Accumulation and Transport of Phthalic Acid Esters in the Soil-Plant System of Agricultural Fields with Different Years of Film Mulching
Abstract
:1. Introduction
2. Overview of the Study Area
3. Materials and Methods
3.1. Sample Collection
3.2. Sample Treatment
3.3. Analysis Conditions
- The ion source temperature was 250 °C.
- The interface temperature was 280 °C.
- The solvent delay time was 3 min.
3.4. Data Analysis
4. Results and Discussion
4.1. Influence of Different Mulching Years on the Accumulation of PAEs in Soil
4.2. The Accumulation of PAEs in Plant Organs
4.3. TF and BCF Characteristics of PAEs
4.4. Correlation Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yan, C.; He, W.; Xue, Y.; Liu, E.; Liu, Q. Application of biodegradable plastic film to reduce plastic film residual pollution in Chinese agriculture. Sheng Wu Gong Cheng Xue Bao 2016, 32, 748–760. [Google Scholar] [CrossRef] [PubMed]
- Shi, M.; Sun, Y.; Wang, Z.; He, G.; Quan, H.; He, H. Plastic film mulching increased the accumulation and human health risks of phthalate esters in wheat grains. Environ. Pollut. 2019, 250, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Liu, E.K.; He, W.Q.; Yan, C.R. ‘White revolution’ to ‘white pollution’—Agricultural plastic film mulch in China. Environ. Res. Lett. 2014, 9, 091001. [Google Scholar] [CrossRef]
- Wang, D.; Xi, Y.; Shi, X.Y.; Zhong, Y.J.; Guo, C.L.; Han, Y.N.; Li, F.M. Effect of plastic film mulching and film residues on phthalate esters concentrations in soil and plants, and its risk assessment. Environ. Pollut. 2021, 286, 117546. [Google Scholar] [CrossRef] [PubMed]
- Hahladakis, J.N.; Velis, C.A.; Weber, R.; Iacovidou, E.; Purnell, P. An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling. J. Hazard. Mater. 2018, 344, 179–199. [Google Scholar] [CrossRef]
- You, Y.; Wang, Z.; Xu, W.; Wang, C.; Zhao, X.; Su, Y. Phthalic acid esters disturbed the genetic information processing and improved the carbon metabolism in black soils. Sci. Total Environ. 2019, 653, 212–222. [Google Scholar] [CrossRef]
- Jia, P.; Zhang, M.; Hu, L.; Feng, G.; Bo, C.; Zhou, Y. Synthesis and Application of Environmental Castor Oil Based Polyol Ester Plasticizers for Poly(vinyl chloride). ACS Sustain. Chem. Eng. 2015, 3, 2187–2193. [Google Scholar] [CrossRef]
- Youli, Q.; Long, J.; Yu, L. Theoretical support for the enhancement of infrared spectrum signals by derivatization of phthalic acid esters using a pharmacophore model. Spectrosc. Lett. 2018, 51, 155–162. [Google Scholar] [CrossRef]
- Wang, J.; Luo, Y.; Teng, Y.; Ma, W.; Christie, P.; Li, Z. Soil contamination by phthalate esters in Chinese intensive vegetable production systems with different modes of use of plastic film. Environ. Pollut. 2013, 180, 265–273. [Google Scholar] [CrossRef]
- Xie, H.-J.; Shi, Y.-J.; Zhang, J.; Cui, Y.; Teng, S.-X.; Wang, S.-G.; Zhao, R. Degradation of phthalate esters (PAEs) in soil and the effects of PAEs on soil microcosm activity. J. Chem. Technol. Biotechnol. 2010, 85, 1108–1116. [Google Scholar] [CrossRef]
- Zeng, F.; Cui, K.; Xie, Z.; Wu, L.; Luo, D.; Chen, L.; Lin, Y.; Liu, M.; Sun, G. Distribution of phthalate esters in urban soils of subtropical city, Guangzhou, China. J. Hazard. Mater. 2009, 164, 1171–1178. [Google Scholar] [CrossRef] [PubMed]
- Horn, O.; Nalli, S.; Cooper, D.; Nicell, J. Plasticizer metabolites in the environment. Water Res. 2004, 38, 3693–3698. [Google Scholar] [CrossRef] [PubMed]
- Gao, D.W.; Wen, Z.D. Phthalate esters in the environment: A critical review of their occurrence, biodegradation, and removal during wastewater treatment processes. Sci. Total Environ. 2016, 541, 986–1001. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Zeng, Y.; Huang, Y.Q.; Guan, Y.F.; Sun, Y.X.; Chen, S.J.; Mai, B.X. Accumulation and translocation of traditional and novel organophosphate esters and phthalic acid esters in plants during the whole life cycle. Chemosphere 2022, 307 Pt 1, 135670. [Google Scholar] [CrossRef]
- Benjamin, S.; Pradeep, S.; Josh, M.S.; Kumar, S.; Masai, E. A monograph on the remediation of hazardous phthalates. J. Hazard. Mater. 2015, 298, 58–72. [Google Scholar] [CrossRef]
- Cheng, Z.; Yao, Y.; Sun, H. Comparative uptake, translocation and subcellular distribution of phthalate esters and their primary monoester metabolites in Chinese cabbage (Brassica rapa var. chinensis). Sci. Total Environ. 2020, 742, 140550. [Google Scholar] [CrossRef]
- Net, S.; Dumoulin, D.; El-Osmani, R.; Rabodonirina, S.; Ouddane, B. Case study of PAHs, Me-PAHs, PCBs, Phthalates and Pesticides Contamination in the Somme River water, France. Int. J. Environ. Res. 2014, 8, 1159–1170. [Google Scholar]
- Li, B.; Liu, R.; Gao, H.; Tan, R.; Zeng, P.; Song, Y. Spatial distribution and ecological risk assessment of phthalic acid esters and phenols in surface sediment from urban rivers in Northeast China. Environ. Pollut. 2016, 219, 409–415. [Google Scholar] [CrossRef]
- Zhou, W.; Fu, D.; Sun, Z. Determination of Priority Control Pollutants in Chinese Water. Environ. Sci. Res. 1991, 6, 9–12. [Google Scholar]
- Wang, L.; Xu, X.; Lu, X. Phthalic acid esters (PAEs) in vegetable soil from the suburbs of Xianyang city, Northwest China. Environ. Earth Sci. 2015, 74, 1487–1496. [Google Scholar] [CrossRef]
- Cai, Q.Y.; Xiao, P.Y.; Chen, T.; Lu, H.; Zhao, H.M.; Zeng, Q.Y.; Li, Y.W.; Li, H.; Xiang, L.; Mo, C.H. Genotypic variation in the uptake, accumulation, and translocation of di-(2-ethylhexyl) phthalate by twenty cultivars of rice (Oryza sativa L.). Ecotoxicol. Environ. Saf. 2015, 116, 50–58. [Google Scholar] [CrossRef]
- Cai, Q.Y.; Xiao, P.Y.; Zhao, H.M.; Lu, H.; Zeng, Q.Y.; Li, Y.W.; Li, H.; Xiang, L.; Mo, C.H. Variation in accumulation and translocation of di-n-butyl phthalate (DBP) among rice (Oryza sativa L.) genotypes and selection of cultivars for low DBP exposure. Environ. Sci. Pollut. Res. Int. 2017, 24, 7298–7309. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Wang, X.; Yang, R.; Yang, L.; Sun, B.; Zhu, L. Uptake Kinetics, Accumulation, and Long-Distance Transport of Organophosphate Esters in Plants: Impacts of Chemical and Plant Properties. Environ. Sci. Technol. 2019, 53, 4940–4947. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.-S.; Xu, Y.-Y.; Zhang, Y.-T.; Liu, Z.-B.; Li, W.; Sun, Y.-S. Phthalate Acid Esters in Soil, Plastic Shed Film, and Ginseng Tissues of Different Ages From Farmland: Concentration, Distribution, and Risk Assessment. Front. Environ. Sci. 2022, 10, 917508. [Google Scholar] [CrossRef]
- Li, Y.; Yan, H.; Liu, Q.; Li, X.; Ge, J.; Yu, X. Accumulation and transport patterns of six phthalic acid esters (PAEs) in two leafy vegetables under hydroponic conditions. Chemosphere 2020, 249, 126457. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, Z.; Bao, M.; Xu, Y.; Zhang, L.; Tan, F.; Zhao, H. Characteristics and risk assessment of organophosphate esters and phthalates in soils and vegetation from Dalian, northeast China. Environ. Pollut. 2021, 284, 117532. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.M.; Du, H.; Xiang, L.; Chen, Y.L.; Lu, L.A.; Li, Y.W.; Li, H.; Cai, Q.Y.; Mo, C.H. Variations in phthalate ester (PAE) accumulation and their formation mechanism in Chinese flowering cabbage (Brassica parachinensis L.) cultivars grown on PAE-contaminated soils. Environ. Pollut. 2015, 206, 95–103. [Google Scholar] [CrossRef]
- Li, Y.; Yan, H.-Q.; Yu, X.-Y. Uptake and accumulation of di-n-butyl phthalate in six leafy vegetables under hydroponic conditions. Food Prod. Process. Nutr. 2019, 1, 9. [Google Scholar] [CrossRef]
- Sun, H.; Lei, C.; Yuan, Y.; Xu, J.; Han, M. Nanoplastic impacts on the foliar uptake, metabolism and phytotoxicity of phthalate esters in corn (Zea mays L.) plants. Chemosphere 2022, 304, 135309. [Google Scholar] [CrossRef]
- Li, Y.; Huang, G.; Gu, H.; Huang, Q.; Lou, C.; Zhang, L.; Liu, H. Assessing the Risk of Phthalate Ester (PAE) Contamination in Soils and Crops Irrigated with Treated Sewage Effluent. Water 2018, 10, 999. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, G.; Zhang, Y.; Li, M.; Hao, J.; Xiong, Y.; Li, C.; Cao, J. Accumulation Characteristics and Source Analysis of Phthalate Esters in Agricultural Soils in Gansu Province, China. Environ. Sci. 2022, 43, 4622–4629. [Google Scholar]
- Zhang, X.; Wang, Y.; Tao, H.; Zhang, X.; Ma, D. Pollution Characteristics and Health Risk Assessment of PAEs in Soils of Ningxia, China. China Environ. Sci. 2020, 40, 3930–3941. [Google Scholar]
- Liang, H.; Wang, Y.; Tao, H.; Hu, S. Pollution Characteristics and Health Risk Assessment of Phthalate Esters in Soils of the Suburban Vegetable Base in Yinchuan City. Acta Sci. Circumst. 2018, 38, 3703–3713. [Google Scholar]
- Li, J.; Zhou, T.; Zhang, Y.; Li, L.; Li, C.; Cao, J. Influence of Plastic Mulching on the Accumulation of Phthalate Esters in Agricultural Soils and Maize Grains. J. Agro-Environ. Sci. 2020, 39, 1767–1773. [Google Scholar]
- Li, K.; Ma, D.; Wu, J.; Chai, C.; Shi, Y. Distribution of phthalate esters in agricultural soil with plastic film mulching in Shandong Peninsula, East China. Chemosphere 2016, 164, 314–321. [Google Scholar] [CrossRef]
- GB 15618-2008; Environmental Quality Standard for Soil. China National Environmental Protection Agency: Beijing, China, 2008.
- Qi, R.; Jones, D.L.; Li, Z.; Liu, Q.; Yan, C. Behavior of microplastics and plastic film residues in the soil environment: A critical review. Sci. Total Environ. 2020, 703, 134722. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Zhou, Q.; An, J.; Sun, Y.; Liu, R. Variations in cadmium accumulation among Chinese cabbage cultivars and screening for Cd-safe cultivars. J. Hazard. Mater. 2010, 173, 737–743. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, Z.; Liu, L.; Li, Y.; Ren, N.; Kannan, K. Occurrence and profiles of phthalates in foodstuffs from China and their implications for human exposure. J. Agric. Food Chem. 2012, 60, 6913–6919. [Google Scholar] [CrossRef]
- Tan, W.; Zhang, Y.; He, X.; Xi, B.; Gao, R.; Mao, X.; Huang, C.; Zhang, H.; Li, D.; Liang, Q.; et al. Distribution patterns of phthalic acid esters in soil particle-size fractions determine biouptake in soil-cereal crop systems. Sci. Rep. 2016, 6, 31987. [Google Scholar] [CrossRef]
- Kumar, M.; Xiong, X.; He, M.; Tsang, D.C.W.; Gupta, J.; Khan, E.; Harrad, S.; Hou, D.; Ok, Y.S.; Bolan, N.S. Microplastics as pollutants in agricultural soils. Environ. Pollut. 2020, 265, 114980. [Google Scholar] [CrossRef]
- GB 9685-2016; National Food Safety Standard for the Use of Additives in Food Contact Materials and Products. China Ministry of Health: Beijing, China, 2016.
- Zeng, L.J.; Huang, Y.H.; Lu, H.; Geng, J.; Zhao, H.M.; Xiang, L.; Li, H.; Li, Y.W.; Mo, C.H.; Cai, Q.Y.; et al. Uptake pathways of phthalates (PAEs) into Chinese flowering cabbage grown in plastic greenhouses and lowering PAE accumulation by spraying PAE-degrading bacterial strain. Sci. Total Environ. 2022, 815, 152854. [Google Scholar] [CrossRef] [PubMed]
- Zeng, L.J.; Huang, Y.H.; Chen, X.T.; Chen, X.H.; Mo, C.H.; Feng, Y.X.; Lu, H.; Xiang, L.; Li, Y.W.; Li, H.; et al. Prevalent phthalates in air-soil-vegetable systems of plastic greenhouses in a subtropical city and health risk assessments. Sci. Total Environ. 2020, 743, 140755. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Zhang, X.; Wu, X.; Shen, G.; Du, Q.; Mo, C. Uptake of di(2-ethylhexyl) phthalate (DEHP) by the plant Benincasa hispida and its use for lowering DEHP content of intercropped vegetables. J. Agric. Food Chem. 2013, 61, 5220–5225. [Google Scholar] [CrossRef]
- Sun, H.; Nan, Y.; Feng, R.; Ma, R. Novel method for in situ investigation into graphene quantum dots effects on the adsorption of nitrated polycyclic aromatic hydrocarbons by crop leaf surfaces. Ecotoxicol. Environ. Saf. 2018, 162, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Lanciotti, R.; Gianotti, A.; Patrignani, F.; Belletti, N.; Guerzoni, M.E.; Gardini, F. Use of natural aroma compounds to improve shelf-life and safety of minimally processed fruits. Trends Food Sci. Technol. 2004, 15, 201–208. [Google Scholar] [CrossRef]
- Sun, J.; Wu, X.; Gan, J. Uptake and Metabolism of Phthalate Esters by Edible Plants. Environ. Sci. Technol. 2015, 49, 8471–8478. [Google Scholar] [CrossRef]
- Ren, W.; Wang, Y.; Huang, Y.; Liu, F.; Teng, Y. Uptake, translocation and metabolism of di-n-butyl phthalate in alfalfa (Medicago sativa). Sci. Total Environ. 2020, 731, 138974. [Google Scholar] [CrossRef]
- Zhang, D.; Zhou, K.; Liu, C.; Li, X.; Pan, S.; Zhong, L. Dissipation, uptake, translocation and accumulation of five phthalic acid esters in sediment-Zizania latifolia system. Chemosphere 2023, 315, 137651. [Google Scholar] [CrossRef]
- Li, M.; Cheng, Y.; Ding, T.; Wang, H.; Wang, W.; Li, J.; Ye, Q. Phytotransformation and Metabolic Pathways of (14)C-Carbamazepine in Carrot and Celery. J. Agric. Food Chem. 2020, 68, 3362–3371. [Google Scholar] [CrossRef]
- Khan, I.; Iqbal, M.; Shafiq, F. Phytomanagement of lead-contaminated soils: Critical review of new trends and future prospects. Int. J. Environ. Sci. Technol. 2019, 16, 6473–6488. [Google Scholar] [CrossRef]
- Rahman, M.; Brazel, C. The plasticizer market: An assessment of traditional plasticizers and research trends to meet new challenges. Prog. Polym. Sci. 2004, 29, 1223–1248. [Google Scholar] [CrossRef]
- Mo, C.H.; Cai, Q.Y.; Tang, S.R.; Zeng, Q.Y.; Wu, Q.T. Polycyclic aromatic hydrocarbons and phthalic acid esters in vegetables from nine farms of the Pearl River Delta, South China. Arch. Environ. Contam. Toxicol. 2009, 56, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Li, J.; Wang, Z. Design of puncher for recycling of waste film fragments. Environ. Sci. Pollut. Res. Int. 2021, 28, 67724–67735. [Google Scholar] [CrossRef] [PubMed]
- McKee, R.H.; Butala, J.H.; David, R.M.; Gans, G. NTP center for the evaluation of risks to human reproduction reports on phthalates: Addressing the data gaps. Reprod. Toxicol. 2004, 18, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Felizeter, S.; McLachlan, M.S.; de Voogt, P. Uptake of perfluorinated alkyl acids by hydroponically grown lettuce (Lactuca sativa). Environ. Sci. Technol. 2012, 46, 11735–11743. [Google Scholar] [CrossRef]
- Wang, L.; Li, X.G.; Guan, Z.-H.; Jia, B.; Turner, N.C.; Li, F.-M. The effects of plastic-film mulch on the grain yield and root biomass of maize vary with cultivar in a cold semiarid environment. Field Crops Res. 2018, 216, 89–99. [Google Scholar] [CrossRef]
Factor | Years | DMP | DEP | DnBP | BBP | DEHP | PAEs |
---|---|---|---|---|---|---|---|
RCF | CK | / | 6.32 ± 0.24 a | 2.98 ± 0.16 b | 0.00 ± 0.00 | 6.22 ± 0.58 d | 5.84 ± 0.50 d |
10 | / | 6.88 ± 3.75 a | 0.42 ± 0.08 c | / | 26.35 ± 1.29 b | 18.90 ± 1.04 b | |
15 | / | 3.36 ± 0.21 a | 2.98 ± 0.07 b | 0.00 ± 0.00 | 31.45 ± 0.98 a | 20.93 ± 0.51 a | |
30 | 6.26 ± 3.50 | 4.29 ± 1.67 a | 3.83 ± 0.35 a | 0.00 ± 0.00 | 22.00 ± 0.17 c | 16.86 ± 0.43 c | |
LCF | CK | / | 2.31 ± 0.12 ab | 0.80 ± 0.26 c | 0.00 ± 0.00 | 0.72 ± 0.08 c | 0.71 ± 0.08 d |
10 | / | 3.68 ± 2.15 a | 1.38 ± 0.15 b | / | 7.24 ± 0.78 b | 5.56 ± 0.51 b | |
15 | / | 1.04 ± 0.17 ab | 1.35 ± 0.23 b | 0.38 ± 0.11 | 10.92 ± 0.38 a | 7.36 ± 0.31 c | |
30 | 0.00 ± 0.00 | 1.74 ± 0.43 b | 2.83 ± 0.24 a | 0.31 ± 0.06 | 10.12 ± 0.30 a | 8.00 ± 0.30 a | |
CK | 0.77 ± 0.15 a | 0.37 ± 0.03 bc | 0.27 ± 0.08 b | / | 0.12 ± 0.00 | 0.12 ± 0.00 d | |
10 | 0.39 ± 0.25 b | 0.53 ± 0.05 a | 3.34 ± 0.73 a | / | 0.28 ± 0.04 | 0.30 ± 0.04 c | |
15 | 0.35 ± 0.05 b | 0.31 ± 0.06 c | 0.45 ± 0.07 b | / | 0.35 ± 0.01 | 0.35 ± 0.01 b | |
30 | 0.00 ± 0.00 c | 0.42 ± 0.06 b | 0.74 ± 0.09 b | / | 0.46 ± 0.01 | 0.47 ± 0.01 a |
Factors | Years | DMP | DEP | DnBP | BBP | DEHP | PAEs |
---|---|---|---|---|---|---|---|
RCF | CK | 1.11 ± 0.58 a | 0.00 ± 0.00 | 14.66 ± 1.61 a | 0.23 ± 0.11 | 2.97 ± 0.47 b | 3.25 ± 0.34 d |
5 | 1.52 ± 0.49 a | / | 9.61 ± 1.58 b | 0.00 ± 0.00 | 5.26 ± 0.09 a | 5.58 ± 0.14 a | |
10 | 1.96 ± 0.57 a | 0.00 ± 0.00 | 1.57 ± 0.28 c | 1.39 ± 0.13 | 6.25 ± 0.18 c | 4.73 ± 0.32 b | |
20 | 1.47 ± 0.59 a | 4.37 ± 0.47 | 0.96 ± 0.10 c | / | 4.91 ± 0.22 b | 3.86 ± 0.02 c | |
SCF | CK | 0.91 ± 0.03 a | 1.15 ± 0.50 | 14.59 ± 0.04 a | 0.70 ± 0.19 | 11.90 ± 0.73 a | 10.96 ± 0.38 a |
5 | 1.46 ± 0.50 a | / | 8.15 ± 1.41 b | 0.00 ± 0.00 | 8.08 ± 0.38 b | 7.99 ± 0.48 b | |
10 | 0.00 ± 0.00 b | 1.72 ± 0.45 | 0.95 ± 0.14 c | 0.85 ± 0.41 | 5.00 ± 0.26 c | 3.71 ± 0.02 c | |
20 | 1.36 ± 0.37 a | 1.43 ± 0.13 | 0.62 ± 0.03 c | / | 1.66 ± 0.09 a | 1.45 ± 0.07 d | |
LCF | CK | 1.17 ± 0.21 a | 5.25 ± 2.18 | 22.73 ± 0.31 a | 2.64 ± 0.51 | 12.70 ± 0.99 a | 12.27 ± 0.71 a |
5 | 1.12 ± 0.54 a | / | 10.52 ± 1.28 b | 19.43 ± 5.08 | 6.83 ± 0.18 b | 7.21 ± 0.18 b | |
10 | 0.00 ± 0.00 b | 3.67 ± 0.89 | 1.34 ± 0.13 c | 0.00 ± 0.00 | 6.33 ± 0.23 bc | 4.77 ± 0.30 c | |
20 | 1.52 ± 0.45 a | 2.15 ± 0.14 | 0.85 ± 0.15 c | / | 5.55 ± 0.40 c | 4.25 ± 0.18 c | |
GCF | CK | 1.23 ± 0.22 | 3.37 ± 1.11 | 19.46 ± 2.71 a | 1.42 ± 0.26 | 1.94 ± 0.10 c | 2.77 ± 0.13 c |
5 | 1.51 ± 0.42 a | / | 6.83 ± 0.39 b | 4.32 ± 0.93 | 1.22 ± 0.03 d | 1.69 ± 0.05 d | |
10 | 3.11 ± 1.52 a | 4.34 ± 1.50 | 1.23 ± 0.13 c | 5.62 ± 0.54 | 6.09 ± 0.14 a | 4.62 ± 0.19 a | |
20 | 3.41 ± 1.89 a | 3.04 ± 0.52 | 1.25 ± 0.16 c | / | 4.64 ± 0.38 b | 3.74 ± 0.14 b | |
CK | 0.96 ± 0.43 a | / | 1.00 ± 0.10 a | 3.52 ± 1.69 | 4.05 ± 0.43 a | 3.39 ± 0.25 a | |
5 | 0.96 ± 0.15 a | 0.25 ± 0.06 | 0.85 ± 0.10 b | / | 1.54 ± 0.05 b | 1.43 ± 0.05 b | |
10 | 0.00 ± 0.00 b | / | 0.61 ± 0.03 c | 0.59 ± 0.23 | 0.80 ± 0.06 c | 0.79 ± 0.06 c | |
20 | 0.96 ± 0.13 a | 0.33 ± 0.06 | 0.65 ± 0.04 c | / | 0.34 ± 0.02 d | 0.38 ± 0.01 d | |
CK | 1.18 ± 0.36 a | / | 1.56 ± 0.15 a | 13.18 ± 5.89 | 4.31 ± 0.35 a | 3.79 ± 0.19 a | |
5 | 0.71 ± 0.12 b | 0.77 ± 0.08 | 1.10 ± 0.05 b | / | 1.30 ± 0.02 b | 1.29 ± 0.02 b | |
10 | 0.00 ± 0.00 c | / | 0.86 ± 0.11 c | 0.00 ± 0.00 | 1.01 ± 0.04 b | 1.01 ± 0.03 c | |
20 | 1.06 ± 0.11 ab | 0.50 ± 0.05 | 0.88 ± 0.07 c | / | 1.13 ± 0.05 b | 1.10 ± 0.04 bc | |
CK | 1.24 ± 0.37 b | / | 1.33 ± 0.16 a | 6.83 ± 2.47 | 0.66 ± 0.09 b | 0.86 ± 0.07 b | |
5 | 1.00 ± 0.09 b | 0.71 ± 0.02 | 0.72 ± 0.09 b | / | 1.29 ± 0.02 c | 0.30 ± 0.02 c | |
10 | 1.53 ± 0.39 ab | / | 0.79 ± 0.08 b | 4.05 ± 0.51 | 0.97 ± 0.03 a | 0.98 ± 0.03 a | |
20 | 2.20 ± 0.59 a | 0.71 ± 0.18 | 1.30 ± 0.04 a | / | 0.94 ± 0.04 a | 0.97 ± 0.04 a |
Analyte | Molecular Weight | Water Solubility | logKow | Alkyl Chain Length |
---|---|---|---|---|
DMP | 194 | 4000 | 1.6 | 1 |
DEP | 222 | 1080 | 2.47 | 2 |
DnBP | 278.34 | 11.2 | 4.5 | 4 |
BBP | 312.36 | 2.69 | 4.73 | 5.5 |
DEHP | 390.526 | 0.00249 | 8.71 | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Li, J.; Ma, T.; Ma, K.; Ni, X.; Wu, S. Accumulation and Transport of Phthalic Acid Esters in the Soil-Plant System of Agricultural Fields with Different Years of Film Mulching. Sustainability 2023, 15, 15589. https://doi.org/10.3390/su152115589
Zhang H, Li J, Ma T, Ma K, Ni X, Wu S. Accumulation and Transport of Phthalic Acid Esters in the Soil-Plant System of Agricultural Fields with Different Years of Film Mulching. Sustainability. 2023; 15(21):15589. https://doi.org/10.3390/su152115589
Chicago/Turabian StyleZhang, Haiying, Jia Li, Taiyong Ma, Kun Ma, Xilu Ni, and Shubao Wu. 2023. "Accumulation and Transport of Phthalic Acid Esters in the Soil-Plant System of Agricultural Fields with Different Years of Film Mulching" Sustainability 15, no. 21: 15589. https://doi.org/10.3390/su152115589
APA StyleZhang, H., Li, J., Ma, T., Ma, K., Ni, X., & Wu, S. (2023). Accumulation and Transport of Phthalic Acid Esters in the Soil-Plant System of Agricultural Fields with Different Years of Film Mulching. Sustainability, 15(21), 15589. https://doi.org/10.3390/su152115589