/DISSERTA%c3%87%c3%83O%20Isabel%20Cristina%20de%20Oliveira%20Magalh%c3%a3es%20Amorim.pdf (accessed on 15 April 2022).
- De Martins, M.F.; Vasconcelos, A.C.F.; Salles, M.C.T. Plano de Mobilidade Urbana Do Município de Campina Grande-PB: Uma Análise à Luz Da Sustentabilidade Urbana. Rev. Gestão Ambient. Sustentabilidade 2017, 6, 42–58. [Google Scholar] [CrossRef]
- Fameli, K.M.; Assimakopoulos, V.D. Development of a Road Transport Emission Inventory for Greece and the Greater Athens Area: Effects of Important Parameters. Sci. Total Environ. 2015, 505, 770–786. [Google Scholar] [CrossRef] [PubMed]
- EPA; AUSEP. User Guide for MOVES204. 2014. Available online: https://nepis.epa.gov/Exe/ZyNET.exe/P100XN2J.TXT?ZyActionD=ZyDocument&Client=EPA&Index=2016+Thru+2020&Docs=&Query=&Time=&EndTime=&SearchMethod=1&TocRestrict=n&Toc=&TocEntry=&QField=&QFieldYear=&QFieldMonth=&QFieldDay=&IntQFieldOp=0&ExtQFieldOp=0&XmlQuery=&File=D%3A%5Czyfiles%5CIndex%20Data%5C16thru20%5CTxt%5C00000014%5CP100XN2J.txt&User=ANONYMOUS&Password=anonymous&SortMethod=h%7C-&MaximumDocuments=1&FuzzyDegree=0&ImageQuality=r75g8/r75g8/x150y150g16/i425&Display=hpfr&DefSeekPage=x&SearchBack=ZyActionL&Back=ZyActionS&BackDesc=Results%20page&MaximumPages=1&ZyEntry=1&SeekPage=x&ZyPURL (accessed on 19 July 2021).
- Yao, Y.; Zhao, X.; Liu, C.; Rong, J.; Zhang, Y.; Dong, Z.; Su, Y.; Chen, F. Vehicle Fuel Consumption Prediction Method Based on Driving Behavior Data Collected from Smartphones. J. Adv. Transp. 2020, 2020, 9263605. [Google Scholar] [CrossRef]
- De Araújo, F.W.C. Construção de Ciclos de Condução Veiculares Adaptados Às Várias Condições de Tráfego de Uma via a Partir de Monitoramento Por Vídeo. 2021. Available online: https://repositorio.ufpe.br/bitstream/123456789/43069/1/TESE%20Fernando%20Wesley%20Cavalcanti%20de%20Ara%c3%bajo.pdf (accessed on 19 November 2022).
- Li, Y.; Zheng, J.; Dong, S.; Wen, X.; Jin, X.; Zhang, L.; Peng, X. Temporal Variations of Local Traffic CO2 Emissions and Its Relationship with CO2 Flux in Beijing, China. Transp. Res. D Transp. Environ. 2019, 67, 1–15. [Google Scholar] [CrossRef]
- De Andrade, G.M.S. Desenvolvimento de Método Simplificado de Construção e Análise de Ciclos de Condução Locais Para Carros e Motos: Um Estudo de Caso No Horário Fora de Pico Na Cidade Do Recife. 2020. Available online: https://repositorio.ufpe.br/bitstream/123456789/39229/1/TESE%20Guilherme%20Medeiros%20Soares%20de%20Andrade.pdf (accessed on 14 March 2022).
- Gu, W.; Zhao, X.; Yan, X.; Wang, C.; Li, Q. Energy Technological Progress, Energy Consumption, and CO2 Emissions: Empirical Evidence from China. J. Clean. Prod. 2019, 236, 117666. [Google Scholar] [CrossRef]
- Singh, A.; Obaidat, M.S.; Singh, S.; Aggarwal, A.; Kaur, K.; Sadoun, B.; Kumar, M.; Hsiao, K.-F. A Simulation Model to Reduce the Fuel Consumption through Efficient Road Traffic Modelling. Simul. Model Pract. Theory 2022, 121, 102658. [Google Scholar] [CrossRef]
- Verbavatz, V.; Barthelemy, M. Critical Factors for Mitigating Car Traffic in Cities. PLoS ONE 2019, 14, e0219559. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yang, B. Analysis of Greenhouse Gas Emissions from Electric Vehicle Considering Electric Energy Structure, Climate and Power Economy of Ev: A China Case. Atmos. Pollut. Res. 2020, 11, 1–11. [Google Scholar] [CrossRef]
- Nesamani, K.S.; Chu, L.; McNally, M.G.; Jayakrishnan, R. Estimation of Vehicular Emissions by Capturing Traffic Variations. Atmos. Environ. 2007, 41, 2996–3008. [Google Scholar] [CrossRef]
- Gireesh Kumar, P.; Lekhana, P.; Tejaswi, M.; Chandrakala, S. Effects of Vehicular Emissions on the Urban Environment—A State of the Art. Mater. Today Proc. 2021, 45, 6314–6320. [Google Scholar] [CrossRef]
- Jiang, Y.; Ding, Z.; Zhou, J.; Wu, P.; Chen, B. Estimation of Traffic Emissions in a Polycentric Urban City Based on a Macroscopic Approach. Phys. A Stat. Mech. Its Appl. 2022, 602, 127391. [Google Scholar] [CrossRef]
- Kan, Z.; Wong, M.S.; Zhu, R. Understanding Space-Time Patterns of Vehicular Emission Flows in Urban Areas Using Geospatial Technique. Comput. Environ. Urban Syst. 2020, 79, 101399. [Google Scholar] [CrossRef]
- Choudhary, A.; Gokhale, S. Urban Real-World Driving Traffic Emissions during Interruption and Congestion. Transp. Res. D Transp. Environ. 2016, 43, 59–70. [Google Scholar] [CrossRef]
- Barlow, T.J.; Latham, S.; McCrae, I.S.; Boulter, P.G. A Reference Book of Driving Cycles for Use in the Measurement of Road Vehicle Emissions; TRL Published Project Report; Transport Research Laboratory: London, UK, 2009.
- Environmental Protection Agency. User’s Guide to MOBILE6. 1 and MOBILE6. 2; Environmental Protection Agency: Washington, DC, USA, 2003.
- Policarpo, N.A.; Silva, C.; Lopes, T.F.A.; dos Santos Araújo, R.; Cavalcante, F.S.Á.; Pitombo, C.S.; de Oliveira, M.L.M. Road Vehicle Emission Inventory of a Brazilian Metropolitan Area and Insights for Other Emerging Economies. Transp. Res. D Transp. Environ. 2018, 58, 172–185. [Google Scholar] [CrossRef]
- Nesamani, K.S.; Saphores, J.D.; McNally, M.G.; Jayakrishnan, R. Estimating Impacts of Emission Specific Characteristics on Vehicle Operation for Quantifying Air Pollutant Emissions and Energy Use. J. Traffic Transp. Eng. 2017, 4, 215–229. [Google Scholar] [CrossRef]
- Fontaras, G.; Kouridis, H.; Samaras, Z.; Elst, D.; Gense, R. Use of a Vehicle-Modelling Tool for Predicting CO2 Emissions in the Framework of European Regulations for Light Goods Vehicles. Atmos. Environ. 2007, 41, 3009–3021. [Google Scholar] [CrossRef]
- Genikomsakis, K.N.; Mitrentsis, G. A Computationally Efficient Simulation Model for Estimating Energy Consumption of Electric Vehicles in the Context of Route Planning Applications. Transp. Res. D Transp. Environ. 2017, 50, 98–118. [Google Scholar] [CrossRef]
- Markel, T.; Brooker, A.; Hendricks, T.; Johnson, V.; Kelly, K.; Kramer, B.; O’Keefe, M.; Sprik, S.; Wipke, K. ADVISOR: A Systems Analysis Tool for Advanced Vehicle Modeling. J. Power Sources 2002, 110, 255–266. [Google Scholar] [CrossRef]
- Mohammadi, F.; Nazri, G.A.; Saif, M. Modeling, Simulation, and Analysis of Hybrid Electric Vehicle Using MATLAB/Simulink. In Proceedings of the 5th International Conference on Power Generation Systems and Renewable Energy Technologies, PGSRET 2019, Istanbul, Turkey, 26–27 August 2019. [Google Scholar]
- Rana, I. Developing a City Scale Emissions Inventory and Exploring Electrification of Transportation: A Case Study of the City of Waterloo. Master’s Thesis, University of Waterloo, Waterloo, ON, Canada, 2020. [Google Scholar]
- Brooker, A.; Gonder, J.; Wang, L.; Wood, E.; Lopp, S.; Ramroth, L. FASTSim: A Model to Estimate Vehicle Efficiency, Cost and Performance; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2015.
- Zhuang, W.; Li, S.; Zhang, X.; Kum, D.; Song, Z.; Yin, G.; Ju, F. A Survey of Powertrain Configuration Studies on Hybrid Electric Vehicles. Appl. Energy 2020, 262, 114553. [Google Scholar] [CrossRef]
- Aggarwal, P.; Jain, S. Energy Demand and CO2 Emissions from Urban On-Road Transport in Delhi: Current and Future Projections under Various Policy Measures. J. Clean. Prod. 2016, 128, 48–61. [Google Scholar] [CrossRef]
- Doucette, R.T.; McCulloch, M.D. Modeling the Prospects of Plug-in Hybrid Electric Vehicles to Reduce CO2 Emissions. Appl. Energy 2011, 88, 2315–2323. [Google Scholar] [CrossRef]
- Metrô, D.F. Companhia Do Metropolitano Do Distrito Federal—Metrô/DF. Plano de Desenvolvimento Do Transporte Público Sobre Trilhos Do Distrito Federal, PDTT/DF—Relatório Final, Brasília, DF, Brasil. 2018. Available online: https://www.metro.df.gov.br/arquivos/relatorios_finais_PDTT_PMU.rar (accessed on 30 July 2023).
- PDTU. Plano Diretor de Mobilidade Urbana Do Distrito Federal e Entorno. Brasília/DF. Available online: https://www.cnpg.org.br/site/images/arquivos/gndh/mobilidade_urbana/Plano_de_Transporte_Urbano_do_DF.pdf (accessed on 30 July 2023).
- SENATRAN. Frota de Veículos. Available online: https://www.gov.br/infraestrutura/pt-br/assuntos/transito/conteudo-Senatran/estatisticas-frota-de-veiculos-senatran (accessed on 23 September 2022).
- INMETRO. Veículos Automotivos (PBE Veicular). Available online: https://www.gov.br/inmetro/pt-br/assuntos/avaliacao-da-conformidade/programa-brasileiro-de-etiquetagem/tabelas-de-eficiencia-energetica/veiculos-automotivos-pbe-veicular (accessed on 11 May 2021).
- Akcelik, R.; Bayley, C.; Bowyer, D.; Biggs, D. A Hierarchy of Vehicle Fuel Consumption Models. Traffic Eng. Control 1983, 24, 491–495. [Google Scholar]
- El-Shawarby, I.; Ahn, K.; Rakha, H. Comparative Field Evaluation of Vehicle Cruise Speed and Acceleration Level Impacts on Hot Stabilized Emissions. Transp. Res. D Transp. Environ. 2005, 10, 13–30. [Google Scholar] [CrossRef]
- Ntziachristos, L.; Gkatzoflias, D.; Kouridis, C.; Samaras, Z. COPERT: A European Road Transport Emission Inventory Model. In Information Technologies in Environmental Engineering; Environmental Science and Engineering (Subseries: Environmental Science); Springer: Berlin/Heidelberg, Germany, 2009; pp. 491–504. ISBN 9783540883500. [Google Scholar]
- ANTP. Redução Das Deseconomias Urbanas Com a Melhoria Do Transporte Público. Rev. Dos Transp. Públicos ANTP 1999, 21, 35–92. [Google Scholar]
- Da Silva, C.P.; Brasil, A.C.D.M.; de Mendonça Brasil, A.C. Avaliação Do Potencial De Economia De Energia E Redução De Emissões De Co2 Em Um Sistema De Transporte Público. Rev. Estud. Pesqui. Adm. 2020, 4, 124. [Google Scholar] [CrossRef]
- Romero, S.M.A.; da Romero, R.R.; de Brasil, A.C.M. Influência Do Congestionamento e Modo de Condução, Nas Velocidades, Consumos e Emissões de Um Ônibus Urbano. Transportes 2004, 12, 37–41. [Google Scholar] [CrossRef]
- Simões, A.M.; Farias, T.L.; Cunha, F.J. GISFROT II—Impact of an Integrated Drivers Training and Monitorization Scheme on Fleet Performance: A Case Study of Rodoviaria de Lisboa, SA. In Proceedings of the European Transport Conference 2006, AET Papers Repository, Strasbourg, France, 18–20 September 2006. [Google Scholar]
- Song, Y.; Yao, E.; Zuo, T.; Lang, Z.; Song, Y.Y.; Zuo, T.E.Y.; Lang, Z. Emissions and Fuel Consumption Modeling for Evaluating Environmental Effectiveness of ITS Strategies. Discret. Dyn. Nat. Soc. 2013, 2013, 581945. [Google Scholar] [CrossRef]
- Antunes, G.N. Energy and Environmental Monitoring of Alternative Fuel Vehicles. Ph.D. Thesis, University of Lisbon, Lisbon, Portugal, 2009. [Google Scholar]
- Frey, H.C.; Rouphail, N.M.; Zhai, H.; Farias, T.L.; Gonçalves, G.A. Comparing Real-World Fuel Consumption for Diesel- and Hydrogen-Fueled Transit Buses and Implication for Emissions. Transp. Res. D Transp. Environ. 2007, 12, 281–291. [Google Scholar] [CrossRef]
- Rubin, E.S.; Zhai, H. The Cost of Carbon Capture and Storage for Natural Gas Combined Cycle Power Plants. Environ. Sci. Technol. 2012, 46, 3076–3084. [Google Scholar] [CrossRef]
- Fontaras, G.; Pistikopoulos, P.; Samaras, Z. Experimental Evaluation of Hybrid Vehicle Fuel Economy and Pollutant Emissions over Real-World Simulation Driving Cycles. Atmos. Environ. 2008, 42, 4023–4035. [Google Scholar] [CrossRef]
- BRASIL. CNPE Passa a ter Competência para Fixar Teor de Etanol Anidro na Gasolina; Ministério de Minas e Energia: Brasília, Brazil, 2022.
- BRASIL. Frota de Veículos; Ministério dos Transportes: Brasilia, Brazil, 2022.
Rush Hour | Out Rush Hour | |
---|---|---|
Route 1—South route (UnB—Central Bus Station) | 24 h flow = 18,414 Rush hour = 8683 24 h Flow/Rush = 2.12 | 24 h flow = 19,330 Rush hour = 8311 24 h Flow/Rush = 2.32 |
Route 2—East route (Adm. Jardim Botânico—Central Bus Station) | 24 h flow = 14,014 Rush hour = 6064 24 h Flow/Rush = 2.31 | 24 h flow = 13,505 Rush hour = 5696 24 h Flow/Rush = 2.37 |
Route 3—North route (Adm. Sobradinho—Central Bus Station) | 24 h flow = 49,888 Rush hour = 20,183 24 h Flow/Rush = 2.47 | 24 h flow = 49,888 Rush hour = 20,183 24 h Flow/Rush = 2.47 |
Route 4—West route (Adm. Ceilândia—Central Bus Station) | 24 h flow = 21,450 Rush hour = 9167 24 h Flow/Rush = 2.34 | 24 h flow = 21,289 Rush hour = 7664 24 h Flow/Rush = 2.78 |
Route 5—West route (Adm. Taguatinga—Central Bus Station) | 24 h flow = 21,920 Rush hour = 7117 24 h Flow/Rush = 3.08 | 24 h flow = 19,840 Rush hour = 6278 24 h Flow/Rush = 3.16 |
The average number of passengers per vehicle | 1.3 ± 0.2 | 1.1 ± 0.3 |
Consumption (L/km) as a Function of Speed (km/h) | |||||||
---|---|---|---|---|---|---|---|
Vehicle (CIEV) | Vehicle (HEV) | Vehicle (BEV) | Other Authors (CIEV) [48,49,50,51,52] | ||||
Peak | Off-Peak | Peak | Off-Peak | Peak | Off-Peak | -- | |
Gasoline | a = 1.0594 b = −0.636 | a = 1.268 b = −0.593 | a = 0.9061 b = −0.562 | a = 0.7961 b = −0.460 | b = −0.01 c = 0.5931 | b = −0.0143 c = 0.8816 | a = 1.0183 b = −0.610 |
Ethanol | a = 1.4921 b = −0.630 | a = 1.7096 b = −0.633 | a = 1.4697 b = −0.618 | a = 1.00645 b = −0.465 | a = 1.687 b = −0.737 |
Emissions (g/km) as a Function of Speed (km/h) | |||||||
---|---|---|---|---|---|---|---|
Vehicle (CIEV) | Vehicle (HEV) | Vehicle (BEV) | Other Authors (CIEV) [45,46,47] | ||||
Peak | Off-Peak | Peak | Off-Peak | Peak | Off-Peak | Peak | |
Gasoline | a = 2022.5 b = −0.562 | a = 2393.7 b = −0.57 | a = −0.107 b = −7.143 c = 186.68 | a = −0.0429 b = 3.6019 c = 191.52 | - | - | a = −0.0001 b = 0.0036 c = 0.932 |
Ethanol | a = 1091.6 b = −0.625 | a = 904.45 b = −0.551 | a = −0.0136 b = 0.1777 c = 187.05 | a = −0.0185 b = 1.9924 c = 171.71 | - |
Scenario | CIEV | HEV | BEV | ||
---|---|---|---|---|---|
Gasoline | Ethanol | Gasoline | Ethanol | Electric | |
Current Scenario | 79% | 20% | 1% | 0% | 0% |
Scenario 1 | 10–80% | ||||
Scenario 2 | 10–80% | ||||
Scenario 3 | 10–80% | ||||
Scenario 4 | 10–80% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, E.F.F.; de Melo, W.C.; Brasil, A.C.d.M. A Submodel as a Plug-in for the Assessment of Energy Consumption and CO2 Emissions in Urban Mobility Plans. Sustainability 2023, 15, 16237. https://doi.org/10.3390/su152316237
Silva EFF, de Melo WC, Brasil ACdM. A Submodel as a Plug-in for the Assessment of Energy Consumption and CO2 Emissions in Urban Mobility Plans. Sustainability. 2023; 15(23):16237. https://doi.org/10.3390/su152316237
Chicago/Turabian StyleSilva, Edwin Francisco Ferreira, Wesley Cândido de Melo, and Augusto César de Mendonça Brasil. 2023. "A Submodel as a Plug-in for the Assessment of Energy Consumption and CO2 Emissions in Urban Mobility Plans" Sustainability 15, no. 23: 16237. https://doi.org/10.3390/su152316237
APA StyleSilva, E. F. F., de Melo, W. C., & Brasil, A. C. d. M. (2023). A Submodel as a Plug-in for the Assessment of Energy Consumption and CO2 Emissions in Urban Mobility Plans. Sustainability, 15(23), 16237. https://doi.org/10.3390/su152316237