Aqueous Potassium Salt of L-Cysteine as Potential CO2 Removal Solvent: An Investigation on Physicochemical Properties and CO2 Loading Capacity
Abstract
:1. Introduction
2. Reaction Mechanisms
2.1. Amino Acid Solvent (AAS)
2.2. Alkanolamines
3. Methodology
3.1. Chemicals and Materials
3.2. Density Measurement
3.3. Viscosity Measurement
3.4. Refractive Index Measurement
3.5. CO2 Loading Capacity Measurement
3.6. CO2 Loading Capacity Calculation
4. Results and Discussions
4.1. Physicochemical Properties
4.2. Correlation Study
4.3. CO2 Loading Capacity Study
4.3.1. Effect of Pressure
4.3.2. Effect of Temperature
4.3.3. Effect of Solvent Concentration
4.3.4. Comparison with Other Amino Acid Salt Solvents and MDEA
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Energy Agency Southeast Asia Energy Outlook 2022. In Southeast Asia Energy Outlook 2022; International Energy Agency: Paris, France, 2022.
- MacKenzie, W. Malaysia LNG Long-Term Outlook H1 2020; Wood MacKenzie: Edinburgh, UK, 2020. [Google Scholar]
- Ghi, T.; Mulyo, P. Unlocking High CO2 Gas Fields–Contributing to the Carbon Economy. 2021. Available online: https://www.adlittle.com/my-en/insights/viewpoints/unlocking-high-co2-gas-fields-–-contributing-carbon-economy (accessed on 26 October 2022).
- Battersby, A. 23 Tcf of Gas Resources Require CCS in Malaysia. Available online: https://www.upstreamonline.com/energy-transition/23-tcf-of-gas-resources-require-ccs-in-malaysia/2-1-1198312 (accessed on 28 October 2022).
- Battersby, A. “Critical Enabler”: Malaysia Has Lofty Carbon Capture and Storage Ambitions. Available online: https://www.upstreamonline.com/energy-transition/critical-enabler-malaysia-has-lofty-carbon-capture-and-storage-ambitions/2-1-1198266 (accessed on 27 October 2022).
- Isa, F.; Zabiri, H.; Singh, S.K.M.; Shariff, A.M. Dynamic Modelling for High Pressure CO2 Absorption from Natural Gas. Commun. Comput. Inf. Sci. 2017, 752, 261–271. [Google Scholar] [CrossRef]
- Yoo, Y.; Lee, D.; Park, J. Characteristics and Configurations of Task-Specific Deep Eutectic Solvents with CO2-Philic Functional Groups. J. Environ. Chem. Eng. 2022, 10, 108034. [Google Scholar] [CrossRef]
- Ye, Y.; Zhao, X.; Chen, J.; Fang, M. Pilot-Scale Experimental Study of a New High-Loading Absorbent for Capturing CO2 from Flue Gas. Processes 2022, 10, 599. [Google Scholar] [CrossRef]
- Mohsin, H.M.; Johari, K.; Shariff, A.M. Virgin Coconut Oil (VCO) and Potassium Glycinate (PG) Mixture as Absorbent for Carbon Dioxide Capture. Fuel 2018, 232, 454–462. [Google Scholar] [CrossRef]
- Vega, F.; Cano, M.; Camino, S.; Fernández, L.M.G.; Portillo, E.; Navarrete, B. Solvents for Carbon Dioxide Capture. In Capture and Oil Recovery; Karamé, I., Shaya, J., Srou, H., Eds.; IntechOpen: Rijeka, Croatia, 2018; Chapter 8; ISBN 978-1-78923-575-3. [Google Scholar]
- Bottoms, R.R. Process for Separating Acidic Gases. U.S. Patent US1783901, 22 December 1936. [Google Scholar]
- Tiwari, S.C.; Bhardwaj, A.; Nigam, K.D.P.; Pant, K.K.; Upadhyayula, S. A Strategy of Development and Selection of Absorbent for Efficient CO2 Capture: An Overview of Properties and Performance. Process Saf. Environ. Prot. 2022, 163, 244–273. [Google Scholar] [CrossRef]
- Yu, B.; Yu, H.; Li, K.; Yang, Q.; Zhang, R.; Li, L.; Chen, Z. Characterisation and Kinetic Study of Carbon Dioxide Absorption by an Aqueous Diamine Solution. Appl. Energy 2017, 208, 1308–1317. [Google Scholar] [CrossRef]
- Borhani, T.N.; Wang, M. Role of Solvents in CO2 Capture Processes: The Review of Selection and Design Methods. Renew. Sustain. Energy Rev. 2019, 114, 109299. [Google Scholar] [CrossRef]
- Font-Palma, C.; Cann, D.; Udemu, C. Review of Cryogenic Carbon Capture Innovations and Their Potential Applications. C 2021, 7, 58. [Google Scholar] [CrossRef]
- Mohamed Mohsin, H.; Mohd Shariff, A.; Johari, K. 3-Dimethylaminopropylamine (DMAPA) Mixed with Glycine (GLY) as an Absorbent for Carbon Dioxide Capture and Subsequent Utilization. Sep. Purif. Technol. 2019, 222, 297–308. [Google Scholar] [CrossRef]
- Wang, N.; Peng, Z.; Gao, H.; Sema, T.; Shi, J.; Liang, Z. New Insight and Evaluation of Secondary Amine/N-Butanol Biphasic Solutions for CO2 Capture: Equilibrium Solubility, Phase Separation Behavior, Absorption Rate, Desorption Rate, Energy Consumption and Ion Species. Chem. Eng. J. 2022, 431, 133912. [Google Scholar] [CrossRef]
- Mohsin, H.M.; Johari, K.; Shariff, A.M. Physicochemical Properties of Aqueous 2-Aminoethanoic Acid and N, N-Dimethyl-1,3-Diaminopropane as an Absorbent for Carbon Dioxide Capture. J. Chem. Eng. Data 2020, 65, 2603–2610. [Google Scholar] [CrossRef]
- Mikulčić, H.; Skov, I.R.; Dominković, D.F.; Wan Alwi, S.R.; Manan, Z.A.; Tan, R.; Duić, N.; Hidayah Mohamad, S.N.; Wang, X. Flexible Carbon Capture and Utilization Technologies in Future Energy Systems and the Utilization Pathways of Captured CO2. Renew. Sustain. Energy Rev. 2019, 114, 109338. [Google Scholar] [CrossRef]
- Yoro, K.O.; Daramola, M.O.; Sekoai, P.T.; Armah, E.K.; Wilson, U.N. Advances and Emerging Techniques for Energy Recovery during Absorptive CO2 Capture: A Review of Process and Non-Process Integration-Based Strategies. Renew. Sustain. Energy Rev. 2021, 147, 111241. [Google Scholar] [CrossRef]
- Khalifa, O.; Alkhatib, I.I.I.; Bahamon, D.; Alhajaj, A.; Abu-Zahra, M.R.M.; Vega, L.F. Modifying Absorption Process Configurations to Improve Their Performance for Post-Combustion CO2 Capture–What Have We Learned and What Is Still Missing? Chem. Eng. J. 2022, 430, 133096. [Google Scholar] [CrossRef]
- Rajiman, V.; Halim, H.N.A.; Shariff, A.M.; Shahid, M.Z.; Maulud, A.S.; Lau, K.K.; Tan, L.S. CO2 Absorption from Biogas Using Piperazine-Promoted 2-Amino-2-Methyl-1-Propanol: Process Performance in a Packed Column. Sustainability 2022, 14, 7095. [Google Scholar] [CrossRef]
- Guo, L.; Wang, Y.; Wang, B.; Wang, N.; Zhang, L.; Chen, Y. A Simplified Semi-Empirical Model For Modelling of CO2 Solubilities In Aqueous MDEA and MEA Solutions. Fluid Phase Equilib. 2022, 555, 113352. [Google Scholar] [CrossRef]
- See, T.L. Absorption of High Carbon Dioxide (CO2) Content Natural Gas In Packed Column At Elevated Pressure Using Aqeous and Hybrid Solvent. Ph.D. Thesis, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia, 2015. [Google Scholar]
- Khan, S.N.; Hailegiorgis, S.M.; Man, Z.; Shariff, A.M. High Pressure Solubility of Carbon Dioxide (CO2) in Aqueous Solution of Piperazine (PZ) Activated N-Methyldiethanolamine (MDEA) Solvent for CO2 Capture. AIP Conf. Proc. 2017, 1891, 020081. [Google Scholar] [CrossRef] [Green Version]
- Farooqi, A.S.; Ramli, R.M.; Lock, S.S.M.; Hussein, N.; Shahid, M.Z.; Farooqi, A.S. Simulation of Natural Gas Treatment for Acid Gas Removal Using the Ternary Blend of MDEA, AEEA, and NMP. Sustainability 2022, 14, 10815. [Google Scholar] [CrossRef]
- Hasan, S.; Abbas, A.J.; Nasr, G.G. Improving the Carbon Capture Efficiency for Gas Power Plants through Amine-based Absorbents. Sustainability 2021, 13, 72. [Google Scholar] [CrossRef]
- Yuan, X.; Chen, X.; Xing, J.; Fang, J.; Jin, X.; Zhang, W. Enhanced Research of Absorption by Mass Transfer Promoters. Sep. Purif. Technol. 2020, 253, 117465. [Google Scholar] [CrossRef]
- Balchandani, S.C.; Mandal, B.; Dharaskar, S. Enrichment in CO2 Absorption by 2-Methyl Piperazine-Activated Tertiary Amines, Physical Solvents, and Ionic Liquid Systems. ACS Omega 2022, 7, 23611–23623. [Google Scholar] [CrossRef] [PubMed]
- Jaafari, L.; Jaffary, B.; Idem, R. Screening Study for Selecting New Activators for Activating MDEA for Natural Gas Sweetening. Sep. Purif. Technol. 2018, 199, 320–330. [Google Scholar] [CrossRef]
- Ramezani, R.; Mazinani, S.; Di Felice, R. Density, Viscosity, PH, Heat of Absorption, and CO2 Loading Capacity of Methyldiethanolamine and Potassium Lysinate Blend Solutions. J. Chem. Eng. Data 2021, 66, 1611–1629. [Google Scholar] [CrossRef]
- Bao, Z.; Li, Q.; Akhmedov, N.G.; Li, B.A.; Xing, M.; Wang, J.; Morsi, B.I.; Li, B. Innovative Cycling Reaction Mechanisms of CO2 Absorption in Amino Acid Salt Solvents. Chem. Eng. J. Adv. 2022, 10, 100250. [Google Scholar] [CrossRef]
- Garg, S.; Shariff, A.M.; Shaikh, M.S.; Lal, B.; Aftab, A.; Faiqa, N. Surface Tension and Derived Surface Thermodynamic Properties of Aqueous Sodium Salt of L-Phenylalanine. Indian J. Sci. Technol. 2016, 9, 1–11. [Google Scholar] [CrossRef]
- Ciftja, A.F.; Hartono, A.; Svendsen, H.F. Selection of Amine Amino Acids Salt Systems for CO2 Capture. Energy Procedia 2013, 37, 1597–1604. [Google Scholar] [CrossRef] [Green Version]
- Peu, S.D.; Das, A.; Hossain, M.S.; Akanda, M.A.M.; Akanda, M.M.H.; Rahman, M.; Miah, M.N.; Das, B.K.; Islam, A.R.M.T.; Salah, M.M. A Comprehensive Review on Recent Advancements in Absorption-Based Post Combustion Carbon Capture Technologies to Obtain a Sustainable Energy Sector with Clean Environment. Sustainability 2023, 15, 5827. [Google Scholar] [CrossRef]
- Majchrowicz, M.E.; Brilman, D.W.F.; Groeneveld, M.J. Precipitation Regime for Selected Amino Acid Salts for CO2 Capture from Flue Gases. Energy Procedia 2009, 1, 979–984. [Google Scholar] [CrossRef] [Green Version]
- Hamzehie, M.E.; Najibi, H. Carbon Dioxide Absorption in Aqueous Solution of Potassium Glycinate + 2-Amino-2-Methyl-1-Propanol as New Absorbents. RSC Adv. 2016, 6, 62612–62623. [Google Scholar] [CrossRef]
- Dashti, A.; Amirkgani, F.; Hamedi, A.-S.; Mohammadi, A.H. Evaluation of CO2 Absorption by Amino Acid Salt Aqueous Solution Using Hybrid Soft Computing Methods. ACS Omega 2021, 6, 12459–12469. [Google Scholar] [CrossRef]
- Ramezani, R.; Mazinani, S.; Felice, R. Di State-of-the-Art of CO2 Capture with Amino Acid Salt Solutions. Rev. Chem. Eng. 2020, 38, 273–299. [Google Scholar] [CrossRef]
- Hu, G.; Smith, K.H.; Wu, Y.; Mumford, K.A.; Kentish, S.E.; Stevens, G.W. Carbon Dioxide Capture by Solvent Absorption Using Amino Acids: A Review. Chin. J. Chem. Eng. 2018, 26, 2229–2237. [Google Scholar] [CrossRef]
- Song, H.-J.; Park, S.; Kim, H.; Gaur, A.; Park, J.-W.; Lee, S.-J. Carbon Dioxide Absorption Characteristics of Aqueous Amino Acid Salt Solutions. Int. J. Greenh. Gas Control 2012, 11, 64–72. [Google Scholar] [CrossRef]
- Aftab, A.; Shariff, A.M.; Garg, S.; Lal, B.; Shaikh, M.S.; Faiqa, N. Solubility of CO2 in Aqueous Sodium β-Alaninate: Experimental Study and Modeling Using Kent Eisenberg Model. Chem. Eng. Res. Des. 2018, 131, 385–392. [Google Scholar] [CrossRef]
- Chang, Y.-T.; Leron, R.B.; Li, M.-H. Carbon Dioxide Solubility in Aqueous Potassium Salt Solutions of L-Proline and Dl-α-Aminobutyric Acid at High Pressures. J. Chem. Thermodyn. 2015, 83, 110–116. [Google Scholar] [CrossRef]
- Sartori, G.; Savage, D.W. Sterically Hindered Amines for CO2 Removal from Gases. Ind. Eng. Chem. Fundam. 1983, 22, 239–249. [Google Scholar] [CrossRef]
- Balchandani, S.; Mandal, B.; Garg, S.; Li, M.; Dharaskar, S. Physicochemical and Thermodynamic Properties of Aqueous Blends of 3-Aminopropyl Triethoxysilane and Amines at 298.15–333.15 K. J. Mol. Liq. 2021, 332, 115440. [Google Scholar] [CrossRef]
- Murshid, G.; Ghaedi, H.; Ayoub, M.; Garg, S.; Ahmad, W. Experimental and Correlation of Viscosity and Refractive Index of Non-Aqueous System of Diethanolamine (DEA) and Dimethylformamide (DMF) for CO2 Capture. J. Mol. Liq. 2018, 250, 162–170. [Google Scholar] [CrossRef]
- Murshid, G.; Ali, A.; Garg, S.; Al-jabri, S.; Mubashir, M.; Loke, P. Model Analysis for Development of Piperazine Activated Sodium Sarcosinate Solutions for Environmental Sustainability. Sustain. Energy Technol. Assess. 2022, 53, 102509. [Google Scholar] [CrossRef]
- Shaikh, M.S.; Shariff, A.M.; Bustam, M.A.; Murshid, G. Physical Properties of Aqueous Solutions of Potassium Carbonate + glycine as a Solvent for Carbon Dioxide Removal. J. Serb. Chem. Soc. 2014, 79, 719–727. [Google Scholar] [CrossRef] [Green Version]
- Ab Rahim, A.H.; Yunus, N.M.; Jaffar, Z.; Allim, M.F.; Othman Zailani, N.Z.; Mohd Fariddudin, S.A.; Abd Ghani, N.; Umar, M. Synthesis and Characterization of Ammonium-Based Protic Ionic Liquids for Carbon Dioxide Absorption. RSC Adv. 2023, 13, 14268–14280. [Google Scholar] [CrossRef] [PubMed]
- He, F.; Wang, T.; Fang, M.; Wang, Z.; Yu, H.; Ma, Q. Screening Test of Amino Acid Salts for CO2 Absorption at Flue Gas Temperature in a Membrane Contactor. Energy Fuels 2017, 31, 770–777. [Google Scholar] [CrossRef]
- Aftab, A. Physical Properties and CO2 Solubility of Aqueous Sodium and Potassium Salts of β-Alanine. Master’s Thesis, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia, 2018. [Google Scholar]
- Zarei, A.; Hafizi, A.; Rahimpour, M.R.; Raeissi, S. Carbon Dioxide Absorption into Aqueous Potassium Salt Solutions of Glutamine Amino Acid. J. Mol. Liq. 2020, 301, 111743. [Google Scholar] [CrossRef]
- Murshid, G.; Ahmad Butt, W.; Garg, S. Investigation of Thermophysical Properties for Aqueous Blends of Sarcosine with 1-(2-Aminoethyl) Piperazine and Diethylenetriamine as Solvents for CO2 Absorption. J. Mol. Liq. 2019, 278, 584–591. [Google Scholar] [CrossRef]
- Garg, S.; Shariff, A.M.; Shaikh, M.S.; Lal, B.; Aftab, A.; Faiqa, N. VLE of CO2 in Aqueous Potassium Salt of L-Phenylalanine: Experimental Data and Modeling Using Modified Kent-Eisenberg Model. J. Nat. Gas Sci. Eng. 2016, 34, 864–872. [Google Scholar] [CrossRef]
- Harris, F. A Study on the Potential of Amino Acid Salt as a Solvent for Acid Gas Removal. Master’s Thesis, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia, 2009. [Google Scholar]
- Khodadadi, M.J.; Riahi, S.; Abbasi, M. Experimental Modeling of the Solubility of Carbon Dioxide in Aqueous Solution of Monoethanolamine +1, 3-Diaminopropane. J. Mol. Liq. 2019, 281, 415–422. [Google Scholar] [CrossRef]
- Bohloul, M.R.; Vatani, A.; Peyghambarzadeh, S.M. Experimental and Theoretical Study of CO2 Solubility in N-Methyl-2-Pyrrolidone (NMP). Fluid Phase Equilib. 2014, 365, 106–111. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information PubChem Compound Summary for CID 5862, Cysteine. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Cysteine (accessed on 25 September 2022).
- Podolsky, N.E.; Marcos, M.A.; Cabaleiro, D.; Semenov, K.N.; Lugo, L.; Petrov, A.V.; Charykov, N.A.; Sharoyko, V.V.; Vlasov, T.D.; Murin, I.V. Physico-Chemical Properties of C 60 (OH) 22–24 Water Solutions: Density, Viscosity, Refraction Index, Isobaric Heat Capacity and Antioxidant Activity. J. Mol. Liq. 2019, 278, 342–355. [Google Scholar] [CrossRef]
- Garg, S.; Murshid, G.; Mjalli, F.S.; Ali, A.; Ahmad, W. Experimental and Correlation Study of Selected Physical Properties of Aqueous Blends of Potassium Sarcosinate and 2-Piperidineethanol as a Solvent for CO2 Capture. Chem. Eng. Res. Des. 2017, 118, 121–130. [Google Scholar] [CrossRef]
- Gao, H.; Gao, G.; Liu, H.; Luo, X.; Liang, Z.; Idem, R.O. Density, Viscosity, and Refractive Index of Aqueous CO2-Loaded and -Unloaded Ethylaminoethanol (EAE) Solutions from 293.15 to 323.15 K for Post Combustion CO2 Capture. J. Chem. Eng. Data 2017, 62, 4205–4214. [Google Scholar] [CrossRef]
- Ullah, S.; Azmi Bustam, M.; Sagir, M.; Ali Assiri, M.; Al-Sehemi, A.G.; Ayoub, M.; Inayat, A.; Mukhtar, A.; Saqib, S.; Babar, M.; et al. CO2 Solubility and Thermophysical Properties in Aqueous Mixtures of Piperazine and Diethanolamine. Sustain. Energy Technol. Assess. 2022, 53, 102514. [Google Scholar] [CrossRef]
- Pandey, D.; Mondal, M.K. Viscosity, Density, and Derived Thermodynamic Properties of Aqueous 2-(Ethylamino)Ethanol (EAE), Aqueous Aminoethylethanolamine (AEEA), and Its Mixture for Post-Combustion CO2 Capture. J. Mol. Liq. 2021, 332, 115873. [Google Scholar] [CrossRef]
- Li, H.; Guo, H.; Shen, S. Water-Lean Blend Mixtures of Amino Acid Salts and 2-Methoxyethanol for CO2 Capture: Density, Viscosity and Solubility of CO2. J. Chem. Thermodyn. 2020, 150, 26–28. [Google Scholar] [CrossRef]
- Khan, S.N.; Hailegiorgis, S.M.; Man, Z.; Shariff, A.M.; Garg, S. Thermophysical Properties of Aqueous 1-Butyl-3-Methylimidazolium Acetate [BMIM] [AC] + Monoethanolamine (MEA) Hybrid as a Solvent for CO2 Capture. Procedia Eng. 2016, 148, 1326–1331. [Google Scholar] [CrossRef] [Green Version]
- Guo, H.; Hui, L.; Shen, S. Monoethanolamine + 2-Methoxyethanol Mixtures for CO2 Capture: Density, Viscosity and CO2 Solubility. J. Chem. Thermodyn. 2019, 132, 155–163. [Google Scholar] [CrossRef]
- Garg, S.; Shariff, A.M.; Shaikh, M.S.; Lal, B.; Aftab, A.; Faiqa, N. Selected Physical Properties of Aqueous Potassium Salt of L-Phenylalanine as a Solvent for CO2 Capture. Chem. Eng. Res. Des. 2016, 113, 169–181. [Google Scholar] [CrossRef]
- Tellagorla, R.; Balchandani, S.C.; Das, P.; Mandal, B.; Gumma, S. Measurement and Correlations of Physicochemical Properties of the Novel Solvent Tris(2-Aminoethyl) Amine and Its Blend with N-Methyldiethanolamine and 2-Amino 2-Methyl-1-Propanol. J. Chem. Eng. Data 2022, 67, 2067–2076. [Google Scholar] [CrossRef]
- Aziz, N.F.A.; Shariff, A.M.; Shaikh, M.S.; Keong, L.K.; Garg, S.; Aftab, A. Physical Properties of Aqueous Sodium Salt Solution of α-Methylalanine (Na-AMALA). Procedia Eng. 2016, 148, 444–450. [Google Scholar] [CrossRef] [Green Version]
- Garg, S. Physicochemical and Thermodynamic Properties of Aqueous Blends of 3-Aminopropyl Triethoxysilane and Amines at 298.15–333.15 K. Master’s Thesis, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia, 2016. [Google Scholar]
- Zhang, P.; Ji, Y.; Li, W.; Xu, L.; Wang, L.; Fu, D. Investigation of Viscosity, Activation Energy and CO2 Diffusion Coefficient for N-Methyl-1,3-Propane-Diamine, N-(2-Aminoethyl)Ethanolamine and 1,4-Butanediamine Activated 2-Diethylaminoethanol Aqueous Solutions. J. Chem. Thermodyn. 2022, 168, 106740. [Google Scholar] [CrossRef]
- Perumal, M.; Jayaraman, D.; Balraj, A. Experimental Studies on CO2 Absorption and Solvent Recovery in Aqueous Blends of Monoethanolamine and Tetrabutylammonium Hydroxide. Chemosphere 2021, 276, 130159. [Google Scholar] [CrossRef]
- Shen, K.; Li, M.-H. Solubility of Carbon Dioxide in Aqueous Mixtures of Monoethanolamine and Methyldiethanolamine. J. Chem. Eng. Data 1992, 37, 96–100. [Google Scholar] [CrossRef]
- Li, L.; Burns, R.C.; Maeder, M.; Puxty, G.; Wang, S.; Yu, H. The Determination of the Henry’s Coefficient of Reactive Gases–An Example of CO2 in Aqueous Solutions of Monoethanolamine (MEA). Chem. Eng. Sci. 2017, 173, 474–482. [Google Scholar] [CrossRef]
- Schmitz, K.S. Thermodynamics of the Liquid State; Elsevier: Amsterdam, The Netherlands, 2017; ISBN 9780128005149. [Google Scholar]
- Garg, S.; Shariff, A.M.; Shaikh, M.S.; Lal, B.; Suleman, H.; Faiqa, N. Experimental Data, Thermodynamic and Neural Network Modeling of CO2 Solubility in Aqueous Sodium Salt of L-Phenylalanine. Biochem. Pharmacol. 2017, 19, 146–156. [Google Scholar] [CrossRef]
- Syalsabila, A.; Maulud, A.S.; Suleman, H.; Md Nordin, N.A.H. VLE of Carbon Dioxide-Loaded Aqueous Potassium Salt of L-Histidine Solutions as a Green Solvent for Carbon Dioxide Capture: Experimental Data and Modelling. Int. J. Chem. Eng. 2019, 2019, 9428638. [Google Scholar] [CrossRef] [Green Version]
- Zahari, N.A.S.M. Experimental Measurements and Thermodynamic Modeling of Carbon Dioxide Solubility in Blends of Aqueous Potassium Lysinate with Piperazine and 2-Amino-2-Methyl-1-Propanol. Master’s Thesis, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia, 2019. [Google Scholar]
- Nawaz, S.; Mekuria, S.; Man, Z.; Garg, S.; Mohd, A.; Farrukh, S.; Ayoub, M.; Ghaedi, H. High-Pressure Absorption Study of CO2 in Aqueous N -Methyldiethanolamine (MDEA) and MDEA-Piperazine (PZ)-1-Butyl-3-Methylimidazolium Tri Fl Uoromethanesulfonate [Bmim][OTf] Hybrid Solvents. J. Mol. Liq. 2018, 249, 1236–1244. [Google Scholar] [CrossRef] [Green Version]
- Shariff, A.M.; Shaikh, M.S.; Bustam, M.A.; Garg, S.; Faiqa, N.; Aftab, A. High-Pressure Solubility of Carbon Dioxide in Aqueous Sodium L- Prolinate Solution. Procedia Eng. 2016, 148, 580–587. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Ho, W.S.W. Steric Hindrance Effect on Amine Demonstrated in Solid Polymer Membranes for CO2 Transport. J. Memb. Sci. 2012, 415–416, 132–138. [Google Scholar] [CrossRef]
Absorbents | Concentration (kmol/m3) | Initial Absorption Rate (mol CO2/(mol. amine. min)) | Net Cyclic Capacity (mol CO2/(mol. amine. min)) | Initial Desorption Rate (mol CO2/(mol. amine. min)) |
---|---|---|---|---|
Monoethanolamine (MEA) | 1 | 3.84 × 10−2 | 2.00 × 10−2 | 0.483 |
Cysteine (CYS) | 1 | 3.18 × 10−2 | 2.46 × 10−2 | 0.485 |
Alanine (ALA) | 1 | 3.16 × 10−2 | 1.98 × 10−2 | 0.535 |
Taurine (TAU) | 1 | 3.17 × 10−2 | 2.26 × 10−2 | 0.483 |
Diglycine (DIGLY) | 1 | 2.99 × 10−2 | 2.18 × 10−2 | 0.467 |
Glutamine (GLN) | 1 | 3.06 × 10−2 | 2.08 × 10−2 | 0.535 |
Asparagine (ASN) | 1 | 2.79 × 10−2 | 2.34 × 10−2 | 0.547 |
Pyroglutamic acid (PGA) | 1 | 2.41 × 10−2 | 0.38 × 10−2 | 0.069 |
Component | Molecular Formula | Purity, % | Molar Mass, g | Source |
---|---|---|---|---|
L-Cysteine | C3H7NO2S | ≥99 | 121.16 | Merck |
Potassium hydroxide | KOH | ≥85 | 56.11 | Merck |
Water | H2O | 99 | 18.02 | - |
T/K | This Work | Literature [59] | ARD, % |
---|---|---|---|
ρ/g cm−3 | |||
298.15 | 0.99739 | 0.997113 | 0.028 |
303.15 | 0.99599 | 0.995720 | |
308.15 | 0.99438 | 0.994105 | |
T/K | η/mPa s | ||
298.15 | 0.897 | 0.890 | 1.049 |
303.15 | 0.805 | 0.797 | |
308.15 | 0.729 | 0.719 | |
T/K | nD | ||
298.15 | 1.33285 | 1.33268 | 0.014 |
303.15 | 1.33230 | 1.33211 | |
308.15 | 1.33166 | 1.33148 |
Density, ρ (g cm−3) | ||||
---|---|---|---|---|
Temperature, T (K) | Mass Fractions, w | |||
5 wt.% | 10 wt.% | 20 wt.% | 30 wt.% | |
298.15 | 1.01956 | 1.04292 | 1.09130 | 1.14510 |
303.15 | 1.01794 | 1.04107 | 1.08904 | 1.14247 |
308.15 | 1.01611 | 1.03905 | 1.08665 | 1.13973 |
313.15 | 1.01412 | 1.03687 | 1.08412 | 1.13687 |
318.15 | 1.01195 | 1.03453 | 1.08146 | 1.13390 |
323.15 | 1.00963 | 1.03206 | 1.07868 | 1.13082 |
328.15 | 1.00715 | 1.02944 | 1.07578 | 1.12763 |
333.15 | 1.00454 | 1.02670 | 1.07277 | 1.12435 |
Viscosity, η (mPa s) | ||||
---|---|---|---|---|
Temperature, K | Mass Fractions, w | |||
5 wt.% | 10 wt.% | 20 wt.% | 30 wt.% | |
298.15 | 0.901 | 0.984 | 1.264 | 1.685 |
303.15 | 0.811 | 0.885 | 1.138 | 1.502 |
308.15 | 0.733 | 0.799 | 1.032 | 1.348 |
313.15 | 0.666 | 0.725 | 0.947 | 1.215 |
318.15 | 0.610 | 0.662 | 0.865 | 1.103 |
323.15 | 0.560 | 0.608 | 0.769 | 1.006 |
328.15 | 0.519 | 0.563 | 0.707 | 0.922 |
333.15 | 0.482 | 0.521 | 0.654 | 0.849 |
Refractive Index, nD | ||||
---|---|---|---|---|
Temperature, K | Mass Fractions, w | |||
5 wt.% | 10 wt.% | 20 wt.% | 30 wt.% | |
298.15 | 1.34176 | 1.35141 | 1.37153 | 1.39329 |
303.15 | 1.34096 | 1.35067 | 1.37055 | 1.39209 |
308.15 | 1.34021 | 1.34993 | 1.36960 | 1.39095 |
313.15 | 1.33946 | 1.34905 | 1.36871 | 1.38991 |
318.15 | 1.33873 | 1.34828 | 1.36796 | 1.38921 |
323.15 | 1.33800 | 1.34756 | 1.36743 | 1.38883 |
328.15 | 1.33729 | 1.34693 | 1.36708 | 1.38861 |
333.15 | 1.33704 | 1.34624 | 1.36684 | 1.38859 |
wt.% | A0 | 104 A1 | R2 | 10−4 SD |
---|---|---|---|---|
5 | 1.14844 | −4.30254 | 0.99424 | 3.84 |
10 | 1.18186 | −4.64214 | 0.99591 | 3.47 |
20 | 1.24973 | −5.29863 | 0.99778 | 2.90 |
30 | 1.32233 | −5.93119 | 0.99863 | 2.54 |
T/K | αP/10−4 K−1 | |||
---|---|---|---|---|
w = 5 wt.% | w = 10 wt.% | w = 20 wt.% | w = 30 wt.% | |
298.15 | 4.21 | 4.45 | 4.85 | 5.18 |
303.15 | 4.22 | 4.46 | 4.87 | 5.19 |
308.15 | 4.23 | 4.47 | 4.88 | 5.20 |
313.15 | 4.24 | 4.48 | 4.89 | 5.22 |
318.15 | 4.25 | 4.49 | 4.90 | 5.23 |
323.15 | 4.26 | 4.50 | 4.91 | 5.24 |
328.15 | 4.27 | 4.51 | 4.93 | 5.26 |
333.15 | 4.28 | 4.52 | 4.94 | 5.27 |
wt.% | 10−2 B0 | 102 B1 | R2 | 10−3 SD |
---|---|---|---|---|
5 | 1.81990 | −1.78691 | 0.99599 | 8.95 |
10 | 2.16775 | −1.81577 | 0.99638 | 9.41 |
20 | 3.58453 | −1.89658 | 0.99851 | 6.98 |
30 | 5.61252 | −1.95472 | 0.996849 | 16.11 |
wt.% | Eη/kJ mol−1 | η∞/mPa s |
---|---|---|
5 | 14.77545 | 2.29551 × 103 |
10 | 15.01246 | 2.28041 × 103 |
20 | 15.65887 | 2.28292 × 103 |
30 | 16.15941 | 2.45753 × 103 |
wt.% | C0 | 104 C1 | 106 C2 | R2 | 104 SD |
---|---|---|---|---|---|
5 | 1.48364 | −7.76223 | 1.00786 | 0.99727 | 2.30 |
10 | 1.44308 | −4.48605 | 0.47387 | 0.99934 | 3.90 |
20 | 1.69046 | −19.04114 | 2.79937 | 0.99911 | 0.80 |
30 | 1.88146 | −29.79979 | 4.50405 | 0.99866 | 4.10 |
Present Work | Literature [73] | % ARD | ||
---|---|---|---|---|
α (mol of CO2/mol of MEA) | (bar (g)) | α (mol of CO2/mol of MEA) | (bar (g)) | |
0.703 | 8.56 | 0.728 | 8.83 | 0.9173 |
0.731 | 10.03 | 0.763 | 12.56 | |
0.759 | 13.08 | 0.772 | 15.80 | |
0.806 | 19.20 | 0.806 | 19.73 |
10 wt.% Aqueous K-CYS | |||||
---|---|---|---|---|---|
T = 303.15 K | T = 313.15 K | T = 333.15 K | |||
/bar (g) | α | /bar (g) | α | /bar (g) | α |
1.73 | 1.2864 | 1.79 | 1.2156 | 1.86 | 1.1186 |
4.63 | 1.6541 | 4.68 | 1.5565 | 4.69 | 1.4547 |
9.30 | 2.0236 | 9.32 | 1.8793 | 9.39 | 1.6955 |
18.05 | 2.5438 | 17.10 | 2.4190 | 17.39 | 2.2224 |
20 wt.% aqueous K-CYS | |||||
T = 303.15 K | T = 313.15 K | T = 333.15 K | |||
/bar (g) | α | /bar (g) | α | /bar (g) | α |
1.54 | 0.8425 | 1.78 | 0.7557 | 1.90 | 0.6880 |
4.06 | 1.1230 | 3.84 | 0.9677 | 3.99 | 0.8741 |
7.80 | 1.3827 | 8.00 | 1.2714 | 8.03 | 1.1572 |
17.90 | 1.9119 | 17.18 | 1.7696 | 17.88 | 1.6906 |
30 wt.% aqueous K-CYS | |||||
T = 303.15 K | T = 313.15 K | T = 333.15 K | |||
/bar (g) | α | /bar (g) | α | /bar (g) | α |
1.60 | 0.5259 | 1.96 | 0.4507 | 2.19 | 0.3925 |
3.40 | 0.7129 | 3.63 | 0.6516 | 3.98 | 0.5576 |
8.20 | 0.9265 | 8.44 | 0.8455 | 8.48 | 0.7109 |
18.00 | 1.2488 | 18.21 | 1.1802 | 17.96 | 1.0551 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tengku Hassan, T.N.A.; Mohd Shariff, A.; Abd Aziz, N.F.; Mustafa, N.F.A.; Tan, L.S.; Abdul Halim, H.N.; Mohamed, M.; Hermansyah, H. Aqueous Potassium Salt of L-Cysteine as Potential CO2 Removal Solvent: An Investigation on Physicochemical Properties and CO2 Loading Capacity. Sustainability 2023, 15, 11558. https://doi.org/10.3390/su151511558
Tengku Hassan TNA, Mohd Shariff A, Abd Aziz NF, Mustafa NFA, Tan LS, Abdul Halim HN, Mohamed M, Hermansyah H. Aqueous Potassium Salt of L-Cysteine as Potential CO2 Removal Solvent: An Investigation on Physicochemical Properties and CO2 Loading Capacity. Sustainability. 2023; 15(15):11558. https://doi.org/10.3390/su151511558
Chicago/Turabian StyleTengku Hassan, Tengku Nur Adibah, Azmi Mohd Shariff, Nor Faiqa Abd Aziz, Nur Farhana Ajua Mustafa, Lian See Tan, Hairul Nazirah Abdul Halim, Mustakimah Mohamed, and Heri Hermansyah. 2023. "Aqueous Potassium Salt of L-Cysteine as Potential CO2 Removal Solvent: An Investigation on Physicochemical Properties and CO2 Loading Capacity" Sustainability 15, no. 15: 11558. https://doi.org/10.3390/su151511558
APA StyleTengku Hassan, T. N. A., Mohd Shariff, A., Abd Aziz, N. F., Mustafa, N. F. A., Tan, L. S., Abdul Halim, H. N., Mohamed, M., & Hermansyah, H. (2023). Aqueous Potassium Salt of L-Cysteine as Potential CO2 Removal Solvent: An Investigation on Physicochemical Properties and CO2 Loading Capacity. Sustainability, 15(15), 11558. https://doi.org/10.3390/su151511558