Land Application of Biosolids-Derived Biochar in Australia: A Review
Abstract
:1. Introduction
2. Current Biosolids Management Practices and Regulatory Framework in Australia
3. Limitations with Recycling Biosolids to Land
3.1. Heavy Metals and Metalloids
3.2. Persistent Organic Pollutants
3.3. Microplastics
3.4. Pathogens
4. Thermal Treatment of Biosolids
4.1. Pyrolysis
4.2. Gasification
5. Biosolids-Derived Biochar
5.1. Physicochemical Characteristics of Biosolids-Derived Biochar
5.1.1. Biochar Yield
5.1.2. Surface Area and Porosity
Technology | Sample a, Temp °C | pH | Elemental Analysis (%) | Nutrient Composition (g kg−1) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
C | H | N | Ca | Fe | K | Mg | P | S | |||
Pyrolysis 1 | BS 25 | 5.1 | 25.6 | 4.1 | 3.0 | 26.5 (19.4) | 37.0 (22) | 4.1 (3.3) | 8.1 (9.9) | 28.5 (6.8) | 23.2 (24.8) |
BDB 300 | 5.9 (0.6) | 23.1 (2.7) | 2.7 (0.8) | 3.0 (0.6) | 31.24 (24) | 44.01 (30.4) | 4.17 (3.2) | 10.18 (12.8) | 32.89 (8.2) | 23.23 (1.9) | |
BDB 400 | 6 (1.3) | 19.9 (0.4) | 1 | 2.2 (0.3) | 42.13 (19.7) | 48.94 (35.5) | 6.52 (3.5) | 13.31 (13.4) | 32.83 (8.7) | 28.46 (26.5) | |
BDB 500 | 7.1 (0.5) | 15.3 (5.1) | 0.9 (0.8) | 1.0 (0.8) | 40.41 (32.6) | 54.72 (41.6) | 5.12 (4.5) | 13.19 (17.4) | 41.83 (14.9) | 24.43 (29.94) | |
BDB 550 | 7 | 18.6 (12.5) | 0.8 (0.2) | 2.5 (0.5) | - | - | - | - | - | - | |
BDB 600 | 8.7 (0.7) | - | - | - | 24 | 41.7 | 13.3 | 7.86 | 45.1 | - | |
BDB 700 | 9.6 (2.0) | 13.9(5.6) | - | 1.0 (0.3) | 48.96 (21.7) | 60.66 (43.3) | 12.35 (6.0) | 13.99 (12.7) | 40.92 (7.8) | 35.1 (37.7) | |
BDB 900 | 11 | 5 | - | 0 | 71.82 | 33.37 | 9.83 | 29.06 | 40.65 | 9.69 | |
Slow pyrolysis 2 | BS 25 | 7.1 | 25.6 | 4.5 | 4.5 | 42.4 (23.6) | 30.4 (28.0) | 5.1 (2.6) | 9.3 (5.9) | 38.7 (9.2) | 20.9 (10.7) |
BDB 300 | 7.3 (0.2) | 27.5 (4.7) | 3.1 (0.3) | 4.5. (0.9) | 25.76 (28.7) | 7.10 (2.9) | 3.5 (2.6) | 12.40 (7.4) | 49.69 (21.6) | 7.92 (3.0) | |
BDB 400 | 7.3 (0.2) | 22.2 (5.6) | 1.9 (0.2) | 3.6 (0.8) | 7.43 (5) | - | 2.17 (0.2) | 9.10 (4) | 42.03 (15.1) | 6.07 (0.6) | |
BDB 450 | - | 22.5 (4.1) | 1.7 (0.1) | 3.4 (0.5) | - | - | - | - | - | - | |
BDB 500 | 7.4 (0.3) | 22.2 (4.0) | 1.2 (0.6) | 2.8 (1.1) | 56.47 (48.5) | 63.8 (47.5) | 7.59 (5.2) | 13.56 (9) | 56.73 (19.8) | 19.73 (16.9) | |
BDB 600 | 9.6 (1.6) | 22.2 (3.9) | 0.9 (0.3) | 2.6 (0.9) | 58.96 (42.5) | 48.8 (50.5) | 8.32 (4.9) | 17.85 (13.5) | 68.93 (2.9) | 15.6 (13.9) | |
BDB 700 | 12.5 (0.4) | 22.5 (3.6) | 0.5 (0.1) | 2.3 (0.4) | 93.05 (24.5) | 51.93 (53.4) | 11.98 (2.9) | 20.42 (9.4) | 83.63 (24.7) | 24.08 (20) | |
Fast pyrolysis 3 | BS | 43.40 | 6.99 | 5.66 | 27.1 | 8.5 | 5.9 | 6.0 | 23.9 | 10.1 | |
BDB 400 | - | 29.9 | 1.1 (0.6) | 2.5 (1.4) | - | - | - | - | - | - | |
BDB 500 | 8.8 | 19.7 (3.14) | 1.1 (0.6) | 2.5 (1.4) | 73.2 (19.8) | 28.8 (3.2) | 13.2 (6.7) | 17.2 (3.6) | 46.6 (40.2) | - | |
BDB 600 | 9.5 | 19.5 (1.6) | 0.6 (0.6) | 2.3 (1.3) | 62.71 | 33.60 | 8.40 | 15.45 | 18.76 | - | |
BDB 700 | 11.1 | 16.9 | 0.2 | 1.0 | 64.37 | 35.32 | 9.30 | 16.36 | 20.35 | - | |
BDB 800 | 12.2 | 16.2 | 0.0 | 0.5 | 65.83 | 35.76 | 9.20 | 16.57 | 19.35 | - | |
BDB 900 | 12.2 | 15.9 | 0.1 | 0.5 | 69.56 | 37.20 | 8.60 | 17.52 | 20.23 | - | |
Flash Pyrolysis 4 | BDB 350 | 7.7 | 20.5 | 2.4 | 8.2 | 17.07 | 0.4 | 13.52 | 9.88 | 24.12 | - |
BDB 400 | - | 15.4 | 1.6 | 6.6 | - | - | - | - | - | - | |
BDB 450 | - | 12 | 1.2 | 5.9 | - | - | - | - | - | - | |
BDB 500 | - | 12.6 | 1.2 | 3.9 | - | - | - | - | - | - | |
BDB 550 | - | 10.9 | 0.9 | 4 | - | - | - | - | - | - | |
BDB 650 | - | 10.3 | 0.7 | 0.7 | - | - | - | - | - | - | |
BDB 700 | 8.7 | 10 | 0.5 | ND | 5.35 | ND | 23.20 | 13.6 | 22.89 | - | |
BS | - | - | - | - | 51 | 30 | 5 | 6 | 40 | 8 | |
Two stage gasification | BDB 850 | - | 5.8 | - | 0.1 | 14 | 7.5 | 15 | 17.0 | 11.2 | 20 |
LT-CFB b gasification 5 | BDB 750 | - | 7.2 | - | 0.6 | 13 | 8.1 | 15 | 17.0 | 11 | 10 |
Gasification 6 | BS | - | - | - | - | 49.7 | 38.7 | 3 | 9.6 | 41.8 | 9.5 |
BDB 700 | 12 | 22.3 | 0.77 | 1.9 | 11 | 8.8 | 7.6 | 24.5 | 10.2 | - | |
BDB 900 | 12 | 2.9 | 0.18 | 0.25 | 14.5 | 11.9 | 10.9 | 35.1 | 14.2 | - |
5.1.3. Electrical Conductivity and pH
5.1.4. H:C Molar Ratio
5.1.5. Nutrients
5.2. Contaminants in Biosolid-Derived Biochar
5.2.1. Fate of Heavy Metals in Biosolids-Derived Biochar
5.2.2. Fate of Organic Pollutants and Microplastics in Biosolids-Derived Biochar
6. Use of Biosolids-Derived Biochar as a Soil Amendment
6.1. Soil Effects
6.1.1. Soil Acidity and Nutrient Leaching
6.1.2. Soil Hydrology
6.1.3. Greenhouse Gas Emissions
6.1.4. Soil Nutrients, Soil Organic Matter, and Soil Carbon
6.2. Crop Effects
6.2.1. Crop Yield
Temp °C | Plant Species | Soil Fertility | Agronomic Performance | Reference | |
---|---|---|---|---|---|
Crop Yield | Heavy Metals Bioaccumulation | ||||
300 | Radish | Increased soil base saturation, CEC, available P, Ca, and Mg, except K. Soil pH was not affected. | Increased plant height, yields, and above-ground dry weight. | - | [156] |
450 | Wheat | Increased soil CEC, K, and available P. | Increased plant height, biomass, and grain yield. | - | [46] |
500 | Rice | Increased pH, EC, total N, C and available P and K. Availability of heavy metals in the soil was reduced. | Increased shoot biomass, grain yields, and above-ground dry weight. | Reduced bioaccumulation of As, Co, Cr, Cu, Ni, and Pb in rice grains, stems, and leaves. | [125] |
400–550 | Garlic | - | Increased average plant height, plant biomass (stems and leaves) and garlic yield when compared with control. | No heavy metal accumulation was found in stems and leaves. However, higher Zn and Cu content was found in roots and bulbs compared to the control. | [72] |
550 | Coolatai grass | - | Increased grass yield was observed, specifically when biosolids-derived biochar was combined with chemical fertilizer. | - | [159] |
550 | Cherry tomatoes | - | Increased plant height and fruit yield. | Heavy metals’ concentrations in the fruits were lower in the biochar treatment than the biosolids treatment. | [160] |
550 | Cucumber | - | Increased plant biomass and fruit yields | Reduced bioaccumulation of As, Cu, Cd, Zn, and Pb in the fruit when compared to the biosolids treatment. | [124] |
200–700 | Turf grass | Increased soil organic carbon, total N, available P and K, decreased soil pH. | Increased above-ground dry matter and total N, P, and K content. | Reduced bioaccumulation of heavy metals was observed in above-ground biomass | [161] |
6.2.2. Bioavailability and Bioaccumulation of Pollutants
Plants | Treatments | As | Cd | Cr | Cu | Ni | Pb | Zn | References |
---|---|---|---|---|---|---|---|---|---|
Rice grain | Control 5% BDB 10% BDB | 0.45 0.19 0.17 | 0.4 0.32 0.28 | ND ND ND | 20 17 16 | ND ND ND | 0.95 0.6 0.5 | 54 44 41 | [164] |
Tomato | Control | 0.35 | 0.26 | ND | 2.8 | ND | 0.5 | 85 | [157] |
2% BDB | 0.17 | 2.6 | ND | 4 | ND | 0.25 | 20 | ||
5% BDB | 0.16 | 2.5 | ND | 2 | ND | 0.2 | 12 | ||
10% BDB | 0.12 | 2 | ND | 1.2 | ND | 0.17 | 8 | ||
Rice grain | Control 5% BDB 10% BDB | 0.14 0.05 0.04 | 0.02 0.12 0.13 | 0.3 0.21 0.17 | 4.8 4.7 4.6 | 0.68 0.55 0.49 | 0.35 0.1 0.05 | 8 26 28 | [125] |
Turnip | 2% BDB | 0.12 | 0.11 | ND | 3.2 | ND | 0.22 | 48 | [165] |
5% BDB | 0.11 | 0.1 | ND | 1.9 | ND | 0.19 | 36 | ||
Turf grass | Control | 0.14 | 0 | 0.19 | 0.25 | ND | 0.18 | 0.59 | [161] |
1% BDB | 0.08 | 0.02 | 0.08 | 0.12 | ND | 0.2 | 0.23 | ||
5% BDB | 0.03 | 0 | 0.04 | 0.1 | ND | 0.05 | 0.11 | ||
10% BDB | 0.07 | 0 | 0.06 | 0.14 | ND | 0.14 | 0.18 | ||
20% BDB | 0.06 | 0 | 0.05 | 0.1 | ND | 0.08 | 0.11 | ||
50% BDB | 0.05 | 0 | 0.04 | 0.1 | ND | 0.05 | 0.05 |
7. Conclusions and Future Research Needs
- Exploration of the potential for cost-effective thermal technology to treat biosolids, including alternatives for recovering energy for electricity generation and conversion of biosolids to biochar;
- Thermal treatment appears to be effective at eliminating persistent organic pollutants, microplastics, and pathogenic contaminants from biosolids. However, the efficacy of thermal treatment in reducing (or avoiding) soil contamination from these sources is not well documented. This information is critical for supporting the safe use of biosolids-derived biochar as a soil amendment and for removing concerns associated with recycling;
- There is potential to customize biochar products to suit specific users’ needs (e.g., soil and crop type, farm application method), which will require understanding of the relationship between the desired biochar characteristics and the production conditions and feedstock. The optimal combination of feedstock and treatment conditions to match specific crop and soil requirements needs to be determined. Optimization of the physical and mechanical properties of biosolids-derived biochar will enable field application with standard fertilizer applicators, improving field delivery efficiency and logistics, and their acceptability by farmers.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Marchuk, S.; Tait, S.; Sinha, P.; Harris, P.; Antille, D.L.; McCabe, B.K. Biosolids-derived fertilisers: A review of challenges and opportunities. Sci. Total Environ. 2023, 875, 162555. [Google Scholar] [CrossRef] [PubMed]
- Marchuk, S.; Antille, D.L.; Sinha, P.; Tuomi, S.; Harris, P.W.; McCabe, B.K. An investigation into the mobility of heavy metals in soils amended with biosolids-derived biochar. In 2021 ASABE Annual International Meeting; ASABE Paper No. 2100103; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2021. [Google Scholar] [CrossRef]
- Paz-Ferreiro, J.; Nieto, A.; Méndez, A.; Askeland, M.P.; Gascó, G. Biochar from biosolids pyrolysis: A review. Int. J. Environ. Res. Public Health 2018, 15, 956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldan, E.; Nedeff, V.; Barsan, N.; Culea, M.; Tomozei, C.; Panainte-Lehadus, M.; Mosnegutu, E. Evaluation of the use of sewage sludge biochar as a soil amendment—A review. Sustainability 2022, 14, 5309. [Google Scholar] [CrossRef]
- Collivignarelli, M.C.; Canato, M.; Abbà, A.; Carnevale Miino, M. Biosolids: What are the different types of reuse? J. Clean. Prod. 2019, 238, 117844. [Google Scholar] [CrossRef] [Green Version]
- Australian & New Zealand Biosolids Partnership. 2020. Available online: https://www.biosolids.com.au/guidelines/australian-biosolids-statistics/ (accessed on 30 April 2023).
- Department of Environment and Science. End of Waste Code: Biosolids (ENEW07359617). Queensland Government, Australia. 2020. Available online: https://environment.des.qld.gov.au/data/assets/pdf_file/0029/88724/wr-eowc-approved-biosolids.pdf (accessed on 22 July 2022).
- Oladejo, J.; Shi, K.; Luo, X.; Yang, G.; Wu, T. A review of sludge-to-energy recovery methods. Energies 2019, 12, 60. [Google Scholar] [CrossRef] [Green Version]
- Chojnacka, K.; Moustakas, K.; Witek-Krowiak, A. Bio-based fertilizers: A practical approach towards circular economy. Bioresour. Technol. 2020, 295, 122223. [Google Scholar] [CrossRef]
- Racek, J.; Sevcik, J.; Chorazy, T.; Kucerik, J.; Hlavinek, P. Biochar—Recovery material from pyrolysis of sewage sludge: A review. Waste Biomass Valorization 2020, 11, 3677–3709. [Google Scholar] [CrossRef]
- Patel, S.; Kundu, S.; Halder, P.; Ratnnayake, N.; Marzbali, M.H.; Aktar, S.; Selezneva, E.; Paz-Ferreiro, J.; Surapaneni, A.; de Figueiredo, C.C.; et al. A critical literature review on biosolids to biochar: An alternative biosolids management option. Rev. Environ. Sci. Biotechnol. 2020, 19, 807–841. [Google Scholar] [CrossRef]
- Natural Resource Management Ministerial Council. National Water Quality Management Strategy: Guidelines for Sewerage Systems Biosolids Management. 2004. Available online: https://environment.des.qld.gov.au/assets/documents/regulation/wr-eowc-approved-biosolids.pdf (accessed on 15 June 2022).
- McCabe, B.K.; Harris, P.; Antille, D.L.; Schmidt, T.; Lee, S.; Hill, A.; Baillie, C. Toward profitable and sustainable bioresource management in the Australian red meat processing industry: A critical review and illustrative case study. Crit. Rev. Environ. Sci. Technol. 2020, 50, 2415–2439. [Google Scholar] [CrossRef]
- McCabe, B.K.; Antille, D.L.; Marchuk, S.; Tait, S.; Lee, S.; Eberhard, J.; Baillie, C.P. Biosolids-derived organomineral fertilizers from anaerobic digestion digestate: Opportunities for Australia. In 2019 ASABE Annual International Meeting; ASABE Paper No. 1900192; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2019. [Google Scholar] [CrossRef]
- Pritchard, D.L.; Penney, N.; McLaughlin, M.J.; Rigby, H.; Schwarz, K. Land application of sewage sludge (biosolids) in Australia: Risks to the environment and food crops. Water Sci. Technol. 2010, 62, 48–57. [Google Scholar] [CrossRef] [Green Version]
- Maulini-Duran, C.; Artola, A.; Font, X.; Sánchez, A. A systematic study of the gaseous emissions from biosolids composting: Raw sludge versus anaerobically digested sludge. Bioresour. Technol. 2013, 147, 43–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, R.-Y.; Yoon, J.-K.; Kim, T.-S.; Yang, J.E.; Owens, G.; Kim, K.-R. Bioavailability of heavy metals in soils: Definitions and practical implementation—A critical review. Environ. Geochem. Health 2015, 37, 1041–1061. [Google Scholar] [CrossRef]
- Asmoay, A.S.; Salman, S.A.; El-Gohary, A.M.; Sabet, H.S. Evaluation of heavy metal mobility in contaminated soils between Abu Qurqas and Dyer Mawas Area, El Minya Governorate, Upper Egypt. Bull. Natl. Res. Cent. 2019, 43, 88. [Google Scholar] [CrossRef] [Green Version]
- Lu, Q.; He, Z.L.; Stoffella, P.J. Land application of biosolids in the USA: A Review. Appl. Environ. Soil Sci. 2012, 2012, 201462. [Google Scholar] [CrossRef] [Green Version]
- Torri, S.I.; Corrêa, R.S. Downward movement of potentially toxic elements in biosolids amended soils. Appl. Environ. Soil Sci. 2012, 2012, 145724. [Google Scholar] [CrossRef] [Green Version]
- Antille, D.L.; Godwin, R.J.; Sakrabani, R.; Seneweera, S.; Tyrrel, S.F.; Johnston, A.E. Field-Scale evaluation of biosolids-derived organomineral fertilizers applied to winter wheat in England. Agron. J. 2017, 109, 654–674. [Google Scholar] [CrossRef] [Green Version]
- Wuana, R.A.; Okieimen, F.E. Heavy Metals in Contaminated Soils: A review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol. 2011, 2011, 402647. [Google Scholar] [CrossRef] [Green Version]
- Silveira, M.L.A.; Alleoni, L.R.F.; Guilherme, L.R.G. Biosolids and heavy metals in soil. Sci. Agric. 2003, 60, 739–806. [Google Scholar] [CrossRef] [Green Version]
- Darvodelsky, P.; Hopewell, K. Assessment of emergent contaminants in biosolids. Online J. Aust. Water Assoc. 2018, 3, 3. [Google Scholar] [CrossRef]
- Schultz, M.M.; Higgins, C.P.; Huset, C.A.; Luthy, R.G.; Barofsky, D.F.; Field, J.A. Fluorochemical mass flows in a municipal wastewater treatment facility. Environ. Sci. Technol. 2006, 40, 7350–7357. [Google Scholar] [CrossRef] [Green Version]
- Lozano, N.; Rice, C.P.; Ramirez, M.; Torrents, A. Fate of Triclocarban, Triclosan and Methyltriclosan during wastewater and biosolids treatment processes. Water Res. 2013, 47, 4519–4527. [Google Scholar] [CrossRef] [PubMed]
- Mackay, D.; Fraser, A. Bioaccumulation of persistent organic chemicals: Mechanisms and models. Environ. Pollut. 2000, 110, 375–391. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Shafy, H.I.; Mansour, M.S.M. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egypt. J. Pet. 2016, 25, 107–123. [Google Scholar] [CrossRef] [Green Version]
- Clarke, B.O.; Porter, N.A.; Marriott, P.J.; Blackbeard, J.R. Investigating the levels and trends of organochlorine pesticides and polychlorinated biphenyl in sewage sludge. Environ. Int. 2010, 36, 323–329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ng, E.-L.; Huerta Lwanga, E.; Eldridge, S.M.; Johnston, P.; Hu, H.-W.; Geissen, V.; Chen, D. An overview of microplastic and nanoplastic pollution in agroecosystems. Sci. Total Environ. 2018, 627, 1377–1388. [Google Scholar] [CrossRef]
- Nizzetto, L.; Futter, M.; Langaas, S. Are agricultural soils dumps for microplastics of urban origin? Environ. Sci. Technol. 2016, 50, 10777–10779. [Google Scholar] [CrossRef] [Green Version]
- Piehl, S.; Leibner, A.; Löder, M.G.J.; Dris, R.; Bogner, C.; Laforsch, C. Identification and quantification of macro- and microplastics on an agricultural farmland. Sci. Rep. 2018, 8, 17950. [Google Scholar] [CrossRef] [Green Version]
- He, D.; Luo, Y.; Lu, S.; Liu, M.; Song, Y.; Lei, L. Microplastics in soils: Analytical methods, pollution characteristics and ecological risks. Trends Anal. Chem. 2018, 109, 163–172. [Google Scholar] [CrossRef]
- Okoffo, E.D.; Tscharke, B.J.; O’Brien, J.W.; O’Brien, S.; Ribeiro, F.; Burrows, S.D.; Choi, P.M.; Wang, X.; Mueller, J.F.; Thomas, K.V. Release of Plastics to Australian land from biosolids end-use. Environ. Sci. Technol. 2020, 54, 15132–15141. [Google Scholar] [CrossRef]
- Mahon, A.M.; O’Connell, B.; Healy, M.G.; O’Connor, I.; Officer, R.; Nash, R.; Morrison, L. Microplastics in sewage sludge: Effects of treatment. Environ. Sci. Technol. 2017, 51, 810–818. [Google Scholar] [CrossRef] [Green Version]
- Mohajerani, A.; Karabatak, B. Microplastics and pollutants in biosolids have contaminated agricultural soils: An analytical study and a proposal to cease the use of biosolids in farmlands and utilise them in sustainable bricks. Waste Manag. 2020, 107, 252–265. [Google Scholar] [CrossRef] [PubMed]
- De Souza Machado, A.A.; Kloas, W.; Zarfl, C.; Hempel, S.; Rillig, M.C. Microplastics as an emerging threat to terrestrial ecosystems. Glob. Chang. Biol. 2018, 24, 1405–1416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panepinto, D.; Genon, G. Wastewater sewage sludge: The thermal treatment solution. WIT Trans. Ecol. Environ. 2014, 180, 201–212. [Google Scholar] [CrossRef] [Green Version]
- Goyal, S.; Walia, M.; Gera, R.; Kapoor, K.; Kundu, B. Impact of sewage sludge application on soil microbial biomass, microbial processes and plant growth—A review. Agric. Rev. 2008, 29, 1–10. Available online: http://arccarticles.s3.amazonaws.com/webArticle/articles/ar291001.pdf (accessed on 3 November 2022).
- Mossa, A.-W.; Dickinson, M.J.; West, H.M.; Young, S.D.; Crout, N.M. The response of soil microbial diversity and abundance to long-term application of biosolids. Environ. Pollut. 2017, 224, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Bradford, S.A.; Morales, V.L.; Zhang, W.; Harvey, R.W.; Packman, A.I.; Mohanram, A.; Welty, C. Transport, and fate of microbial pathogens in agricultural settings. Crit. Rev. Environ. Sci. Technol. 2013, 43, 775–893. [Google Scholar] [CrossRef]
- Goberna, M.; Simón, P.; Hernández, M.T.; García, C. Prokaryotic communities and potential pathogens in sewage sludge: Response to wastewaster origin, loading rate and treatment technology. Sci. Total Environ. 2018, 615, 360–368. [Google Scholar] [CrossRef]
- Sidhu, J.P.S.; Toze, S.G. Human pathogens and their indicators in biosolids: A literature review. Environ. Int. 2009, 35, 187–201. [Google Scholar] [CrossRef]
- Edgerton, B.; Buss, W. A Review of the Benefits of Biochar and Proposed Trials, Biochar Literature Review and Proposed Trials: Potential to Enhance Soils and Sequester Carbon in the ACT for a Circular Economy. AECOM, Canberrra. 2019. Available online: https://www.environment.act.gov.au/__data/assets/pdf_file/0011/1394471/a-review-of-the-benefits-of-biochar-and-proposed-trials.pdf (accessed on 12 August 2022).
- Gao, N.; Kamran, K.; Quan, C.; Williams, P.T. Thermochemical conversion of sewage sludge: A critical review. Prog. Energy Combust. Sci. 2020, 79, 100843. [Google Scholar] [CrossRef]
- Raheem, A.; Sikarwar, V.S.; He, J.; Dastyar, W.; Dionysiou, D.D.; Wang, W.; Zhao, M. Opportunities and challenges in sustainable treatment and resource reuse of sewage sludge: A review. Chem. Eng. J. 2018, 337, 616–641. [Google Scholar] [CrossRef]
- Ni, B.-J.; Zhu, Z.-R.; Li, W.-H.; Yan, X.; Wei, W.; Xu, Q.; Xia, Z.; Dai, X.; Sun, J. Microplastics mitigation in sewage sludge through pyrolysis: The role of pyrolysis temperature. Environ. Sci. Technol. 2020, 7, 961–967. [Google Scholar] [CrossRef]
- Magdziarz, A.; Werle, S. Analysis of the combustion and pyrolysis of dried sewage sludge by TGA and MS. Waste Manag. 2014, 34, 174–179. [Google Scholar] [CrossRef]
- Udayanga, C.W.D.; Veksha, A.; Giannis, A.; Lisak, G.; Chang, V.W.C.; Lim, T.-T. Fate and distribution of heavy metals during thermal processing of sewage sludge. Fuel 2018, 226, 721–744. [Google Scholar] [CrossRef]
- Tripathi, M.; Sahu, J.N.; Ganesan, P. Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review. Renew. Sustain. Energy Rev. 2016, 55, 467–481. [Google Scholar] [CrossRef]
- Rada, E.C. Thermochemical Waste Treatment: Combustion, Gasification, and Other Methodologies, 1st ed.; Apple Academic Press: Palm Bay, FL, USA, 2017. [Google Scholar]
- Srinivasan, P.; Sarmah, A.K.; Smernik, R.; Das, O.; Farid, M.; Gao, W. A feasibility study of agricultural and sewage biomass as biochar, bioenergy and biocomposite feedstock: Production, characterization and potential applications. Sci. Total Environ. 2015, 512–513, 495–505. [Google Scholar] [CrossRef]
- Romero, P.; Coello, M.D.; Quiroga, J.M.; Aragón, C.A. Overview of sewage sludge minimisation: Techniques based on cell lysis-cryptic growth. Desalination Water Treat. 2013, 51, 5918–5933. [Google Scholar] [CrossRef]
- Salman, C.A.; Schwede, S.; Thorin, E.; Li, H.; Yan, J. Identification of thermochemical pathways for the energy and nutrient recovery from digested sludge in wastewater treatment plants. Energy Procedia 2019, 158, 1317–1322. [Google Scholar] [CrossRef]
- Hossain, M.K.; Strezov, V.; Chan, K.Y.; Ziolkowski, A.; Nelson, P.F. Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar. J. Environ. Manag. 2011, 92, 223–228. [Google Scholar] [CrossRef]
- Zhao, L.; Cao, X.; Mašek, O.; Zimmerman, A. Heterogeneity of biochar properties as a function of feedstock sources and production temperatures. J. Hazard. Mater. 2013, 256–257, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Oh, S.-Y.; Son, J.-G.; Chiu, P.C. Black carbon-mediated reductive transformation of nitro compounds by hydrogen sulfide. Environ. Earth Sci. 2015, 73, 1813–1822. [Google Scholar] [CrossRef]
- Mukome, F.N.D.; Parikh, S.J. UC Davis Biochar Databse. Available online: https://biochar.ucdavis.edu/ (accessed on 4 October 2022).
- De la Rosa, J.; Paneque, M.; Miller, A.; Knicker, H. Relating physical and chemical properties of four different biochars and their application rate to biomass production of Lolium perenne on a Calcic Cambisol during a pot experiment of 79 days. Sci. Total Environ. 2014, 499, 175–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, T.; Zhou, Z.; Xu, S.; Wang, H.; Lu, W. Adsorption behavior comparison of trivalent and hexavalent chromium on biochar derived from municipal sludge. Bioresour. Technol. 2015, 190, 388–394. [Google Scholar] [CrossRef] [PubMed]
- Leng, L.; Yuan, X.-Z.; Huang, H.; Shao, J.; Hou, W.; Chen, X.; Zeng, G. Bio-char derived from sewage sludge by liquefaction: Characterization and application for dye adsorption. Appl. Surf. Sci. 2015, 346, 223–231. [Google Scholar] [CrossRef]
- Liang, C.; Gascó, G.; Fu, S.; Méndez, A.; Paz-Ferreiro, J. Biochar from pruning residues as a soil amendment: Effects of pyrolysis temperature and particle size. Soil Tillage Res. 2016, 164, 3–10. [Google Scholar] [CrossRef]
- Rahman, M.S.; Schefe, C.; Rajput, S.; Keizer, D.; Weatherley, A. O-aryl and Carbonyl Carbon Contents of Food Waste and Biosolid Predict P Availability in an Acidic Soil. Front. Sustain. Food Syst. 2021, 4, 277. [Google Scholar] [CrossRef]
- Netherway, P.; Reichman, S.M.; Laidlaw, M.; Scheckel, K.; Pingitore, N.; Gascó, G.; Méndez, A.; Surapaneni, A.; Paz-Ferreiro, J. Phosphorus-Rich Biochars Can Transform Lead in an Urban Contaminated Soil. J. Environ. Qual. 2019, 48, 1091–1099. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Liu, S.; Liu, K.; Ji, S.; Wang, M.; Shu, X. Effect of temperature on pyrolysis of sewage sludge: Biochar properties and environmental risks from heavy metals. E3S Web Conf. 2021, 237, 01040. [Google Scholar] [CrossRef]
- Frišták, V.; Pipíška, M.; Soja, G. Pyrolysis treatment of sewage sludge: A promising way to produce phosphorus fertilizer. J. Clean. Prod. 2017, 172, 1772–1778. [Google Scholar] [CrossRef]
- Lehmann, J.; Gaunt, J.; Rondon, M. Bio-char sequestration in terrestrial ecosystems—A review. Mitig. Adapt. Strateg. Glob. Chang. 2006, 11, 403–427. [Google Scholar] [CrossRef]
- Xu, X.; Cao, X.; Zhao, L.; Sun, T. Comparison of sewage sludge- and pig manure-derived biochars for hydrogen sulfide removal. Chemosphere 2014, 111, 296–303. [Google Scholar] [CrossRef]
- Steiner, C.; Glaser, B.; Geraldes Teixeira, W.; Lehmann, J.; Blum, W.E.H.; Zech, W. Nitrogen retention and plant uptake on a highly weathered central Amazonian Ferrosol amended with compost and charcoal. J. Soil Sci. Plant Nutr. 2008, 171, 893–899. [Google Scholar] [CrossRef]
- Pituello, C.; Francioso, O.; Simonetti, G.; Pisi, A.; Torreggiani, A.; Berti, A.; Morari, F. Characterization of chemical–physical, structural and morphological properties of biochars from biowastes produced at different temperatures. J. Soils Sediments 2015, 15, 792–804. [Google Scholar] [CrossRef]
- Adhikari, S.; Gascó, G.; Méndez, A.; Surapaneni, A.; Jegatheesan, V.; Shah, K.; Paz-Ferreiro, J. Influence of pyrolysis parameters on phosphorus fractions of biosolids derived biochar. Sci. Total Environ. 2019, 695, 133846. [Google Scholar] [CrossRef]
- Song, X.D.; Xue, X.Y.; Chen, D.Z.; He, P.J.; Dai, X.H. Application of biochar from sewage sludge to plant cultivation: Influence of pyrolysis temperature and biochar-to-soil ratio on yield and heavy metal accumulation. Chemosphere 2014, 109, 213–220. [Google Scholar] [CrossRef] [PubMed]
- Van Wesenbeeck, S.; Prins, W.; Ronsse, F.; Antal, M.J. Sewage sludge carbonization for biochar applications: Fate of heavy metals. Energy Fuels 2014, 28, 5318–5326. [Google Scholar] [CrossRef]
- Callegari, A.; Capodaglio, A.G. Properties and beneficial uses of (bio)chars, with special attention to products from sewage sludge pyrolysis. Resources 2018, 7, 20. [Google Scholar] [CrossRef] [Green Version]
- Weber, K.; Heuer, S.; Quicker, P.; Li, T.; Løvås, T.; Scherer, V. An alternative approach for the estimation of biochar yields. Energy Fuels 2018, 32, 9506–9512. [Google Scholar] [CrossRef]
- Leng, L.; Xiong, Q.; Yang, L.; Li, H.; Zhou, Y.; Zhang, W.; Jiang, S.; Li, H.; Huang, H. An overview on engineering the surface area and porosity of biochar. Sci. Total Environ. 2021, 763, 144204. [Google Scholar] [CrossRef]
- Kookana, R.S.; Sarmah, A.K.; Van Zwieten, L.; Krull, E.; Singh, B. Chapter three—Biochar application to soil: Agronomic and environmental benefits and unintended consequences. Adv. Agron. 2011, 112, 103–143. [Google Scholar] [CrossRef]
- Agrafioti, E.; Bouras, G.; Kalderis, D.; Diamadopoulos, E. Biochar production by sewage sludge pyrolysis. J. Anal. Appl. Pyrolysis 2013, 101, 72–78. [Google Scholar] [CrossRef]
- Tomczyk, A.; Sokołowska, Z.; Boguta, P. Biochar physicochemical properties: Pyrolysis temperature and feedstock kind effects. Rev. Environ. Sci. Biotechnol. 2020, 19, 191–215. [Google Scholar] [CrossRef] [Green Version]
- Tomczyk, B.; Siatecka, A.; Jędruchniewicz, K.; Sochacka, A.; Bogusz, A.; Oleszczuk, P. Polycyclic aromatic hydrocarbons (PAHs) persistence, bioavailability and toxicity in sewage sludge- or sewage sludge-derived biochar-amended soil. Sci. Total Environ. 2020, 747, 141123. [Google Scholar] [CrossRef] [PubMed]
- Mahapatra, K.; Ramteke, D.S.; Paliwal, L.J. Production of activated carbon from sludge of food processing industry under controlled pyrolysis and its application for methylene blue removal. J. Anal. Appl. Pyrolysis 2012, 95, 79–86. [Google Scholar] [CrossRef]
- Xu, G.; Yang, X.; Spinosa, L. Development of sludge-based adsorbents: Preparation, characterization, utilization and its feasibility assessment. J. Environ. Manag. 2015, 151, 221–232. [Google Scholar] [CrossRef]
- De Figueiredo, C.C.; Reis, A.D.S.P.J.; de Araujo, A.S.; Blum, L.E.B.; Shah, K.; Paz-Ferreiro, J. Assessing the Potential of Sewage Sludge-Derived Biochar as a Novel Phosphorus Fertilizer: Influence of Extractant Solutions and Pyrolysis Temperatures. Waste Manag. 2021, 124, 144–153. [Google Scholar] [CrossRef] [PubMed]
- De Figueiredo, C.C.; Chagas, J.K.M.; da Silva, J.; Paz-Ferreiro, J. Short-term effects of a sewage sludge biochar amendment on total and available heavy metal content of a tropical soil. Geoderma 2019, 344, 31–39. [Google Scholar] [CrossRef]
- De Figueiredo, C.C.; Farias, W.M.; Coser, T.R.; de Paula, A.M.; Da Silva, M.R.S.; Paz-Ferreiro, J. Sewage sludge biochar alters root colonization of mycorrhizal fungi in a soil cultivated with corn. Eur. J. Soil Biol. 2019, 93, 103092. [Google Scholar] [CrossRef]
- Yuan, H.; Lu, T.; Huang, H.; Zhao, D.; Kobayashi, N.; Chen, Y. Influence of pyrolysis temperature on physical and chemical properties of biochar made from sewage sludge. J. Anal. Appl. Pyrolysis 2015, 112, 284–289. [Google Scholar] [CrossRef]
- Vaughn, S.F.; Dinelli, F.D.; Kenar, J.A.; Jackson, M.A.; Thomas, A.J.; Peterson, S.C. Physical and chemical properties of pyrolyzed biosolids for utilization in sand-based turfgrass rootzones. Waste Manag. 2018, 76, 98–105. [Google Scholar] [CrossRef]
- Yang, Y.; Meehan, B.; Shah, K.; Surapaneni, A.; Hughes, J.; Fouché, L.; Paz-Ferreiro, J. Physicochemical properties of biochars produced from biosolids in Victoria, Australia. Int. J. Environ. Res. Public Health 2018, 15, 1459. [Google Scholar] [CrossRef] [Green Version]
- Roberts, D.A.; Cole, A.J.; Whelan, A.; de Nys, R.; Paul, N.A. Slow pyrolysis enhances the recovery and reuse of phosphorus and reduces metal leaching from biosolids. Waste Manag. 2017, 64, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Zhang, W.; Wang, S.; Zhuang, L.; Yang, Y.; Qiu, R. Characterization of sewage sludge-derived biochars from different feedstocks and pyrolysis temperatures. J. Anal. Appl. Pyrolysis 2013, 102, 137–143. [Google Scholar] [CrossRef]
- Zielińska, A.; Oleszczuk, P. The conversion of sewage sludge into biochar reduces polycyclic aromatic hydrocarbon content and ecotoxicity but increases trace metal content. Biomass Bioenergy 2015, 75, 235–244. [Google Scholar] [CrossRef]
- Chen, T.; Zhang, Y.; Wang, H.; Lu, W.; Zhou, Z.; Zhang, Y.; Ren, L. Influence of pyrolysis temperature on characteristics and heavy metal adsorptive performance of biochar derived from municipal sewage sludge. Bioresour. Technol. 2014, 164, 47–54. [Google Scholar] [CrossRef]
- Barry, D.; Barbiero, C.; Briens, C.; Berruti, F. Pyrolysis as an economical and ecological treatment option for municipal sewage sludge. Biomass Bioenergy 2019, 122, 472–480. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, S.; Zhou, N.; Fan, L.; Zhang, Y.; Peng, P.; Anderson, E.; Ding, K.; Wang, Y.; Liu, Y.; et al. Development and application of a continuous fast microwave pyrolysis system for sewage sludge utilization. Bioresour. Technol. 2018, 256, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Piskorz, J.; Scott, D.S.; Westerberg, I.B. Flash pyrolysis of sewage sludge. Ind. Eng. Chem. Process Des. Dev. 1986, 25, 265–270. [Google Scholar] [CrossRef]
- Uchimiya, M.; Hiradate, S.; Antal, M.J. Dissolved phosphorus speciation of flash carbonization, slow pyrolysis, and fast pyrolysis biochars. ACS Sustain. Chem. Eng. 2015, 3, 1642–1649. [Google Scholar] [CrossRef]
- Thomsen, T.P.; Sárossy, Z.; Ahrenfeldt, J.; Henriksen, U.B.; Frandsen, F.J.; Müller-Stöver, D.S. Changes imposed by pyrolysis, thermal gasification and incineration on composition and phosphorus fertilizer quality of municipal sewage sludge. J. Environ. Manag. 2017, 198, 308–318. [Google Scholar] [CrossRef] [Green Version]
- Hernandez, A.B.; Ferrasse, J.-H.; Chaurand, P.; Saveyn, H.; Borschneck, D.; Roche, N. Mineralogy and leachability of gasified sewage sludge solid residues. J. Hazard. Mater. 2011, 191, 219–227. [Google Scholar] [CrossRef]
- Yang, F.; Wang, B.; Shi, Z.; Li, L.; Li, Y.; Mao, Z.; Liao, L.; Zhang, H.; Wu, Y. Immobilization of heavy metals (Cd, Zn, and Pb) in different contaminated soils with swine manure biochar. Environ. Pollut. Bioavailab. 2021, 33, 55–65. [Google Scholar] [CrossRef]
- Méndez, A.; Terradillos, M.; Gascó, G. Physicochemical and agronomic properties of biochar from sewage sludge pyrolysed at different temperatures. J. Anal. Appl. Pyrolysis 2013, 102, 124–130. [Google Scholar] [CrossRef]
- Joseph, S.D.; Camps-Arbestain, M.; Lin, Y.; Munroe, P.; Chia, C.H.; Hook, J.; van Zwieten, L.; Kimber, S.; Cowie, A.; Singh, B.P.; et al. An investigation into the reactions of biochar in soil. Soil Res. 2010, 48, 501–515. [Google Scholar] [CrossRef]
- Ok, Y.S.; MUchimiya, S.M.; Change, S.X.; Bolan, N. Biochar: Production, Characterisation and Applications; CRC Press: New York, NY, USA, 2015. [Google Scholar]
- Sánchez, M.E.; Menéndez, J.A.; Domínguez, A.; Pis, J.J.; Martínez, O.; Calvo, L.F.; Bernad, P.L. Effect of pyrolysis temperature on the composition of the oils obtained from sewage sludge. Biomass Bioenergy 2009, 33, 933–940. [Google Scholar] [CrossRef]
- Dai, Z.; Zhang, X.; Tang, C.; Muhammad, N.; Wu, J.; Brookes, P.C.; Xu, J. Potential role of biochars in decreasing soil acidification—A critical review. Sci. Total Environ. 2017, 581–582, 601–611. [Google Scholar] [CrossRef] [PubMed]
- Farrell, M.; Rangott, G.; Krull, E. Difficulties in using soil-based methods to assess plant availability of potentially toxic elements in biochars and their feedstocks. J. Hazard. Mater. 2013, 250–251, 29–36. [Google Scholar] [CrossRef]
- Cayuela, M.L.; Jeffery, S.; van Zwieten, L. The molar H:Corg ratio of biochar is a key factor in mitigating N2O emissions from soil. Agric. Ecosyst. Environ. 2015, 202, 135–138. [Google Scholar] [CrossRef]
- Jin, J.; Li, Y.; Zhang, J.; Wu, S.; Cao, Y.; Liang, P.; Zhang, J.; Wong, M.H.; Wang, M.; Shan, S.; et al. Influence of pyrolysis temperature on properties and environmental safety of heavy metals in biochars derived from municipal sewage sludge. J. Hazard. Mater. 2016, 320, 417–426. [Google Scholar] [CrossRef]
- Antal, M.J.; Grønli, M. The art, science, and technology of charcoal production. Ind. Eng. Chem. Res. 2003, 42, 1619–1640. [Google Scholar] [CrossRef]
- Bagreev, A.; Bandosz, T.J.; Locke, D.C. Pore structure and surface chemistry of adsorbents obtained by pyrolysis of sewage sludge-derived fertilizer. Carbon 2001, 39, 1971–1979. [Google Scholar] [CrossRef]
- Thomsen, T.P.; Hauggaard-Nielsen, H.; Gøbel, B.; Stoholm, P.; Ahrenfeldt, J.; Henriksen, U.B.; Müller-Stöver, D.S. Low temperature circulating fluidized bed gasification and co-gasification of municipal sewage sludge. Part 2: Evaluation of ash materials as phosphorus fertilizer. Waste Manag. 2017, 66, 145–154. [Google Scholar] [CrossRef] [Green Version]
- Al-Wabel, M.I.; Al-Omran, A.; El-Naggar, A.H.; Nadeem, M.; Usman, A.R.A. Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes. Bioresour. Technol. 2013, 131, 374–379. [Google Scholar] [CrossRef] [PubMed]
- Beesley, L.; Moreno-Jiménez, E.; Fellet, G.; Melo, L.; Sizmur, T. Biochar and Heavy Metals; Earthscan: Oxford, UK, 2015; pp. 563–594. [Google Scholar]
- Liu, T.; Liu, B.; Zhang, W. Nutrients and Heavy Metals in Biochar Produced by Sewage Sludge Pyrolysis: Its Application in Soil Amendment. Pol. J. Environ. 2014, 23, 271–275. [Google Scholar]
- Huang, H.J.; Yuan, X.Z. The migration and transformation behaviors of heavy metals during the hydrothermal treatment of sewage sludge. Bioresour. Technol. 2016, 200, 991–998. [Google Scholar] [CrossRef]
- Devi, P.; Saroha, A.K. Risk analysis of pyrolyzed biochar made from paper mill effluent treatment plant sludge for bioavailability and eco-toxicity of heavy metals. Bioresour. Technol. 2014, 162, 308–315. [Google Scholar] [CrossRef]
- Sauvé, S.; Hendershot, W.; Allen, H.E. Solid-solution partitioning of metals in contaminated soils: dependence on ph, total metal burden, and organic matter. Environ. Sci. Technol. 2000, 34, 1125–1131. [Google Scholar] [CrossRef]
- Hameed, R.; Cheng, L.; Yang, K.; Fang, J.; Lin, D. Endogenous release of metals with dissolved organic carbon from biochar: Effects of pyrolysis temperature, particle size, and solution chemistry. Environ. Pollut. 2019, 255, 113253. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, C.; Li, Z.; Yu, G.; Wang, Y. Effect of pyrolysis temperature on characteristics, chemical speciation and risk evaluation of heavy metals in biochar derived from textile dyeing sludge. Ecotoxicol. Environ. Saf. 2019, 168, 45–52. [Google Scholar] [CrossRef]
- International Biochar Initiative. Standardized Product Definition and Product Testing Guidelines for Biochar That Is Used in Soil. 2015. Available online: https://biochar-international.org/ (accessed on 15 April 2022).
- Schmidt, H.-P.; Abiven, S.; Kammann, C.; Glaser, B.; Bucheli, T.; Leifeld, J.; Shackley, S. European Biochar Certificate–Guidelines for a Sustainable Production of Biochar. European Biochar Foundation. 2013. Available online: https://www.european-biochar.org/media/doc/2/version_en_9_5.pdf (accessed on 15 April 2022).
- Li, L.; Xu, Z.R.; Zhang, C.; Bao, J.; Dai, X. Quantitative evaluation of heavy metals in solid residues from sub- and super-critical water gasification of sewage sludge. Bioresour. Technol. 2012, 121, 169–175. [Google Scholar] [CrossRef] [PubMed]
- Waqas, M.; Li, G.; Khan, S.; Shamshad, I.; Reid, B.J.; Qamar, Z.; Chao, C. Application of sewage sludge and sewage sludge biochar to reduce polycyclic aromatic hydrocarbons (PAH) and potentially toxic elements (PTE) accumulation in tomato. Environ. Sci. Pollut. Res. 2015, 22, 12114–12123. [Google Scholar] [CrossRef] [PubMed]
- Luo, F.; Song, J.; Xia, W.; Dong, M.; Chen, M.; Soudek, P. Characterization of contaminants and evaluation of the suitability for land application of maize and sludge biochars. Environ. Sci. Pollut. Res. 2014, 21, 8707–8717. [Google Scholar] [CrossRef] [PubMed]
- Waqas, M.; Khan, S.; Qing, H.; Reid, B.J.; Chao, C. The effects of sewage sludge and sewage sludge biochar on PAHs and potentially toxic element bioaccumulation in Cucumis sativa L. Chemosphere 2014, 105, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Chao, C.; Waqas, M.; Arp, H.P.H.; Zhu, Y.-G. Sewage sludge biochar influence upon rice (Oryza sativa L.) yield, metal bioaccumulation and greenhouse gas emissions from acidic paddy soil. Environ. Sci. Technol. 2013, 47, 8624–8632. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Wang, N.; Reid, B.J.; Freddo, A.; Cai, C. reduced bioaccumulation of PAHs by Lactuca satuva L. grown in contaminated soil amended with sewage sludge and sewage sludge derived biochar. Environ. Pollut. 2013, 175, 64–68. [Google Scholar] [CrossRef] [PubMed]
- Ross, J.J.; Zitomer, D.H.; Miller, T.R.; Weirich, C.A.; McNamara, P.J. Emerging investigators series: Pyrolysis removes common microconstituents triclocarban, triclosan, and nonylphenol from biosolids. Environ. Sci. Water Res. 2016, 2, 282–289. [Google Scholar] [CrossRef] [Green Version]
- Dai, Q.; Wen, J.; Jiang, X.; Dai, L.; Jin, Y.; Wang, F.; Chi, Y.; Yan, J. Distribution of PCDD/Fs over the three product phases in wet sewage sludge pyrolysis. J. Anal. Appl. Pyrolysis 2018, 133, 169–175. [Google Scholar] [CrossRef]
- Undri, A.; Rosi, L.; Frediani, M.; Frediani, P. Efficient disposal of waste polyolefins through microwave assisted pyrolysis. Fuel 2014, 116, 662–671. [Google Scholar] [CrossRef]
- Buss, W. Pyrolysis solves the issue of organic contaminants in sewage sludge while retaining carbon—Making the case for sewage sludge treatment via pyrolysis. ACS Sustain. Chem. Eng. 2021, 9, 10048–10053. [Google Scholar] [CrossRef]
- Singh, B.; Macdonald, L.M.; Kookana, R.S.; van Zwieten, L.; Butler, G.; Joseph, S.; Weatherley, A.; Kaudal, B.B.; Regan, A.; Cattle, J.; et al. Opportunities and constraints for biochar technology in Australian agriculture: Looking beyond carbon sequestration. Soil Res. 2014, 52, 739–750. [Google Scholar] [CrossRef] [Green Version]
- Ojeda, G.; Mattana, S.; Àvila, A.; Alcañiz, J.M.; Volkmann, M.; Bachmann, J. Are soil–water functions affected by biochar application? Geoderma 2015, 249–250, 1–11. [Google Scholar] [CrossRef]
- Haider, F.U.; Coulter, J.A.; Liqun, C.; Hussain, S.; Cheema, S.A.; Jun, W.; Zhang, R. An overview on biochar production, its implications, and mechanisms of biochar-induced amelioration of soil and plant characteristics. Pedosphere 2022, 32, 107–130. [Google Scholar] [CrossRef]
- Lehmann, J.; Joseph, S. Biochar for Environmental Management: Science, Technology and Implementation, 2nd ed.; Routledge: London, UK, 2015. [Google Scholar]
- Lu, Y.; Silveira, M.L.; O’Connor, G.A.; Vendramini, J.M.B.; Erickson, J.E.; Li, Y.C.; Cavigelli, M. Biochar impacts on nutrient dynamics in a subtropical grassland soil: 1. Nitrogen and phosphorus leaching. J. Environ. Qual. 2020, 49, 1408–1420. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.Z.; Bahar, M.M.; Sarkar, B.; Donne, S.W.; Wade, P.; Bolan, N. Assessment of the fertilizer potential of biochars produced from slow pyrolysis of biosolid and animal manures. J. Anal. Appl. Pyrolysis 2021, 155, 105043. [Google Scholar] [CrossRef]
- Hossain, M.K.; Strezov, V.; Nelson, P.F. Thermal characterisation of the products of wastewater sludge pyrolysis. J. Anal. Appl. Pyrolysis 2009, 85, 442–446. [Google Scholar] [CrossRef]
- Watts, C.W.; Whalley, W.R.; Brookes, P.C.; Devonshire, B.J.; Whitmore, A.P. Biological and physical processes that mediate micro-aggregation of clays. Soil Sci. 2005, 170, 573–583. [Google Scholar] [CrossRef]
- Omondi, M.O.; Xia, X.; Nahayo, A.; Liu, X.; Korai, P.K.; Pan, G. Quantification of biochar effects on soil hydrological properties using meta-analysis of literature data. Geoderma 2016, 274, 28–34. [Google Scholar] [CrossRef]
- Herath, H.M.S.K.; Camps-Arbestain, M.; Hedley, M. Effect of biochar on soil physical properties in two contrasting soils: An Alfisol and an Andisol. Geoderma 2013, 209–210, 188–197. [Google Scholar] [CrossRef]
- Mukherjee, A.; Lal, R.; Zimmerman, A.R. Effects of biochar and other amendments on the physical properties and greenhouse gas emissions of an artificially degraded soil. Sci. Total Environ. 2014, 487, 26–36. [Google Scholar] [CrossRef]
- McHenry, M.P. Agricultural bio-char production, renewable energy generation and farm carbon sequestration in Western Australia: Certainty, uncertainty, and risk. Agric. Ecosyst. Environ. 2009, 129, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Jones, S.K.; Rees, R.M.; Skiba, U.M.; Ball, B.C. Influence of organic and mineral N fertiliser on N2O fluxes from a temperate grassland. Agric. Ecosyst. Environ. 2007, 121, 74–83. [Google Scholar] [CrossRef]
- Van Zwieten, L.; Kimber, S.; Morris, S.; Downie, A.; Berger, E.; Rust, J.; Scheer, C. Influence of biochars on flux of N2O and CO2 from Ferrosol. Soil Res. 2010, 48, 555–568. [Google Scholar] [CrossRef]
- Grutzmacher, P.; Puga, A.P.; Bibar, M.P.S.; Coscione, A.R.; Packer, A.P.; de Andrade, C.A. Carbon stability and mitigation of fertilizer induced N2O emissions in soil amended with biochar. Sci. Total Environ. 2018, 625, 1459–1466. [Google Scholar] [CrossRef]
- Cely Parra, P.; Tarquis, A.; Paz-Ferreiro, J.; Méndez, A.; Gascó, G. Factors driving carbon mineralization priming effect in a soil amended with different types of biochar. Solid Earth 2014, 6, 849–868. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Zheng, W.; Cao, X. Distribution and evolution of organic matter phases during biochar formation and their importance in carbon loss and pore structure. Chem. Eng. J. 2014, 250, 240–247. [Google Scholar] [CrossRef]
- Melas, G.B.; Ortiz, O.; AlacaÑIz, J.M. Can biochar protect labile organic matter against mineralization in soil? Pedosphere 2017, 27, 822–831. [Google Scholar] [CrossRef]
- Das, S.K.; Varma, A. Role of enzymes in maintaining soil health. In Soil Enzymology; Shukla, G., Varma, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 25–42. [Google Scholar]
- Beesley, L.; Moreno-Jiménez, E.; Gomez-Eyles, J.L.; Harris, E.; Robinson, B.; Sizmur, T. A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Environ. Pollut. 2011, 159, 3269–3282. [Google Scholar] [CrossRef]
- Paz-Ferreiro, J.; Fu, S.; Méndez, A.; Gascó, G. Interactive effects of biochar and the earthworm Pontoscolex corethrurus on plant productivity and soil enzyme activities. J. Soils Sediments 2014, 14, 483–494. [Google Scholar] [CrossRef]
- Paz-Ferreiro, J.; Gascó, G.; Gutiérrez, B.; Méndez, A. Soil biochemical activities and the geometric mean of enzyme activities after application of sewage sludge and sewage sludge biochar to soil. Biol. Fertil. Soils 2012, 48, 511–517. [Google Scholar] [CrossRef]
- Bolan, N.; Hoang, S.A.; Beiyuan, J.; Gupta, S.; Hou, D.; Karakoti, A.; Joseph, S.; Jung, S.; Kim, K.-H.; Kirkham, M.B.; et al. Multifunctional applications of biochar beyond carbon storage. Int. Mater. Rev. 2021, 67, 150–200. [Google Scholar] [CrossRef]
- Bridle, T.R.; Pritchard, D. Energy and nutrient recovery from sewage sludge via pyrolysis. Water Sci. Technol. 2004, 50, 169–175. [Google Scholar] [CrossRef]
- Chagas, J.K.M.; Figueiredo, C.C.d.; Silva, J.d.; Shah, K.; Paz-Ferreiro, J. Long-term effects of sewage sludge–derived biochar on the accumulation and availability of trace elements in a tropical soil. J. Environ. Qual. 2021, 50, 264–277. [Google Scholar] [CrossRef] [PubMed]
- Sousa, A.A.T.C.; Figueiredo, C.C. Sewage sludge biochar: Effects on soil fertility and growth of radish. Biol. Agric. Hortic. 2016, 32, 127–138. [Google Scholar] [CrossRef]
- Hossain, M.K.; Strezov, V.; Yin Chan, K.; Nelson, P.F. Agronomic properties of wastewater sludge biochar and bioavailability of metals in production of cherry tomato (Lycopersicon esculentum). Chemosphere 2010, 78, 1167–1171. [Google Scholar] [CrossRef] [PubMed]
- De Figueiredo, C.C.; Pinheiro, T.D.; de Oliveira, L.E.Z.; de Araujo, A.S.; Coser, T.R.; Paz-Ferreiro, J. Direct and residual effect of biochar derived from biosolids on soil phosphorus pools: A four-year field assessment. Sci. Total Environ. 2020, 739, 140013. [Google Scholar] [CrossRef]
- Hossain, M.K.; Strezov, V.; McCormick, L.; Nelson, P.F. Wastewater sludge and sludge biochar addition to soils for biomass production from Hyparrhenia hirta. Ecol. Eng. 2015, 82, 345–348. [Google Scholar] [CrossRef]
- Hossain, M.K.; Strezov, V.; Nelson, P.F. Comparative assessment of the effect of wastewater sludge biochar on growth, yield and metal bioaccumulation of cherry tomato. Pedosphere 2015, 25, 680–685. [Google Scholar] [CrossRef]
- Yue, Y.; Cui, L.; Lin, Q.; Li, G.; Zhao, X. Efficiency of sewage sludge biochar in improving urban soil properties and promoting grass growth. Chemosphere 2017, 173, 551–556. [Google Scholar] [CrossRef]
- Méndez, A.M.; Barriga, S.; Guerrero, F.; Gascó Guerrero, G. The effect of paper mill waste and sewage sludge amendments on acid soil properties. Soil Sci. 2012, 177, 451–457. [Google Scholar] [CrossRef]
- Lu, T.; Yuan, H.; Wang, Y.; Huang, H.; Chen, Y. Characteristic of heavy metals in biochar derived from sewage sludge. J. Mater. Cycles Waste Manag. 2016, 18, 725–733. [Google Scholar] [CrossRef]
- Khan, S.; Reid, B.J.; Li, G.; Zhu, Y.-G. Application of biochar to soil reduces cancer risk via rice consumption: A case study in Miaoqian village, Longyan, China. Environ. Int. 2014, 68, 154–161. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.; Waqas, M.; Ding, F.; Shamshad, I.; Arp, H.P.H.; Li, G. The influence of various biochars on the bioaccessibility and bioaccumulation of PAHs and potentially toxic elements to turnips (Brassica rapa L.). J. Hazard. Mater. 2015, 300, 243–253. [Google Scholar] [CrossRef] [PubMed]
Guidelines | Sample | Temp °C | Total Heavy Metals (mg kg−1 DBS) b | Total PAHs μg kg−1 d.b. | Reference | |||||||
As | Cd | Cr | Cu | Pb | Hg | Ni | Zn | |||||
AWA-Biosolid | - | - | 20–30 | 1–20 | 100–600 | 100–2000 | 150–420 | 1–15 | 60–270 | 200–2500 | - | [12] |
IBI-Biochar | Category A Category B | - | 13 100 | 1.4 20 | 93 100 | 143 6000 | 121 300 | 1 10 | 47 400 | 416 7400 | 6000 300,000 | [119] |
EBC-Biochar | Premium Basic | - | 13 13 | 1 1.5 | 80 90 | 100 100 | 120 150 | 1 1 | 30 50 | 400 400 | 4000 12,000 | [120] |
Technology | ||||||||||||
Pyrolysis | BS | N/A | - | 2.3–5.3 | - | 401–611 | 136–224 | - | - | 629–1238 | - | [19] |
BDB | 300 | - | 3.3–7.5 | - | 480–043 | 190–350 | - | - | 849–1909 | |||
BDB | 400 | - | 3.8–9.8 | - | 549–1198 | 194–438 | - | - | 912–2104 | |||
BDB | 500 | - | 4.3–8.9 | - | 565–1267 | 212–506 | - | - | 1014–2305 | |||
Pyrolysis | BS | N/A | - | 7.54 | - | 545 | 189 | - | 102 | 2398 | [100] | |
BDB | 400 | - | 9.67 | - | 632 | 239 | - | 129 | 2983 | - | ||
BDB | 600 | - | 9.76 | - | 740 | 253 | - | 134 | 3922 | |||
Gasification | BS BDB | N/A 750 | - - | 1.0–2.5 1.5–5.5 | 34–66 80–182 | - - | 41 84–110 | 1.5 0.2 | 24 87–158 | - - | - | [97] |
Gasification | BS BDB BDB | - 350 400 | - | 0.93 1.5–1.6 1.5–1.7 | 80.8 218–227 228–247 | 580 851–900 886–922 | 78.27 114–121 120–125 | 402 597–623 612–637 | - | [121] | ||
Gasification | BS BDB BDB | - 700 900 | - | 1 ND ND | 36 (7) 98 (1) 104 (2) | 529 (8) 1159 (8) 1346 (6) | 45 88(1) 51(1) | 2 ND ND | 66(2) 122(1) 165(4) | 423(10) 753 (5) 757 (4) | - | [98] |
Pyrolysis | BDB | 200 | 7.6–16.7 | 2–9.1 | 67.6–281 | 712–1000 | 28.4–60 | 65–635 | 1964–2940 | [122] | ||
Pyrolysis | BDS BDB BDB BDB BDB | 25 200 500 600 700 | - | 1.0 1.1 1.4 1.1 0.7 | 173 180 233 239 247 | 143 149 193 198 202 | 51.1 54.7 67.9 69.1 74.2 | 42 41.1 55.1 56.1 55.2 | 698 735 887 976 986 | 3339 1644 70,385 1241 179 | [123] | |
Pyrolysis | BS BDB BDB | 25 300 500 | - | 3.6 5.5 6.5 | - | 487 733 841 | 167 260 506 | - | - | 922 1417 1705 | - | [90] |
Pyrolysis | BS BDB | - 550 | 2.6 12 | 1.7 2.7 | - | 160 210 | 44 82 | - | - | 1200 2080 | 3860 900 | [124] |
Pyrolysis | BS BDB | 550 | 2.3 11.9 | 1.5 2.3 | - | 171 237 | 53.8 71.9 | - | - | 1105 1879 | 5780 1701 | [122] |
Pyrolysis | BS BDB BDB | Air 400 500 | 18 9.4 14 | ND 3.2 3.2 | 20 60.7 61 | 165 357 334 | 42 83 92.6 | 23 77.1 68.4 | 703 1478 1704 | - | [72] | |
Pyrolysis | BDB | 550 | 9.3 | 3.7 | 74.1 | 222 | 27 | 34.5 | 1102 | - | [125] | |
Pyrolysis | BS BDB | - 500 | - | - | - | - | - | - | - | - | 2950 4350 | [126] |
Pyrolysis | BS BDB | - 500 | - | - | - | - | - | - | - | - | 8625–13,333 612–766 | [80] |
Technology | Sample a | Temp °C | Available heavy metals (mg kg−1 DBS b) | Reference | ||||||||
As | Cd | Cr | Cu | Pb | Hg | Ni | Zn | |||||
Pyrolysis | BS BDB BDB BDB BDB | 25 300 500 600 700 | - | 7.80 0.45 2.30 5.90 10.5 | 9 11 9 8.5 8 | 700 45.5 205 295 365 | 309 48 27.5 67 115 | - | 135 20.5 25 37 46.5 | 3565 280 385 635 970 | [123] | |
Pyrolysis | BS BDB BDB | 25 300 500 | - | 1.8 ND ND | - | 139 1.7 0.4 | 34.9 ND 6.5 | - | - | 586.6 4.5 50.8 | [90] | |
Pyrolysis | BS BDB | - 550 | 1.1 0.04 | 1.1 0.2 | - | 37 3.4 | 8.2 2.5 | - | - | 371 66 | [124] | |
Pyrolysis | BS BDB | - 550 | 1.07 0.05 | 1.03 0.17 | - | 35.3 4.35 | 9.02 3.41 | - | - | 387 56.7 | [122] | |
Pyrolysis | SS BDB BDB | Air 400 500 | - 0.9 0.6 | - ND ND | - 0.2 ND | - 0.3 0.2 | - 0.5 0.6 | - | - 0.3 ND | - 7.9 1.8 | [72] | |
Pyrolysis | BDB | 550 | 0.04 | 0.26 | 1.24 | 6.5 | 2.13 | 2.26 | 127 | [126] | ||
Gasification | BS BDB BDB | - 350 400 | - | 0.62 0.03–0.12 0.01–0.24 | 1.26 1–3.91 1.2–7.51 | 22.63 0.42–1.17 0.37–0.97 | 2.74 0.58–1.13 0.59–1.40 | - | - | 112 7.67–17.19 9.05–12.25 | [121] | |
Gasification | BS BDB BDB | - 700 900 | - | - | 8.89 0.06 0.04 | 16.3 0.49 2.08 | - | - | 3.44 0.04 <0.01 | - | [98] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sinha, P.; Marchuk, S.; Harris, P.; Antille, D.L.; McCabe, B.K. Land Application of Biosolids-Derived Biochar in Australia: A Review. Sustainability 2023, 15, 10909. https://doi.org/10.3390/su151410909
Sinha P, Marchuk S, Harris P, Antille DL, McCabe BK. Land Application of Biosolids-Derived Biochar in Australia: A Review. Sustainability. 2023; 15(14):10909. https://doi.org/10.3390/su151410909
Chicago/Turabian StyleSinha, Payel, Serhiy Marchuk, Peter Harris, Diogenes L. Antille, and Bernadette K. McCabe. 2023. "Land Application of Biosolids-Derived Biochar in Australia: A Review" Sustainability 15, no. 14: 10909. https://doi.org/10.3390/su151410909
APA StyleSinha, P., Marchuk, S., Harris, P., Antille, D. L., & McCabe, B. K. (2023). Land Application of Biosolids-Derived Biochar in Australia: A Review. Sustainability, 15(14), 10909. https://doi.org/10.3390/su151410909