Safety Risk Assessment of Low-Volume Road Segments on the Tibetan Plateau Using UAV LiDAR Data
Abstract
:1. Introduction
2. Literature Review
2.1. Road Safety Risk Assessment
2.2. LiDAR Measurement Technology
3. Study Area and Data Sources
3.1. Study Area
3.2. Data Sources
4. Road Safety Risk Assessment Method
4.1. Assessment Index Selection
- (1)
- Road alignment index
- (2)
- Environmental index
- (3)
- Natural disaster index
4.2. Assessment Index Extraction Method
4.3. Road Safety Risk Assessment Model
5. Safety Risk Assessment Results and Analyses
5.1. Road Index Extraction Result
5.2. Risk Assessment Results of the Study Area
6. Conclusions and Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Laurinavičius, A.; Grigonis, V.; Ušpalytė-Vitkūnienė, R.; Ratkevičiūtė, K.; Čygaitė, L.; Skrodenis, E.; Antov, D.; Smirnovs, J.; Bobrovaitė-Jurkonė, B. Policy Instruments for Managing EU Road Safety Targets: Road Safety Impact Assessment. Balt. J. Road Bridge Eng. 2012, 7, 60–67. [Google Scholar] [CrossRef]
- Grande, Z.; Castillo, E.; Mora, E.; Lo, H.K. Highway and Road Probabilistic Safety Assessment Based on Bayesian Network Models. Comput. Aided Civ. Inf. 2017, 32, 379–396. [Google Scholar] [CrossRef]
- Fu, B.J.; Ouyang, Z.Y.; Shi, P.; Fan, J.; Wang, X.D.; Zheng, H.; Zhao, W.W.; Wu, F. Current Condition and Protection Strategies of Qinghai-Tibet Plateau Ecological Security Barrier. Bull. Chin. Acad. Sci. 2021, 36, 1298–1306. (In Chinese) [Google Scholar]
- Chen, K.M.; Wang, Y.P.; Wang, H. Characteristics of main artery traffic volume. J. Chang’an Univ. (Nat. Sci. Ed.) 2003, 23, 74–78. (In Chinese) [Google Scholar]
- Jibin, P. Research on Highway Planning in Tibet. Master’s Thesis, Southwest Jiaotong University, Chengdu, China, 2007. (In Chinese). [Google Scholar]
- Hu, J.; Yang, Y. Safety of Driving Behavior on Low-Volume Roads in China. Transp. Res. Rec. J. Transp. Res. Board 2011, 2203, 100–105. [Google Scholar] [CrossRef]
- Yuan, Z.; Huang, D.; Tong, W.; Liu, Z. Characteristic Analysis and Prediction of Traffic Accidents in the Multiethnic Plateau Mountain Area. J. Transp. Eng. Part A Syst. 2020, 146, 04020068. [Google Scholar] [CrossRef]
- Shi, L.; Huseynova, N.; Yang, B.; Li, C.; Gao, L. A Cask Evaluation Model to Assess Safety in Chinese Rural Roads. Sustainability 2018, 10, 3864. [Google Scholar] [CrossRef] [Green Version]
- Peng, C.; FengHuan, S.U.; Qiang, Z.; NingSheng, C.; YiLi, Z. Risk assessment and disaster reduction strategies for mountainous and meteorological hazards in Tibetan Plateau. Chin. Sci. Bull. 2015, 60, 3067–3077. (In Chinese) [Google Scholar]
- Elyasi, M.R.; Saffarzade, M.; Boroujerdian, A.M. A novel dynamic segmentation model for identification and prioritization of black spots based on the pattern of potential for safety improvement. Transp. Res. Part A Policy Pract. 2016, 91, 346–357. [Google Scholar] [CrossRef]
- Coll, B.; Moutari, S.; Marshall, A.H. Hotspots identification and ranking for road safety improvement: An alternative approach. Accid. Anal. Prev. 2013, 59, 604–617. [Google Scholar] [CrossRef]
- Akin, D.; Sisiopiku, V.P.; Skabardonis, A. Impacts of Weather on Traffic Flow Characteristics of Urban Freeways in Istanbul. Procedia—Soc. Behav. Sci. 2011, 16, 89–99. [Google Scholar] [CrossRef] [Green Version]
- Ackaah, W.; Salifu, M. Crash prediction model for two-lane rural highways in the Ashanti region of Ghana. IATSS Res. 2011, 35, 34–40. [Google Scholar] [CrossRef] [Green Version]
- Ma, Z.; Shao, C.; Ma, S.; Ye, Z. Constructing road safety performance indicators using Fuzzy Delphi Method and Grey Delphi Method. Expert. Syst. Appl. 2011, 38, 1509–1514. [Google Scholar] [CrossRef]
- Chen, F.; Wang, J.; Deng, Y. Road safety risk evaluation by means of improved entropy TOPSIS–RSR. Saf. Sci. 2015, 79, 39–54. [Google Scholar] [CrossRef]
- Shah, S.; Brijs, T.; Ahmad, N.; Pirdavani, A.; Shen, Y.; Basheer, M. Road Safety Risk Evaluation Using GIS-Based Data Envelopment Analysis—Artificial Neural Networks Approach. Appl. Sci. 2017, 7, 886. [Google Scholar] [CrossRef] [Green Version]
- Wei, Z. Research on Road Safety Evaluation Based on BP Artificial Neural Network. Master’s Thesis, Chang’an University, Xi’an, China, 2006. (In Chinese). [Google Scholar]
- Duan, Z.; Xu, J.; Ru, H.; Li, M. Classification of Driving Fatigue in High-Altitude Areas. Sustainability 2019, 11, 817. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Quddus, M.A.; Ison, S.G. The effect of traffic and road characteristics on road safety: A review and future research direction. Saf. Sci. 2013, 57, 264–275. [Google Scholar] [CrossRef]
- Zhong, R. Study on Risk Assessment Methods of Freeway. Master’s Thesis, Chang’an University, Xi’an, China, 2014. (In Chinese). [Google Scholar]
- Hu, F. Research on Key Alignment Indicators of Two-Lane Highway in Plateau Based on Drivers’ Physiological Characteristics. Master’s Thesis, Southeast University, Nanjing, China, 2020. (In Chinese). [Google Scholar]
- Lu, H.; Chen, M.; Kuang, W. The impacts of abnormal weather and natural disasters on transport and strategies for enhancing ability for disaster prevention and mitigation. Transp. Policy 2020, 98, 2–9. [Google Scholar] [CrossRef]
- Zhou, Y.; Huang, R.; Jiang, T.; Dong, Z.; Yang, B. Highway alignments extraction and 3D modeling from airborne laser scanning point clouds. Int. J. Appl. Earth Obs. 2021, 102, 102429. [Google Scholar] [CrossRef]
- Hu, X.; Li, Y.; Shan, J.; Zhang, J.; Zhang, Y. Road Centerline Extraction in Complex Urban Scenes From LiDAR Data Based on Multiple Features. IEEE Trans. Geosci. Remote Sens. 2014, 52, 7448–7456. [Google Scholar]
- Zhu, L.; Lehtomäki, M.; Hyyppä, J.; Puttonen, E.; Krooks, A.; Hyyppä, H. Automated 3D Scene Reconstruction from Open Geospatial Data Sources: Airborne Laser Scanning and a 2D Topographic Database. Remote Sens. 2015, 7, 6710–6740. [Google Scholar] [CrossRef] [Green Version]
- Antonio Martín-Jiménez, J.; Zazo, S.; Arranz Justel, J.J.; Rodríguez-Gonzálvez, P.; González-Aguilera, D. Road safety evaluation through automatic extraction of road horizontal alignments from Mobile LiDAR System and inductive reasoning based on a decision tree. ISPRS J. Photogramm. 2018, 146, 334–346. [Google Scholar] [CrossRef] [Green Version]
- Jung, J.; Olsen, M.J.; Hurwitz, D.S.; Kashani, A.G.; Buker, K. 3D virtual intersection sight distance analysis using lidar data. Transp. Res. Part C Emerg. Technol. 2018, 86, 563–579. [Google Scholar] [CrossRef]
- Ravi, R.; Cheng, Y.; Lin, Y.; Lin, Y.; Hasheminasab, S.M.; Zhou, T.; Flatt, J.E.; Habib, A. Lane Width Estimation in Work Zones Using LiDAR-Based Mobile Mapping Systems. IEEE Trans. Intell. Transp. Syst. 2020, 21, 5189–5212. [Google Scholar] [CrossRef]
- Sourav, M.A.A.; Mahedi, M.; Ceylan, H.; Kim, S.; Brooks, C.; Peshkin, D.; Dobson, R.; Brynick, M. Evaluation of Small Uncrewed Aircraft Systems Data in Airfield Pavement Crack Detection and Rating. Transp. Res. Rec. J. Transp. Res. Board 2023, 2677, 653–668. [Google Scholar] [CrossRef]
- Truong, L.N.H.; Mora, O.E.; Cheng, W.; Tang, H.; Singh, M. Deep Learning to Detect Road Distress from Unmanned Aerial System Imagery. Transp. Res. Rec. J. Transp. Res. Board 2021, 2675, 776–788. [Google Scholar] [CrossRef]
- Yilmaz, V. Automated ground filtering of LiDAR and UAS point clouds with metaheuristics. Opt. Laser Technol. 2021, 138, 106890. [Google Scholar] [CrossRef]
- Mohan, S.; Shoghli, O.; Burde, A.; Tabkhi, H. Low-Power Drone-Mountable Real-Time Artificial Intelligence Framework for Road Asset Classification. Transp. Res. Rec. J. Transp. Res. Board 2021, 2675, 39–48. [Google Scholar] [CrossRef]
- Biçici, S.; Zeybek, M. Effectiveness of Training Sample and Features for Random Forest on Road Extraction from Unmanned Aerial Vehicle-Based Point Cloud. Transp. Res. Rec. J. Transp. Res. Board 2021, 2675, 401–418. [Google Scholar] [CrossRef]
- Biçici, S.; Zeybek, M. Improvements on Road Centerline Extraction by Combining Voronoi Diagram and IntensityFeature from 3D UAV-based Point Cloud. In Proceedings of the International Conference on Smart City Applications: 2021, Safranbolu, Turkey, 27–29 November 2021; pp. 935–944. [Google Scholar]
- Hao, W. Analysis and Preventive Measures of Highway Traffic Accidents at High Altitude and High Altitude—A Case Study of Qinghai-Tibet Highway. Master’s Thesis, Chang’an University, Xi’an, China, 2017. (In Chinese). [Google Scholar]
- GB 18306—2015; Seismic Ground Motion Parameterszonation Map of China. National Standardization Administration of China: Beijing, China, 2015.
- Liu, F.; Mao, X.; Zhang, Y.; Chen, Q.; Liu, P.; Zhao, Z. Risk analysis of snow disaster in the pastoral areas of the Qinghai-Tibet Plateau. J. Geogr. Sci. 2014, 24, 411–426. [Google Scholar] [CrossRef]
- Luo, J.N.; Zheng, X.J.; Zhu, F.K.; Xian, D.; Yang, W.X.; Tu, Z.F.; Li, M.X. Meteorologically Dangerous Level of Dust Storm Occurrence in China. J. Desert Res. 2011, 31, 185–190. (In Chinese) [Google Scholar]
- Dong, W. Risk Analysis and Zoning of Highway Flood Disasters. Master’s Thesis, Chang’an University, Xi’an, China, 2013. (In Chinese). [Google Scholar]
- Luo, H.S.; Xu, L.J.; Du, Z.G.; Wang, Z.J. Research on influence of multi-frequency visual reference system on speed perception on ice and snow curve. China Saf. Sci. J. 2019, 29, 100–105. (In Chinese) [Google Scholar]
- Bu, P.; Yong, D. Shallow to discuss road line shape design the impact on traffic safety. Tibet Sci. Technol. 2008, 57–59, 73. (In Chinese) [Google Scholar]
- Wei, Y.Q. Affect against Traffic Safety by Road Conditions. Master’s Thesis, Beijing University of Technology, Beijing, China, 2004. (In Chinese). [Google Scholar]
- Kronprasert, N.; Boontan, K.; Kanha, P. Crash Prediction Models for Horizontal Curve Segments on Two-Lane Rural Roads in Thailand. Sustainbility 2021, 13, 9011. [Google Scholar] [CrossRef]
- Wu, L.; Sun, J.; Li, T. Relationship between Lane Width and Safety along Urban Expressways in Shanghai. J. Transp. Eng. Part A Syst. 2019, 145, 5018004. [Google Scholar] [CrossRef]
- Aimin, S. Research on the Freeway Traffic Accidents and Countermeasures. Master’s Thesis, Southeast University, Nanjing, China, 2006. (In Chinese). [Google Scholar]
- Li, C.; Ding, L.; Fang, Q.; Chen, K.; Castro-Lacouture, D. Risk-informed knowledge-based design for road infrastructure in an extreme environment. Knowl. Syst. 2021, 216, 106741. [Google Scholar] [CrossRef]
- Keay, K.; Simmonds, I. The association of rainfall and other weather variables with road traffic volume in Melbourne, Australia. Accid. Anal. Prev. 2005, 37, 109–124. [Google Scholar] [CrossRef]
- Dell Acqua, G.; De Luca, M.; Mauro, R.; Russo, F. Freeway Crashes in Wet Weather: The Comparative Influence of Porous and Conventional Asphalt Surfacing. Procedia—Soc. Behav. Sci. 2012, 54, 618–627. [Google Scholar] [CrossRef] [Green Version]
- Lansheng, Z.; Peijun, S.; Jingai, W.; Li, Z. Regionalization of natural disasters in China. J. Beijing Norm. Univ. Nat. Sci. 1995, 31, 415–421. Available online: https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C44YLTlOAiTRKjkpgKvIT9NkGsvn6cq9Bo0A1Fqk5ji9ArT60TC_cFTxbQHC-MZG4C9nOpujg81TIBOVTA-UpIrt&uniplatform=NZKPT (accessed on 4 June 2023). (In Chinese).
- Cioca, L.; Ivascu, L. Risk Indicators and Road Accident Analysis for the Period 2012–2016. Sustainbility 2017, 9, 1530. [Google Scholar] [CrossRef] [Green Version]
- Zhao, G.H. Reasearch on Guideline for Implementation of Rural Roads Safety Enhancement Project in Mountain Area. Master’s Thesis, Chongqing Jiaotong University, Chongqing, China, 2012. (In Chinese). [Google Scholar]
- Zhang, H.; Zhang, M.; Zhang, C.; Hou, L. Formulating a GIS-based geometric design quality assessment model for Mountain highways. Accid. Anal. Prev. 2021, 157, 106172. [Google Scholar] [CrossRef] [PubMed]
- Bono, F.; Gutiérrez, E. A network-based analysis of the impact of structural damage on urban accessibility following a disaster: The case of the seismically damaged Port Au Prince and Carrefour urban road networks. J. Transp. Geogr. 2011, 19, 1443–1455. [Google Scholar] [CrossRef]
- Wei, R.; Zeng, Q.; Davies, T.; Yuan, G.; Wang, K.; Xue, X.; Yin, Q. Geohazard cascade and mechanism of large debris flows in Tianmo gully, SE Tibetan Plateau and implications to hazard monitoring. Eng. Geol. 2018, 233, 172–182. [Google Scholar] [CrossRef]
- Mosavi, A.; Shirzadi, A.; Choubin, B.; Taromideh, F.; Hosseini, F.S.; Borji, M.; Shahabi, H.; Salvati, A.; Dineva, A.A. Towards an Ensemble Machine Learning Model of Random Subspace Based Functional Tree Classifier for Snow Avalanche Susceptibility Mapping. IEEE Access 2020, 8, 145968–145983. [Google Scholar] [CrossRef]
- Reinolsmann, N.; Alhajyaseen, W.; Brijs, T.; Pirdavani, A.; Hussain, Q.; Brijs, K. Sandstorm animations on rural expressways: The impact of variable message sign strategies on driver behavior in low visibility conditions. Transp. Res. Part F Traffic Psychol. Behav. 2021, 78, 308–325. [Google Scholar] [CrossRef]
- Singh, P.; Sinha, V.S.P.; Vijhani, A.; Pahuja, N. Vulnerability assessment of urban road network from urban flood. Int. J. Disaster Risk Reduct. 2018, 28, 237–250. [Google Scholar] [CrossRef]
- Gordon, C.; Ping, H. Linearity Engineering in Permafrost Areas. J. Glaciol. Geocryol. 2001, 23, 213–217. (In Chinese) [Google Scholar]
- Zhang, W.; Qi, J.; Wan, P.; Wang, H.; Xie, D.; Wang, X.; Yan, G. An Easy-to-Use Airborne LiDAR Data Filtering Method Based on Cloth Simulation. Remote Sens. 2016, 8, 501. [Google Scholar] [CrossRef]
- JTG D20-2017; Design Specification for Highway Alignment. Ministry of Transportation of the People’s Republic of China: Beijing, China, 2017.
- Tao, G. Rural Highway Typical Simulation Evaluation of Road Traffic Safety and Security Countermeasure Research. Master’s Thesis, Chang’an University, Xi’an, China, 2015. (In Chinese). [Google Scholar]
- JTG B01 2003; Technical Standard of Highway Engineering. Ministry of Transportation of the People’s Republic of China: Beijing, China, 2003.
- Xu, C.; Xu, X.W.; Yu, G.H.; Wu, X.Y. Susceptibility Analysis of Impact Factors of Landslides Triggered by Yushu Earthquake. Sci. Technol. Rev. 2012, 30, 18–24. (In Chinese) [Google Scholar]
- Wegman, F.; Oppe, S. Benchmarking road safety performances of countries. Saf. Sci. 2010, 48, 1203–1211. [Google Scholar] [CrossRef]
- Saaty, R.W. The analytic hierarchy process—What it is and how it is used. Math. Model. 1987, 9, 161–176. [Google Scholar] [CrossRef] [Green Version]
- Shannon, C.E. The mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423+623–656. [Google Scholar] [CrossRef] [Green Version]
- Ngoduy, D.; Maher, M.J. Calibration of second order traffic models using continuous cross entropy method. Transp. Res. Part C Emerg. Technol. 2012, 24, 102–121. [Google Scholar] [CrossRef]
- TVEITE, H. An accuracy assessment method for geographical line data sets based on buffering. Int. J. Geogr. Inf. Sci. IJGIS 1999, 13, 27–47. [Google Scholar] [CrossRef]
Data Type | Data Source |
---|---|
Average annual temperature Average annual precipitation | DING mingjun. Grid data of annual temperature and annual precipitation on the Tibetan Plateau and its surrounding areas during 1998–2017. National Tibetan Plateau Data Center. |
Seismic risk | GB18306—2015 Seismic ground motion parameters zonation map of China [36] |
Landslide collapse, mudslide risk | Tibetan Plateau Scientific Research Database |
Snowstorm risk | [37] |
Sandstorm risk | [38] |
Flood risk | [39] |
Freeze–thaw risk | Tibetan Plateau Scientific Research Database |
Road Safety Risk Index | Literature Basis | Data Source | |
---|---|---|---|
Road 3D alignment | Curve radius (m) | [16,50] | LiDAR road point cloud |
Curve density (pcs/km) | [41] | ||
Number of consecutive sharp turns (pcs) | [51] | ||
Maximum longitudinal slope (%) | [52] | ||
Road width (m) | [44] | ||
Environment | Normalized Difference Vegetation Index | [46] | UAV orthophoto |
Elevation (m) | [18] | road point cloud | |
Average annual temperature (°C) | [12] | National Tibetan Plateau Data Center | |
Average annual precipitation (mm) | [47,48] | ||
Natural Disasters | Earthquake | [53] | [36] |
Landslide collapse, mudslide | [54] | Research Database | |
Snowstorm | [55] | [37] | |
Sandstorm | [56] | [38] | |
flood | [57] | [39] | |
Freeze–thaw | [58] | Research Database |
Risk Value | 1 | 2 | 3 | 4 | 5 | Basis |
---|---|---|---|---|---|---|
Curve radius (m) | [60] | |||||
Curve density (pcs/km) | [41] | |||||
Number of consecutive sharp turns (pcs) | [61] | |||||
Maximum longitudinal slope (%) | [62] | |||||
Road width (m) | [60] | |||||
Normalized difference vegetation index | [63] | |||||
Elevation (m) | [18] | |||||
Average annual temperature (°C) | [12] | |||||
Average annual precipitation (mm) | [48] | |||||
Earthquake acceleration (g) | [36] | |||||
Landslide collapse, mudslide risk | Level 0 | Level 1 | Level 2 | Level 3 | Level 4 | Research Database |
Snowstorm risk | Lowest | Low | Medium | Mid-high | Highest | [37] |
Sandstorm risk | None | Level 0 | Level 1 | Level 2 | Level 3 | [38] |
Flood risk | Level 1 | Level 2 | Level 3 | Level 4 | [39] | |
Freeze–thaw risk | Non-erosion | Slight | Mild | Moderate | Strong | Research Database |
(cm) | Correctness % | Completeness % |
---|---|---|
25 | 74.967 | 73.842 |
30 | 78.913 | 77.761 |
35 | 88.094 | 86.876 |
Category | Pile Number | Parameters |
---|---|---|
Straight line | BP:K0 + 000~ZY:K0 + 018.797 | |
Circular arc | ZY:K0 + 018.797~ YH:K0 + 040.439 |
|
Clothoid | YH:K0 + 040.439~HZ:K0 + 065.005 | |
Straight line | HZ:K0 + 065.005~ZH:K0 + 108.069 | |
Clothoid | ZH:K0 + 108.069~HY:K0 + 141.927 | |
Circular arc | HY:K0 + 141.927~YH:K0 + 168.981 |
|
Clothoid | YH:K0 + 168.981~HZ:K0 + 204.870 | |
Straight line | HZ:K0 + 204.870~ZH:K0 + 231.055 | |
Clothoid | ZH:K0 + 231.055~HY:K0 + 270.544 | |
Circular arc | HY:K0 + 270.544~YZ:K0 + 300.528 |
|
Straight line | YZ:K0 + 300.528~EP:K0 + 303.357 |
County Name | Segment Number | R | Rank | Assessment Result |
---|---|---|---|---|
Namling | 1 | 2.79 | 7 | General Risk/II |
Yadong | 2 | 3.07 | 9 | Greater Risk/III |
Kamba | 3 | 2.21 | 5 | Lower Risk/I |
4 | 3.11 | 10 | Greater Risk/III | |
Dinggye | 5 | 2.08 | 4 | Lower Risk/I |
6 | 3.58 | 14 | Material Risk/IV | |
Gyirong | 7 | 3.48 | 13 | Material Risk/IV |
8 | 3.07 | 8 | Greater Risk/III | |
Zhongba | 9 | 2.25 | 6 | Lower Risk/I |
10 | 2.00 | 3 | Lower Risk/I | |
Gar | 11 | 3.77 | 17 | Material Risk/IV |
Zanda | 12 | 3.46 | 12 | Material Risk/IV |
13 | 3.73 | 16 | Material Risk/IV | |
Nyima | 14 | 1.91 | 2 | Lower Risk/I |
15 | 3.60 | 15 | Material Risk/IV | |
Shenza | 16 | 1.75 | 1 | Lower Risk/I |
Baingoin | 17 | 3.35 | 11 | Greater Risk/III |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Dou, X.; Zhao, H.; Xue, Y.; Liang, J. Safety Risk Assessment of Low-Volume Road Segments on the Tibetan Plateau Using UAV LiDAR Data. Sustainability 2023, 15, 11443. https://doi.org/10.3390/su151411443
Zhang Y, Dou X, Zhao H, Xue Y, Liang J. Safety Risk Assessment of Low-Volume Road Segments on the Tibetan Plateau Using UAV LiDAR Data. Sustainability. 2023; 15(14):11443. https://doi.org/10.3390/su151411443
Chicago/Turabian StyleZhang, Yichi, Xuan Dou, Hanping Zhao, Ying Xue, and Jinfan Liang. 2023. "Safety Risk Assessment of Low-Volume Road Segments on the Tibetan Plateau Using UAV LiDAR Data" Sustainability 15, no. 14: 11443. https://doi.org/10.3390/su151411443