Effect of Ametryn Herbicide and Soil Organic Matter Content on Weed Growth, Herbicide Persistence, and Yield of Sweet Corn (Zea mays)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Land Preparation
2.2. Application of Herbicides and Organic Materials
2.3. Data Collection Procedures
2.4. Data Analysis
3. Results
3.1. Total Weed Dry Weight
3.2. Sweet Corn Yield per Plant
3.3. Weight of Cobs with and without Husk
3.4. Sweet Corn Plot Yield
3.5. Herbicide Persistence in Soil
3.6. Microorganism Activity in Soil
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siregar, E.S. Effect of Land Management and Pellet Fertilizer Application on Growth and Production of Sweet Corn Plants (Zea mays var. Saccharata). J. Agrohita 2018, 1, 53–57. [Google Scholar]
- Husnayetti, F.N.; Yoseva, S. Giving of Bioslurry and Urea, TSP, KCl Fertilizers on the Growth and Production of Sweet Corn (Zea mays saccharata Sturt.). JOM Faperta 2015, 2, 1–15. [Google Scholar]
- Bakhri, S. Technical Guidelines for Maize Cultivation with the Concept of Integrated Crop Management. Agric. Technol. Assess. Center. Cent. Sulawesi 2007, 1–20. [Google Scholar]
- Karya, E.K. Iqfini Khotimah Husnul Growth and Yield of Sweet Corn (Zea mays SACCHARATA STURT) Paragon Variety Due to Spacing and Seed Number Treatments. Sci. J. Agric. AgroTatanen 2022, 4, 1–10. [Google Scholar]
- Central Bureau of Statistics. Maize Import Volume to Indonesia. 2020. Available online: https://www.bps.go.id/indicator/12/1886/1/volume-impor-jagung-keIndonesia.html (accessed on 6 July 2022).
- Fuadi, R.T.; Wicaksono, K.P. Applications Herbicide Atrazne Mesotrion on Weeds and Results of Sweet Corn (Zea mays L. Saccharata) Varietas Bonanza. J. Plant Prod. 2018, 6, 767–774. [Google Scholar]
- Ngawit, I.K.; Fauzi, M.T. Critical Period of Sweet Corn Weed Competition in Entosil Central Lombok. Sci. Proc. 2021, 3, 36–57. [Google Scholar]
- Assa, K.S.A.; Tumewu, P.; Tulungen, A.G. Weed Inventory in Maize Crops (Zea mays L.) Highlands in Palelon Village amd Lowlands in Kima Atas Village. COCOS 2017, 1, 1–10. [Google Scholar]
- Chika, S.; Sandy, R.; Purnomo, E.; Lianah, L. Weed Species Diversity and Control in Oil Palm Plantations in Bukit Sejahtera Village Palembang. J. Life Sci. J. Educ. Nat. Sci. 2023, 5, 38–44. [Google Scholar]
- A’yunin, N.Q.; Achdiyat; Saridew, T.R. Farmer Group Members’ Preferences for the Application of the Six Precise Principles (6T) in Pesticide Application. J. Res. Innov. 2020, 1, 253–264. [Google Scholar]
- Simoneaux, B.J.; Gould, T.J. Plant uptake and metabolism of triazine herbicides. In The Triazine Herbicides, 50 Years Revolutionizing Agriculture; Elsevier Science: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Lamid, H.; Adlis, Z.; Hermawan, W. Assessment of TOT with Glyphosate Herbicide in Maize Cultivation in Drylands. Proc. VI Natl. Semin. Conversat. Soil Farming 1998, 4, 45–54. [Google Scholar]
- Yu, Q.Q.; Lu, F.F.; Ma, L.Y.; Song, N.H. Residues of Reduced Herbicides Terbuthylazine, Ametryn, and Atrazine and Toxicology to Maize and the Environment Through Salicylic Acid. ACS Omega 2021, 6, 27396–27404. [Google Scholar] [CrossRef]
- Qiao, Y.; Zhang, N.; Liu, J.; Yang, H. Interpretation of Ametryn Biodegradation in Rice Based on Joint Analyses of Transcriptome, Metabolome and Chemo-characterization. J. Hazard. Mater. 2023, 445, 130526. [Google Scholar] [CrossRef]
- Rahman, A.; James, T.K.; Trolove, M.R.; Dowsett, C. Factors affecting the persistence of some residual herbicides in maize silage fields. New Zeal. Plant Prot. 2011, 64, 125–132. [Google Scholar] [CrossRef]
- Sari, V.D.P. The Effect of Herbicides with Active Bispiribak Sodium and 2,4-D Toward Growth of Trichoderma sp. and Gliacladium sp. Dr. Diss. Univ. Jember 2017, 1–44. [Google Scholar]
- de Paula, R.T.; de Abreu, A.B.G.; de Queiroz, M.E.L.; Neves, A.A.; da Silva, A.A. Leaching and Persistence of Ametryn and Atrazine in Red–Yellow Latosol. J. Environ. Sci. Heal. Part B 2016, 51, 90–95. [Google Scholar] [CrossRef]
- Afandi, F.N.; Siswanto, B.; Nuraini, Y. The Effect of Various Types of Organic Materials on Soil Chemical Properties on the Growth and Production of Sweet Potato Plants in Entisol Ngrangkah Pawon, Kediri. J. Soil L. Resour. 2015, 2, 237–244. [Google Scholar]
- Las, I.; Setyorini, D. Land Condition, Technology, Direction and Development of NPK Compound Fertiliser and Organic Fertiliser. In Proceedings of the National Seminar on the Role of NPK and Organic Fertilisers in Increasing Production and Sustainable Rice Self-Sufficiency. Cent. Agric. L. Res. 2010, 47. [Google Scholar]
- Nurmalasari, A.I.; Supriyono, S.; Budiastuti, M.T.S.; Djoko, S.T.; Nyoto, S. Composting of Rice Straw for Organic Fertilizer and Manufacturing Rice Husk Charcoal as Planting Medium in Soybean Demonstration Plot. J. Community Empower. Serv. 2021, 5, 102–109. [Google Scholar]
- Antonius, S.; Agustiyani, D. Effects of Biofertilizer Containing Microbial of N-Fixer, P Solublizer and Plant Growth Factor Procedur on Cabbage (Brasicca oleraceae Var. Capitata) Growth and Soil Enzymatic Activities: A Greenhouse Trial. J. Biol. Res. 2011, 16, 203–206. [Google Scholar] [CrossRef]
- Mustoyo, S.; Budhisurya, E.; Anggono, R.C.W.; Simanjuntak, B.H. Soil Fertility Analysis with Soil Microorganism Indicator on Various Systems of Land Use at Dieng Plateau. Agric 2013, 25, 64–72. [Google Scholar]
- Bunada, I.W.; Kesumadewi, A.A.I.; Atmaja, I.W.D. Some Biological Soil Propertiesof Orange Orchard (Citrus nobilisTan) under Monoculture and Intercropping System with some Vegetable Crops in Sekaan Village of Kintamani Districts. Agrotrop J. Agric. Sci. 2016, 6, 180–190. [Google Scholar]
- Rao, V.S. Principles of Weed Science; Science Publishers, Inc.: Enfield, NH, USA, 2000. [Google Scholar]
- Vivian, R.; Queiroz, M.E.L.R.; Jakelaitis, A.; Guimarães, A.A.; Reis, M.R.; Carneiro, P.M.; Silva, A.A. Persistência e lixiviação de ametryn e trifloxysulfuron-sodium em solo cultivado com cana-de-açúcar. Planta Daninha 2007, 25, 111–124. [Google Scholar] [CrossRef]
- Sriyani, N.; Salam, A.K. The Use of Biossay to Detect the Movement of Ametryne and Diuron Herbicides in the Soil. J. Agrista 2008, 12, 90–100. [Google Scholar]
- Baidhawi. Persistence of Metolachlor Herbicide in Different Soils. J. Agric. Cultiv. 2014, 10, 59–65. [Google Scholar]
- Mercurio, P.; Mueller, J.F.; Eaglesham, G.; Flores, F.; Negri, A.P. Herbicide Persistence in Seawater Simulation Experiments. PLoS ONE 2015, 10, e0136391. [Google Scholar] [CrossRef] [PubMed]
- Prasetyo, D. The Effectiveness of Enisfer meliloti as Glyphosate and Paraquat Degredation Bacteria. Ph.D. Thesis, Bogor Agricultural University, Bogor, Indonesia, 2017. [Google Scholar]
- Alfredo, N.; Sriyani, N.; Sembodo, D.R.J. Efficacy of Metsulfuron-Methyl Preemegence Herbicide and Its Combination with 2,4-D Ametryn or Diuron in Controlling Weeds in Upland Sugar Cane Plantation. J. Agrotropika 2012, 17, 29–34. [Google Scholar]
- Koocheki, A.; Nassiri, M.; Alimoradi, L.; Ghorbani, R. Effect of Cropping Systems and Crop Rotations on Weeds. Agron. Sustain. Dev. 2009, 29, 401–408. [Google Scholar] [CrossRef]
- Sembiring, D.S.P.S.; Sebayang, N.S. Efficacy Test of Two Herbicides in Control Weeds in Simple Land Processing. J. Agric. 2019, 10, 61–70. [Google Scholar]
- Syafrinal, R.P.G.; Yoseva, S. Effects of Saveral Active Components Herbicides on the Triangular Planting System against the Growth and the Productions Sweet Corn (Zea mays var. Saccharata Sturt.). JOM Faperta 2017, 4, 1–15. [Google Scholar]
- Djoko, I. Plant Growth and Development; UGM Press: Yogyakarta, Indonesia, 1983. [Google Scholar]
- Nurhayati, S.; Wati, R. Effect of Kinds of Fertilizer on Growth and Yield of Several Sweet Corn Varieties. J. Floratek 2012, 7, 107–114. [Google Scholar]
- Elfarisna. Organic Matter and Its Benefits in Organic Farming; Nuta Media: Yogyakarta, Indonesia, 2023. [Google Scholar]
- Rahmawati, A.Y.; Adlin, M. Response of Corn Growth and Yield on the Planting System and Cow Manure. Agril. J. Agric. Sci. 2019, 7, 9–16. [Google Scholar]
- Dwidjoseputro. An Introduction to Plant Physiology; PT. Gramedia: Jakarta, Indonesia, 1997. [Google Scholar]
- Ningrum, A.V.; Sembodo, D.R.; Evizal, R. Efficacy of Amethrin Herbicide to Control Weeds in Sugarcane (Saccharum officinarum L.) Dry Growing. J. Trop. Agrotech 2014, 2, 264–269. [Google Scholar]
- Koesriharti, K.S.; Santoso, M. Effects of Organic Manure on Growth and Yield of Sweetcorn. Indones. Green Technol. J. 2012, 1, 8–17. [Google Scholar]
- Lestari, S.A.D.; Kuntyastuti, H. Effects of Manure and Inorganic Fertilizer on Several Varieties Mungbean in Acid Soil. Bul. Palawija 2016, 14, 55–62. [Google Scholar] [CrossRef]
- Singh, J.S.; Pandey, V.C.; Singh, D.P. Efficient soil microorganisms: A new dimension for sustainable agriculture and environmental development. Agric. Ecosyst. Environ. 2011, 140, 339–353. [Google Scholar] [CrossRef]
- Emalinda, O.W.A.P. Effect of Glyphosate Herbicide on Growth and Diversity of Microorganisms in Soil and Growth of Soybean (Glicyne max. (L). Merr) on Ultisol. Stigma 2003, 11, 309–414. [Google Scholar]
- Pangestuning, E.; Yusnaini, S.; Niswati, A.; Buchori, H. Effect of Tillage System and Herbicide Application on Soil Respiration in Maize (Zea mays) Planting Season Three. J. Agrotek Trop. 2017, 5, 113–118. [Google Scholar]
2 WAA | 4 WAA | 6 WAA | |||||||
---|---|---|---|---|---|---|---|---|---|
Treatments | B1 | B2 | B3 | B1 | B2 | B3 | B1 | B2 | B3 |
d0 (control) | 2.53 b | 2.90 ab | 4.43 a | 6.93 b | 8.10 b | 13.53 a | 12.73 c | 17.36 b | 22.20 a |
A | A | A | A | A | A | A | A | A | |
d1 | 1.53 b | 2.56 ab | 3.76 a | 5.53 b | 7.30 b | 11.87 a | 11.90 c | 15.00 b | 20.90 a |
AB | A | A | B | AB | AB | A | AB | A | |
d2 | 1.20 a | 0.96 a | 1.80 a | 5.00 b | 6.30 b | 10.36 a | 9.50 b | 13.16 b | 18.00 a |
BC | B | B | B | B | B | B | BC | B | |
d3 | 0.73 a | 0.66 a | 0.96 a | 3.70 c | 4.70 b | 6.20 a | 8.10 c | 11.73 b | 13.56 a |
BC | B | BC | C | C | C | C | C | C | |
d4 | 0.46 a | 0.56 a | 0.70 a | 3.26 b | 4.40 ab | 5.90 a | 7.70 b | 11.86 a | 11.73 a |
BC | B | C | C | C | C | C | C | C | |
d5 | 0.23 b | 0.56 ab | 1.40 a | 2.70 b | 4.43 a | 5.46 a | 6.53 b | 11.73 a | 11.50 a |
C | B | BC | C | C | C | D | C | C |
Treatment | Cob Length (cm) | Cob Diameter (cm) | Number of Cobs per Plant |
---|---|---|---|
B1: C-organic 1.97% | 18.02 a | 5.18 a | 1.00 a |
B2: C-organic 2.50% | 17.97 a | 5.15 a | 1.00 a |
B3: C-organic 3.50% | 17.76 a | 5.13 a | 1.00 a |
d0: Control | 15.88 a | 5.04 a | 1.00 a |
d1: Ametryn dose 0.5 kg a.i./ha | 16.35 a | 5.06 a | 1.00 a |
d2: Ametryn dose 1.0 kg a.i./ha | 16.38 a | 5.11 a | 1.00 a |
d3: Ametryn dose 1.5 kg a.i./ha | 19.22 b | 5.20 b | 1.00 a |
d4: Ametryn dose 2.0 kg a.i./ha | 20.63 c | 5.30 c | 1.00 a |
d5: Ametryn dose 2.5 kg a.i./ha | 19.05 b | 5.21 b | 1.00 a |
Treatment | Cob Weight without Husk (g) | Cob Weight with Husk (g) |
---|---|---|
B1: C-organic 1.97% | 289.41 a | 264.79 a |
B2: C-organic 2.50% | 287.40 a | 261.33 a |
B3: C-organic 3.50% | 285.23 a | 258.94 a |
d0: Control | 258.24 a | 238.24 a |
d1: Ametryn dose 0.5 kg a.i./ha | 264.10 a | 242.66 a |
d2: Ametryn dose 1.0 kg a.i./ha | 267.01 a | 246.02 a |
d3: Ametryn dose 1.5 kg a.i./ha | 307.03 b | 275.40 b |
d4: Ametryn dose 2.0 kg a.i./ha | 317.91 c | 286.07 c |
d5: Ametryn dose 2.5 kg a.i./ha | 309.78 bc | 281.72 bc |
Treatment | Weight of Yield per Plot (kg/12 m2) |
---|---|
B1: C-organic 1.97% | 20.25 a |
B2: C-organic 2.50% | 20.11 a |
B3: C-organic 3.50% | 19.96 a |
d0: Control | 18.07 a |
d1: Ametryn dose 0.5 kg a.i./ha | 18.48 a |
d2: Ametryn dose 1.0 kg a.i./ha | 18.69 a |
d3: Ametryn dose 1.5 kg a.i./ha | 21.49 b |
d4: Ametryn dose 2.0 kg a.i./ha | 22.25 c |
d5: Ametryn dose 2.5 kg a.i./ha | 21.68 bc |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sumekar, Y.; Widayat, D.; Umiyati, U.; Aprilia, A.C.; Gafur, A. Effect of Ametryn Herbicide and Soil Organic Matter Content on Weed Growth, Herbicide Persistence, and Yield of Sweet Corn (Zea mays). Sustainability 2023, 15, 16238. https://doi.org/10.3390/su152316238
Sumekar Y, Widayat D, Umiyati U, Aprilia AC, Gafur A. Effect of Ametryn Herbicide and Soil Organic Matter Content on Weed Growth, Herbicide Persistence, and Yield of Sweet Corn (Zea mays). Sustainability. 2023; 15(23):16238. https://doi.org/10.3390/su152316238
Chicago/Turabian StyleSumekar, Yayan, Dedi Widayat, Uum Umiyati, Ajeng Cahya Aprilia, and Abdul Gafur. 2023. "Effect of Ametryn Herbicide and Soil Organic Matter Content on Weed Growth, Herbicide Persistence, and Yield of Sweet Corn (Zea mays)" Sustainability 15, no. 23: 16238. https://doi.org/10.3390/su152316238
APA StyleSumekar, Y., Widayat, D., Umiyati, U., Aprilia, A. C., & Gafur, A. (2023). Effect of Ametryn Herbicide and Soil Organic Matter Content on Weed Growth, Herbicide Persistence, and Yield of Sweet Corn (Zea mays). Sustainability, 15(23), 16238. https://doi.org/10.3390/su152316238