A Detailed Analysis of the Modified Economic Method for Assessing the Performance of Photovoltaic Module Enhancing Techniques
Abstract
:1. Introduction
Motivation of the Present Study
- A comprehensive analysis of the is used to assess the effectiveness of photovoltaic (PV)-module-enhancing techniques. The study aims to bridge existing gaps in research by investigating the parameters affecting the which are the number of solar cells in a PV with an enhancer, the output power of a single solar cell without an enhancer, the output power of a PV with an enhancer, the manufacturing cost of the PV enhancer, the one-watt cost of PV power, and the output power of a solar cell with an enhancer equivalent to the maximum output power under standard test conditions (STC).
- It will be shown that the output power of a PV with an enhancer and the one-watt cost of PV power, that have an inverse proportional relationship with the , should be kept high, for better PV enhancer performance. On the other hand, the other parameters, including the number of solar cells in a PV with an enhancer, output power of a single solar cell without an enhancer, the manufacturing cost of the PV enhancer, and the output power of a solar cell with an enhancer equivalent to the maximum output power under standard test conditions (STC), have a proportional relationship with the . These parameters should have minimum values to achieve better PV enhancer performance.
- Valuable insights into the factors influencing the cost-effectiveness of PV enhancer techniques can guide decision-making processes during the design stage. In conclusion, the holds promise for application by PV enhancer designers and manufacturers.
2. Research Methodology
3. The Modified Economical Method for a PV Enhancer
3.1. The Modified Minimum Value of PV Enhancer Cost-Effectiveness Factor
3.2. Significance of Value
- , indicating the PV enhancer is cost-effective.
- , indicating the PV enhancer is neutral.
- , indicating the PV enhancer is not cost-effective.
3.3. The Areas of Cost-Effective or Non-Cost-Effective
- falls in the range of , indicating the PV enhancer is in the cost-effective area.
- falls in the range of 1, indicating the PV enhancer is in the non-cost-effective area.
4. Results and Discussions on and
4.1. The Effect of Solar Cell Number on
4.2. The Effect of Solar Cell Output Power on and
4.3. The Effect of the Cost of One Watt of PV Power on
4.4. The Effect of PV Cooler’s Manufacturing Cost on
4.5. The Effect of the Output Power of the PV Cooler on
4.6. The Effect of on
4.7. Comparison between Existing and Current Work
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
F | Factor, dimensionless |
I | Electrical current (A) |
n | Number of solar cells |
P | Power (W) |
PCM | Phase-change material |
PTC | PV USA test condition |
PVT | Photovoltaic thermal collector |
MYR | Ringgit Malaysia |
V | Voltage (V) |
Y | One-watt cost of PV power |
Z | Cost of manufacturing of PV enhancer |
Subscripts | |
cell | Solar cell |
max | Maximum |
MCE | Modified production cost-effectiveness |
min | Minimum |
mp | Maximum point |
oc | Open circuit |
PV | Photovoltaic module |
PVE | Photovoltaic module with an enhancer |
SC | Short circuit |
STC | Standard test conditions |
References
- Available online: https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2020-full-report.pdf (accessed on 3 June 2023).
- Karn, V.; Alina, V.; Joel, S.; Eloise, A.M.; Melissa, P.S.; Loretta, J.M. Global mortality from outdoor fine particle pollution generated by fossil fuel combustion: Results from GEOS-Chem. Environ. Res. 2021, 195, 110754. [Google Scholar]
- Gopal, N.T.; Neha, G. Photovoltaic Thermal Passive House System Basic Principle, Modeling, Energy and Exergy Analysis; CRC Press: Boca Raton, FL, USA, 2022. [Google Scholar]
- Available online: http://www.solaronsale.com/Products/MLE_280.pdf (accessed on 6 May 2023).
- Available online: https://www.iea.org/reports/solar-pv (accessed on 21 December 2022).
- Green, M.A. Photovoltaics: Technology overview. Energy Policy 2000, 28, 989–998. [Google Scholar] [CrossRef]
- Sultan, S.M.; Tso, C.P.; Ervina, E.M.N. A new production cost effectiveness factor for assessing photovoltaic module cooling techniques. Int. J. Energy Res. 2020, 44, 574–583. [Google Scholar] [CrossRef]
- Shah, N.A.; Animasaun, I.L.; Ibraheem, R.O.; Babatunde, H.A.; Sandeep, N.; Pop, I. Scrutinization of the effects of Grashof number on the flow of different fluids driven by convection over various surfaces. J. Mol. Liq. 2018, 249, 980–990. [Google Scholar] [CrossRef]
- Animasaun, I.L. Effects of thermophoresis, variable viscosity and thermal conductivity on free convective heat and mass transfer of non-darcian MHD dissipative Casson fluid flow with suction and nth order of chemical reaction. J. Niger. Math. Soc. 2016, 34, 11–31. [Google Scholar] [CrossRef] [Green Version]
- Kolade, K.; Oreyeni, O.; Johnm, O.T.; Lare, A.A.I. Homotopy analysis of MHD free convective micropolar fluid flow along a vertical surface embedded in non-darcian thermally-stratified medium. Open J. Fluid Dyn. 2016, 6, 198–221. [Google Scholar] [CrossRef] [Green Version]
- David, G.; Iván, A.; Montserrat, D.; Cristina, A. Experimental analysis of a novel PV/T panel with PCM and heat pipes. Sustainability 2020, 12, 1710. [Google Scholar]
- Sultan, M.S.; Tso, C.P.; Ervina, E.M.N. Comments on “Performance evaluation of photovoltaic thermal solar air collector for composite climate of India”. Sol. Energy Mater. Sol. Cells 2019, 198, 63–64. [Google Scholar] [CrossRef]
- Sultan, S.M.; Ervina, E.M.N. Review on recent Photovoltaic/Thermal (PV/T) technology advances and applications. Sol. Energy 2018, 173, 939–954. [Google Scholar] [CrossRef]
- Mohamed, H.; M’barek, F.; Monssif, N.; Adil, C. Numerical study of a covered Photovoltaic-Thermal Collector (PVT) enhancement using nanofluids. Sol. Energy 2020, 199, 115–127. [Google Scholar]
- Mohammad, H.A.; Alireza, B.; Milad, S.; Mohammad, Z.; Amir, M.; Shahaboddin, S.; Ravinder, K.; Mohammad, M. Evaluation of electrical efficiency of photovoltaic thermal solar collector. Eng. Appl. Comput. Fluid Mech. 2020, 14, 545–565. [Google Scholar] [CrossRef] [Green Version]
- Tao, M.; Meng, L.; Arash, K. Photovoltaic thermal module and solar thermal collector connected in series to produce electricity and high-grade heat simultaneously. Appl. Energy 2020, 261, 114380. [Google Scholar]
- Oussama, H.; Mahmoud, B.; Abdellah, M. Performance analysis of photovoltaic-thermal air collectors combined with a water to air heat exchanger for renewed air conditioning in building. Environ. Sci. Pollut. Res. 2020, 28, 18953–18962. [Google Scholar] [CrossRef]
- Juwel, C.M.; Wen, T.C.; Hwai, C.O.; Leong, K.Y.; Abdullah, A. An experimental investigation on performance analysis of air type photovoltaic thermal collector system integrated with cooling fins design. Energy Build. 2016, 130, 272–285. [Google Scholar]
- Karima, E.; Amori, M.A.A. Field study of various air based photovoltaic/thermal hybrid solar Collectors. Renew. Energy 2014, 63, 402–414. [Google Scholar]
- Chao, Z.; Ruobing, L.; Jili, Z.; Ahmad, R. Experimental study on the cogeneration performance of roll-bond-PVT heat pump system with single stage compression during summer. Appl. Therm. Eng. 2019, 149, 249–261. [Google Scholar]
- Ali, N.A.; Alghoul, M.A.; Elbreki, A.M.; Ammar, A.A.; Azher, M.A.; Sopian, K. Mathematical and experimental evaluation of thermal and electrical efficiency of PV/T collector using different water based nano-fluids. Energy 2018, 145, 770–792. [Google Scholar]
- Tabor, H. Stationary mirror systems for solar collectors. Sol. Energy 1958, 2, 27–33. [Google Scholar] [CrossRef]
- Anand, V.P.; Khan, A.E.; Amuthan, V.; Pesala, B. Performance improvement of solar module system using flat plate reflectors. In Proceedings of the International Conference on Advanced Electrical Engineering (ICAEE), Vellore, India, 9–11 January 2014; pp. 1–4. [Google Scholar]
- Palaskar, V.N.; Deshmukh, S.P. Design and performance analysis of reflectors attached to commercial PV module. Int. J. Renew. Energy Res. 2014, 4, 240–245. [Google Scholar]
- Tanaka, H. Theoretical analysis of solar thermal collector with a flat plate bottom booster reflector. Energy Rep. 2011, 2, 26–34. [Google Scholar]
- Gopinath, M.S.; Balaji, R.; Kirubakaran, V. Cost effective methods to improve the power output of a solar panel: An experimental investigation. In Proceedings of the Power and Energy Systems: Towards Sustainable Energy, Bangalore, India, 13–15 March 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 1–4. [Google Scholar]
- Bahaidarah, H.M.; Tanweer, B.; Gandhidasan, P.; Rehman, S. A combined optical, thermal and electrical performance study of a V-trough PV system experimental and analytical investigations. Energies 2015, 8, 2803–2827. [Google Scholar] [CrossRef] [Green Version]
- Naseer, K.K.; Ahmed, F.A.; Fadhil, M.E. Improve the performance of solar modules by reflectors. J. Phys. Conf. Ser. 2018, 1032, 012031. [Google Scholar]
- Elbreki, A.M.; Muftah, A.F.; Sopian, K.; Jarimi, H.; Fazlizan, A.; Ibrahim, A. Experimental and economic analysis of passive cooling PV module using fins and planar reflector. Case Stud. Therm. Eng. 2021, 23, 100801. [Google Scholar] [CrossRef]
- Moon, K.K.; Khalid, O.A.; Jiying, L.; Joon-Ho, C.; Huiqing, W. Optimal design strategy of a solar reflector combining photovoltaic panels to improve electricity output: A case study in Calgary, Canada. Sustainability 2021, 13, 6115. [Google Scholar]
- Jin, S.; Choi, B.G.; Choi, J.H.; Kim, S.R.; Chun, R.T.; Yun-Su, K. New curved reflectors for significantly enhanced solar power generation in four seasons. Energies 2019, 12, 4602. [Google Scholar]
- Amanlou, Y.; Hashjin, T.T.; Ghobadian, B.; Najafi, G. Air cooling low concentrated photovoltaic/thermal (LCPV/T) solar collector to approach uniform temperature distribution on the PV plate. Appl. Therm. Eng. 2018, 141, 413–421. [Google Scholar] [CrossRef]
- Monika, A.; Priyank, C.; Amartya, C. Performance analysis of photovoltaic module with reflector: Optimizing orientation with different tilt scenarios. Renew. Energy 2022, 186, 10–25. [Google Scholar]
- Sakhr, M.S.; Tso, C.P.; Ervina, E.M.N.; Abdullah, M.Z. A cost effective and economic method for assessing the performance of photovoltaic module enhancing techniques: Analytical and experimental study. Sol. Energy 2023, 254, 27–41. [Google Scholar]
PV Cooler Model | Number of Solar Cells in a PV with a Cooler, n | Cost of One Watt of PV Power, MYR | Cost of PV Cooling Technique, MYR | Remarks | |||||
---|---|---|---|---|---|---|---|---|---|
A | 1.20 | 0.90 | 200.00 | 172.53 | 3.00 | 19.00 | 1.08 | 0.75 | Not cost-effective |
B | 1.20 | 0.90 | 200.00 | 187.00 | 3.00 | 21.00 | 1.00 | 0.75 | Neutral |
C | 1.20 | 0.90 | 200.00 | 208.88 | 3.00 | 24.00 | 0.90 | 0.75 | Cost-effective |
D | 1.20 | 0.90 | 200.00 | 217.24 | 3.00 | 27.00 | 0.87 | 0.75 | Cost-effective |
E | 1.20 | 0.90 | 200.00 | 237.50 | 3.00 | 30.00 | 0.80 | 0.75 | Cost-effective |
PV Cooler Model | Number of Solar Cells in a PV with a Cooler, n | Cost of One Watt of PV Power, MYR | Cost of PV Cooling Technique, MYR | Remarks | |||||
---|---|---|---|---|---|---|---|---|---|
A | 1.20 | 0.90 | 190 | 172.53 | 3.00 | 19.00 | 1.03 | 0.75 | Not cost-effective |
B | 1.20 | 0.90 | 190 | 187.00 | 3.00 | 21.00 | 0.95 | 0.75 | Cost-effective |
C | 1.20 | 0.90 | 190 | 208.88 | 3.00 | 24.00 | 0.86 | 0.75 | Cost-effective |
D | 1.20 | 0.90 | 190 | 217.24 | 3.00 | 27.00 | 0.83 | 0.75 | Cost-effective |
E | 1.20 | 0.90 | 190 | 237.50 | 3.00 | 30.00 | 0.76 | 0.75 | Cost-effective |
PV Cooler Model | Number of Solar Cells in a PV with a Cooler, n | Cost of One Watt of PV Power, MYR | Cost of PV Cooling Technique, MYR | Remarks | |||||
---|---|---|---|---|---|---|---|---|---|
A | 1.20 | 0.90 | 210 | 172.53 | 3.00 | 19.00 | 1.13 | 0.75 | Not cost-effective |
B | 1.20 | 0.90 | 210 | 187.00 | 3.00 | 21.00 | 1.05 | 0.75 | Not cost-effective |
C | 1.20 | 0.90 | 210 | 208.88 | 3.00 | 24.00 | 0.94 | 0.75 | Cost-effective |
D | 1.20 | 0.90 | 210 | 217.24 | 3.00 | 27.00 | 0.91 | 0.75 | Cost-effective |
E | 1.20 | 0.90 | 210 | 237.50 | 3.00 | 30.00 | 0.84 | 0.75 | Cost-effective |
PV Cooler Model | Number of Solar Cells in a PV with a Cooler, n | Cost of One Watt of PV Power, MYR | Cost of PV Cooling Technique, MYR | Remarks | |||||
---|---|---|---|---|---|---|---|---|---|
A | 1.20 | 1.00 | 200.00 | 172.53 | 3.00 | 19.00 | 1.20 | 0.83 | Not cost-effective |
B | 1.20 | 1.00 | 200.00 | 187.00 | 3.00 | 21.00 | 1.11 | 0.83 | Not cost-effective |
C | 1.20 | 1.00 | 200.00 | 208.88 | 3.00 | 24.00 | 1.00 | 0.83 | Neutral |
D | 1.20 | 1.00 | 200.00 | 217.24 | 3.00 | 27.00 | 0.96 | 0.83 | Cost-effective |
E | 1.20 | 1.00 | 200.00 | 237.50 | 3.00 | 30.00 | 0.88 | 0.83 | Cost-effective |
PV Cooler Model | Number of Solar Cells in a PV with a Cooler, n | Cost of One Watt of PV Power, MYR | Cost of PV Cooling Technique, MYR | Remarks | |||||
---|---|---|---|---|---|---|---|---|---|
A | 1.20 | 0.80 | 200.00 | 172.53 | 3.00 | 19.00 | 0.96 | 0.67 | Not cost-effective |
B | 1.20 | 0.80 | 200.00 | 187.00 | 3.00 | 21.00 | 0.89 | 0.67 | Neutral |
C | 1.20 | 0.80 | 200.00 | 208.88 | 3.00 | 24.00 | 0.80 | 0.67 | Cost-effective |
D | 1.20 | 0.80 | 200.00 | 217.24 | 3.00 | 27.00 | 0.78 | 0.67 | Cost-effective |
E | 1.20 | 0.80 | 200.00 | 237.50 | 3.00 | 30.00 | 0.72 | 0.67 | Cost-effective |
PV Cooler Model | Number of Solar Cells in a PV with a Cooler, n | Cost of One Watt of PV Power, MYR | Cost of PV Cooling Technique, MYR | Remarks | |||||
---|---|---|---|---|---|---|---|---|---|
A | 1.20 | 0.90 | 200.00 | 172.53 | 5.00 | 19.00 | 1.07 | 0.75 | Not cost-effective |
B | 1.20 | 0.90 | 200.00 | 187.00 | 5.00 | 21.00 | 0.99 | 0.75 | Cost-effective |
C | 1.20 | 0.90 | 200.00 | 208.88 | 5.00 | 24.00 | 0.88 | 0.75 | Cost-effective |
D | 1.20 | 0.90 | 200.00 | 217.24 | 5.00 | 27.00 | 0.85 | 0.75 | Cost-effective |
E | 1.20 | 0.90 | 200.00 | 237.50 | 5.00 | 30.00 | 0.80 | 0.75 | Cost-effective |
PV Cooler Model | Number of Solar Cells in a PV with a Cooler, n | Cost of One Watt of PV Power, MYR | Cost of PV Cooling Technique, MYR | Remarks | |||||
---|---|---|---|---|---|---|---|---|---|
A | 1.20 | 0.90 | 200.00 | 172.53 | 1.00 | 19.00 | 1.15 | 0.75 | Not cost-effective |
B | 1.20 | 0.90 | 200.00 | 187.00 | 1.00 | 21.00 | 1.07 | 0.75 | Not cost-effective |
C | 1.20 | 0.90 | 200.00 | 208.88 | 1.00 | 24.00 | 0.98 | 0.75 | Cost-effective |
D | 1.20 | 0.90 | 200.00 | 217.24 | 1.00 | 27.00 | 0.95 | 0.75 | Cost-effective |
E | 1.20 | 0.90 | 200.00 | 237.50 | 1.00 | 30.00 | 0.88 | 0.75 | Cost-effective |
PV Cooler Model | Number of Solar Cells in a PV with a Cooler, n | Cost of One Watt of PV Power, MYR | Cost of PV Cooling Technique, MYR | Remarks | |||||
---|---|---|---|---|---|---|---|---|---|
A | 1.20 | 0.90 | 200.00 | 172.53 | 3.00 | 27.00 | 1.10 | 0.75 | Not cost-effective |
B | 1.20 | 0.90 | 200.00 | 187.00 | 3.00 | 30.00 | 1.02 | 0.75 | Not cost-effective |
C | 1.20 | 0.90 | 200.00 | 208.88 | 3.00 | 35.00 | 0.92 | 0.75 | Cost-effective |
D | 1.20 | 0.90 | 200.00 | 217.24 | 3.00 | 40.00 | 0.89 | 0.75 | Cost-effective |
E | 1.20 | 0.90 | 200.00 | 237.50 | 3.00 | 50.00 | 0.83 | 0.75 | Cost-effective |
PV cooler Model | Number of Solar Cells in a PV with a Cooler, n | Cost of One Watt of PV Power, MYR | Cost of PV Cooling Technique, MYR | Remarks | |||||
---|---|---|---|---|---|---|---|---|---|
A | 1.20 | 0.90 | 200.00 | 172.53 | 3.00 | 15.00 | 1.07 | 0.75 | Not cost-effective |
B | 1.20 | 0.90 | 200.00 | 187.00 | 3.00 | 17.00 | 0.99 | 0.75 | Cost-effective |
C | 1.20 | 0.90 | 200.00 | 208.88 | 3.00 | 20.00 | 0.89 | 0.75 | Cost-effective |
D | 1.20 | 0.90 | 200.00 | 217.24 | 3.00 | 22.00 | 0.86 | 0.75 | Cost-effective |
E | 1.20 | 0.90 | 200.00 | 237.50 | 3.00 | 25.00 | 0.79 | 0.75 | Cost-effective |
PV Cooler Model | Number of Solar Cells in a PV with a Cooler, n | Cost of One Watt of PV Power, MYR | Cost of PV Cooling Technique, MYR | Remarks | |||||
---|---|---|---|---|---|---|---|---|---|
A | 1.20 | 0.90 | 200.00 | 180.00 | 3.00 | 19.00 | 1.04 | 0.75 | Not cost-effective |
B | 1.20 | 0.90 | 200.00 | 195.00 | 3.00 | 21.00 | 0.96 | 0.75 | Cost-effective |
C | 1.20 | 0.90 | 200.00 | 220.00 | 3.00 | 24.00 | 0.85 | 0.75 | Cost-effective |
D | 1.20 | 0.90 | 200.00 | 230.00 | 3.00 | 27.00 | 0.82 | 0.75 | Cost-effective |
E | 1.20 | 0.90 | 200.00 | 250.00 | 3.00 | 30.00 | 0.76 | 0.75 | Cost-effective |
PV Cooler Model | Number of Solar Cells in a PV with a Cooler, n | Cost of One Watt of PV Power, MYR | Cost of PV Cooling Technique, MYR | Remarks | |||||
---|---|---|---|---|---|---|---|---|---|
A | 1.20 | 0.90 | 200.00 | 160.00 | 3.00 | 19.00 | 1.16 | 0.75 | Not cost-effective |
B | 1.20 | 0.90 | 200.00 | 170.00 | 3.00 | 21.00 | 1.10 | 0.75 | Not cost-effective |
C | 1.20 | 0.90 | 200.00 | 200.00 | 3.00 | 24.00 | 0.94 | 0.75 | Cost-effective |
D | 1.20 | 0.90 | 200.00 | 210.00 | 3.00 | 27.00 | 0.90 | 0.75 | Cost-effective |
E | 1.20 | 0.90 | 200.00 | 230.00 | 3.00 | 30.00 | 0.83 | 0.75 | Cost-effective |
PV Cooler Model | Number of Solar Cells in a PV with a Cooler, n | Cost of One Watt of PV Power, MYR | Cost of PV Cooling Technique, MYR | Remarks | |||||
---|---|---|---|---|---|---|---|---|---|
A | 1.30 | 0.90 | 200.00 | 160.00 | 3.00 | 19.00 | 1.16 | 0.69 | Not cost-effective |
B | 1.30 | 0.90 | 200.00 | 170.00 | 3.00 | 21.00 | 1.10 | 0.69 | Not cost-effective |
C | 1.30 | 0.90 | 200.00 | 200.00 | 3.00 | 24.00 | 0.94 | 0.69 | Cost-effective |
D | 1.30 | 0.90 | 200.00 | 210.00 | 3.00 | 27.00 | 0.90 | 0.69 | Cost-effective |
E | 1.30 | 0.90 | 200.00 | 230.00 | 3.00 | 30.00 | 0.83 | 0.69 | Cost-effective |
PV Cooler Model | Number of Solar Cells in a PV with a Cooler, n | Cost of One Watt of PV Power, MYR | Cost of PV Cooling Technique, MYR | Remarks | |||||
---|---|---|---|---|---|---|---|---|---|
A | 1.15 | 0.90 | 200.00 | 172.53 | 3.00 | 19.00 | 1.08 | 0.78 | Not cost-effective |
B | 1.15 | 0.90 | 200.00 | 187.00 | 3.00 | 21.00 | 1.00 | 0.78 | Neutral |
C | 1.15 | 0.90 | 200.00 | 208.88 | 3.00 | 24.00 | 0.90 | 0.78 | Cost-effective |
D | 1.15 | 0.90 | 200.00 | 217.24 | 3.00 | 27.00 | 0.87 | 0.78 | Cost-effective |
E | 1.15 | 0.90 | 200.00 | 237.50 | 3.00 | 30.00 | 0.80 | 0.78 | Cost-effective |
Study | Is There a Detailed Analysis for Equations (1) and (2)? | Is There a Direct Recommendation on the Parameters That Can Improve and Degrade the Performance of PV Cooler? |
---|---|---|
Ref. [34] | No | No |
Current study | Yes | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sultan, S.M.; Tso, C.P.; Ajeel, R.K.; Sobayel, K.; Abdullah, M.Z. A Detailed Analysis of the Modified Economic Method for Assessing the Performance of Photovoltaic Module Enhancing Techniques. Sustainability 2023, 15, 12028. https://doi.org/10.3390/su151512028
Sultan SM, Tso CP, Ajeel RK, Sobayel K, Abdullah MZ. A Detailed Analysis of the Modified Economic Method for Assessing the Performance of Photovoltaic Module Enhancing Techniques. Sustainability. 2023; 15(15):12028. https://doi.org/10.3390/su151512028
Chicago/Turabian StyleSultan, Sakhr M., C. P. Tso, Raheem K. Ajeel, K. Sobayel, and M. Z. Abdullah. 2023. "A Detailed Analysis of the Modified Economic Method for Assessing the Performance of Photovoltaic Module Enhancing Techniques" Sustainability 15, no. 15: 12028. https://doi.org/10.3390/su151512028
APA StyleSultan, S. M., Tso, C. P., Ajeel, R. K., Sobayel, K., & Abdullah, M. Z. (2023). A Detailed Analysis of the Modified Economic Method for Assessing the Performance of Photovoltaic Module Enhancing Techniques. Sustainability, 15(15), 12028. https://doi.org/10.3390/su151512028