Usage and Microbial Safety of Shared and Unshared Excreta Disposal Facilities in Developing Countries: The Case of a Ghanaian Rural District
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Study Design
2.3. Sample Size and Sampling Approach
2.4. Microbial Sample Collection, Preservation and Analysis
2.5. Data Analysis
3. Results and Discussion
3.1. Statistical Analysis of the Usage of Shared and Unshared Toilets
3.2. Microbial Safety of Shared and Unshared Toilets
3.2.1. Prevalence of Faecal Contamination among Toilets
3.2.2. Concentrations of Faecal Coliforms on Contact Surfaces
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO; UNICEF. Progress on Household Drinking Water, Sanitation and Hygiene 2000–2020: Five Years into the SDGs; World Health Organization (WHO); United Nations Children’s Fund (UNICEF): Geneva, Switzerland, 2021. [Google Scholar]
- Rheinländer, T.; Konradsen, F.; Keraita, B.; Apoya, P.; Gyapong, M. Redefining shared sanitation. Bull. World Health Organ. 2015, 93, 509–510. [Google Scholar] [CrossRef] [PubMed]
- Yetunderonke, O. A Study of Housing Adequacy of Multi-Habited Houses in a Typical Nigerian Town. Int. J. Adv. Multidiscip. Soc. Sci. 2015, 1, 7–12. [Google Scholar] [CrossRef]
- Obeng, P.A.; Keraita, B.; Oduro-Kwarteng, S.; Bregnhøj, H.; Abaidoo, R.C.; Awuah, E.; Konradsen, F. Usage and Barriers to Use of Latrines in a Ghanaian Peri-Urban Community. Environ. Process. 2015, 2, 261–274. [Google Scholar] [CrossRef] [Green Version]
- WSP. From Hazard to Convenience: Towards Better Management of Public Toilets in the City of Nairobi; Water and Sanitation Program: Nairobi, Kenya, 2004. [Google Scholar]
- Evans, B.; Hueso, A.; Johnston, R.; Norman, G.; Pérez, E.; Slaymaker, T.; Trémolet, S. Limited services? The role of shared sanitation in the 2030 Agenda for Sustainable Development. J. Water Sanit. Hyg. 2017, 7, 349–351. [Google Scholar] [CrossRef] [Green Version]
- Ramlal, P.S.; Stenström, T.A.; Munien, S.; Amoah, I.D.; Buckley, C.A.; Sershen. Relationships between shared sanitation facilities and diarrhoeal and soil-transmitted helminth infections: An analytical review. J. Water Sanit. Hyg. Dev. 2019, 9, 198–209. [Google Scholar] [CrossRef]
- Heijnen, M.; Cumming, O.; Peletz, R.; Chan, G.K.-S.; Brown, J.; Baker, K.; Clasen, T. Shared sanitation versus individual household latrines: A systematic review of health outcomes. PLoS ONE 2014, 9, e93300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuller, J.A.; Clasen, T.; Heijnen, M.; Eisenberg, J.N. Shared sanitation and the prevalence of diarrhea in young children: Evidence from 51 countries, 2001–2011. Am. J. Trop. Med. Hyg. 2014, 91, 173–180. [Google Scholar] [CrossRef] [Green Version]
- Montgomery, M.A.; Desai, M.M.; Elimelech, M. Comparing the Effectiveness of Shared versus Private Latrines in Preventing Trachoma in Rural Tanzania. Am. Soc. Trop. Med. Hyg. 2010, 82, 693–695. [Google Scholar] [CrossRef] [Green Version]
- Obeng, P.A.; Awere, E.; Banafo, K.S.; Obeng, P.A.; Quaye, S.A.; Pennellini, S.; Bonoli, A. A Review of User Vulnerabilities Associated with Shared Sanitation Practices in Sub-Saharan Africa. Int. J. Environ. Clim. Chang. 2022, 12, 977–998. [Google Scholar] [CrossRef]
- Jenkins, M.W.; Cumming, O.; Scott, B.; Cairncross, S. Beyond ‘improved’ towards ‘safe and sustainable’ urban sanitation: Assessing the design, management and functionality of sanitation in poor communities of Dar es Salaam, Tanzania. J. Water Sanit. Hyg. Dev. 2014, 4, 131–141. [Google Scholar] [CrossRef] [Green Version]
- Exley, J.L.R.; Liseka, B.; Cumming, O.; Ensink, J.H.J. The Sanitation Ladder, What Constitutes an Improved Form of Sanitation? Environ. Sci. Technol. 2015, 49, 1086–1094. [Google Scholar] [CrossRef]
- Gunther, I.; Horst, A.; Lüthi, C.; Mosler, H.-J.; Niwagaba, C.; Tumwebaze, I. When is shared sanitation improved sanitation? In The Correlation between Number of Users and Toilet Hygiene; Federal Institute of Technology Zurich (ETHZ): Zurich, Switzerland, 2012. [Google Scholar] [CrossRef]
- MoFA. Ajumako-Enyan-Essiam. Available online: https://mofa.gov.gh/site/directorates/district-directorates/central-region/196-ajumako-enyan-essiam (accessed on 16 May 2023).
- Ghana Statistical Service. Ghana 2021 Population and Housing Census: Preliminary Report; Ghana Statistical Service: Accra, Ghana, 2021; Volume 1. [Google Scholar]
- Ghana Statistical Service. 2010 Population and Housinng Census, Urbanisation; Ghana Statistical Service: Accra, Ghana, 2014. [Google Scholar]
- Kwetché, P.R.F.; Noche, C.D.; Youté, O.N.D.; Kweyang, B.T.; Nguekap, W.L.N.; Monthé, V.I.D.; Tchuessi, P.M.M.; Tchoukoua, S.H.; Nguedia, J.C.A. Microbiological Control in Hospital Environment: Calibrating Enumeration of Bacteria on Flat Surfaces with Wet Swab. Int. J. Curr. Microbiol. Appl. Sci. 2021, 10, 452–461. [Google Scholar] [CrossRef]
- Public Health England. Detection and Enumeration of Bacteria in Swabs and Other Environmental Samples: National Infection Service Food Water and Environmental Microbiology Standard Method; Public Health England: London, UK, 2017. [Google Scholar]
- Yousef, A.E.; Carlstrom, C. Food Microbiology: A Laboratory Manual; John Wiley & Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
- Antony, A.C.; Mini, P.K.; Silvester, R.; Aneesa, P.; Suresh, K.; Divya, P.; Simmy, P.; Fathima, P.; Abdulla, M.H. Comparative evaluation of EMB agar and hicrome E. coli agar for differentiation of green metallic sheen producing non E. Coli and typical E. Coli colonies from food and environmental samples. J. Pure Appl. Microbiol 2016, 10, 2863–2870. [Google Scholar] [CrossRef]
- APHA; AWWA; WEF. Standard Methods for the Examination of Water and Wastewater, 23rd ed.; APHA; AWWA; WEF: Washington, DC, USA, 2017. [Google Scholar]
- MedCalc Software Ltd. Odds Ratio Calculator. Available online: https://www.medcalc.org/calc/odds_ratio.php (accessed on 5 May 2023).
- Altman, D.G. Practical Statistics for Medical Research; Chapman and Hall: London, UK, 1991. [Google Scholar]
- Galal, S. Average Household Size in Africa 2021, by Country. Available online: https://www.statista.com/statistics/1228286/average-household-size-in-africa-by-country/ (accessed on 10 May 2023).
- Sphere Project. Humanitarian Charter and Minimum Standards in Disaster Response; Oxfam Publishing: Geneva, Switzerland, 2004. [Google Scholar]
- CWSA. Small Towns Sector Guidelines (Design Guidelines); CWSA: Accra, Ghana, 2010; Volume 3. [Google Scholar]
- Antwi-Agyei, P.; Dwumfour-Asare, B.; Amaning Adjei, K.; Kweyu, R.; Simiyu, S. Understanding the Barriers and Opportunities for Effective Management of Shared Sanitation in Low-Income Settlements—The Case of Kumasi, Ghana. Int. J. Environ. Res. Public Health 2020, 17, 4528. [Google Scholar] [CrossRef]
- Massa, K.; Kilamile, F.; Safari, E.; Seleman, A.; Mwakitalima, A.; Balengayabo, J.G.; Kassile, T.; Mangesho, P.E.; Mubyazi, G.M. Contributing to the debate on categorising shared sanitation facilities as ‘unimproved’: An account based on field researchers’ observations and householders’ opinions in three regions, Tanzania. PLoS ONE 2017, 12, e0185875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adams, E.A.; Adams, Y.J.; Koki, C. Water, sanitation, and hygiene (WASH) insecurity will exacerbate the toll of COVID-19 on women and girls in low-income countries. Sustain. Sci. Pract. Policy 2021, 17, 85–89. [Google Scholar] [CrossRef]
- Assadian, O.; Harbarth, S.; Vos, M.; Knobloch, J.K.; Asensio, A.; Widmer, A.F. Practical recommendations for routine cleaning and disinfection procedures in healthcare institutions: A narrative review. J. Hosp. Infect. 2021, 113, 104–114. [Google Scholar] [CrossRef]
- Tuladhar, E.; Hazeleger Wilma, C.; Koopmans, M.; Zwietering Marcel, H.; Beumer Rijkelt, R.; Duizer, E. Residual Viral and Bacterial Contamination of Surfaces after Cleaning and Disinfection. Appl. Environ. Microbiol. 2012, 78, 7769–7775. [Google Scholar] [CrossRef] [Green Version]
- Jensen, D.A.; Danyluk, M.D.; Harris, L.J.; Schaffner, D.W. Quantifying the Effect of Hand Wash Duration, Soap Use, Ground Beef Debris and Drying Methods on the Removal of Enterobacter aerogenes on Hands. J. Food Prot. 2015, 78, 685–690. [Google Scholar] [CrossRef]
- Ramlal, P.S.; Lin, J.; Buckley, C.A.; Stenström, T.A.; Amoah, I.D. An assessment of the health risks associated with shared sanitation: A case study of the community ablution blocks in Durban, South Africa. Environ. Monit. Assess. 2022, 194, 166. [Google Scholar] [CrossRef]
- Hailu, K.; Alemu, Z.A.; Adane, M. Barriers to cleaning of shared latrines in slums of Addis Ababa, Ethiopia. PLoS ONE 2022, 17, e0263363. [Google Scholar] [CrossRef] [PubMed]
- Aluko, O.O.; Oloruntoba, E.O.; Chukwunenye, U.A.; Henry, E.U.; Ojogun, E. The dynamics and determinants of household shared sanitation cleanliness in a heterogeneous urban settlement in Southwest Nigeria. Public Health 2018, 165, 125–135. [Google Scholar] [CrossRef] [PubMed]
- Simiyu, S.N.; Kweyu, R.M.; Antwi-Agyei, P.; Adjei, K.A. Barriers and opportunities for cleanliness of shared sanitation facilities in low-income settlements in Kenya. BMC Public Health 2020, 20, 1632. [Google Scholar] [CrossRef]
- Tumwebaze, I.K. Prevalence and determinants of the cleanliness of shared toilets in Kampala slums, Uganda. J. Public Health 2014, 22, 33–39. [Google Scholar] [CrossRef] [Green Version]
- Antwi-Agyei, P.; Monney, I.; Amaning Adjei, K.; Kweyu, R.; Simiyu, S. Shared but Clean Household Toilets: What Makes This Possible? Evidence from Ghana and Kenya. Int. J. Environ. Res. Public Health 2022, 19, 4271. [Google Scholar] [CrossRef] [PubMed]
- Odonkor, S.T.; Ampofo, J.K. Escherichia coli as an indicator of bacteriological quality of water: An overview. Microbiol. Res. 2013, 4, e2. [Google Scholar] [CrossRef] [Green Version]
Statistic | Frequency (% within Sharing Status) | |
---|---|---|
Shared (n = 48) | Unshared (n = 51) | |
Number of households sharing a toilet | ||
One household | - | 51 (100%) |
Two households | 46 (95.83%) | - |
Three households | - | - |
Four households | 2 (4.17%) | - |
Total | 48 (100%) | 51 |
Average | 2.08 | 1.00 |
Number of persons using a toilet | ||
Minimum | 5 | 2 |
Maximum | 14 | 6 |
Average | 7.02 | 3.69 |
Contact Surface | Indicator Organism | Frequency (% of Detection) | OR (95% CI) | ||
---|---|---|---|---|---|
All Toilets (n = 99) | Shared (n = 48) | Unshared (n = 51) | |||
Door handle | E. coli | 87 (87.88%) | 43 (89.58%) | 44 (86.27%) | 1.37 (0.40–4.64) |
Other FCs | 74 (74.75%) | 31 (64.58%) | 43 (84.31%) | 0.34 (0.13–0.89) * | |
E. coli or other FCs 1 | 91 (91.92%) | 44 (91.67%) | 47 (92.16%) | 0.94 (0.22–3.97) | |
Seat | E. coli | 92 (92.93%) | 45 (93.75%) | 47 (92.16%) | 1.28 (0.27–6.03) |
Other FCs | 83 (83.84%) | 40 (83.33%) | 43 (84.31%) | 0.93 (0.32–2.71) | |
E. coli or other FCs | 95 (95.96%) | 47 (97.92%) | 48 (94.12%) | 2.94 (0.29–29.26) | |
Either door handle or seat 2 | E. coli | 97 (97.98%) | 47 (97.92%) | 50 (98.04%) | 0.94 (0.06–15.46) |
Other FCs | 91 (91.92%) | 42 (87.50) | 49 (96.08) | 0.29 (0.05–1.49) | |
E. coli or other FCs | 98 (98.99%) | 47 (97.92%) | 51 (100%) | 0.31 (0.01–7.73) |
Contact Surface | Indicator Organism | Shared | Unshared | Z-Score (p-Value) |
---|---|---|---|---|
Door handle | E. coli | 0.046 (0.964) | ||
Median CFU/mL × 105 | 34.333 | 54.667 | ||
Mean rank | 50.14 | 49.87 | ||
Sum of ranks | 2406.50 | 2543.50 | ||
Other FCs | 2.213 (0.027) * | |||
Median CFU × 105/mL | 7.000 | 16.333 | ||
Mean rank | 43.47 | 56.15 | ||
Sum of ranks | 2086.50 | 2863.50 | ||
Toilet seat | E. coli | 0.900 (0.368) | ||
Median CFU/mL × 105 | 103.167 | 125.000 | ||
Mean rank | 47.32 | 52.52 | ||
Sum of ranks | 2271.50 | 2678.50 | ||
Other FCs | 0.063 (0.950) | |||
Median CFU/mL × 105 | 24.000 | 31.667 | ||
Mean rank | 49.81 | 50.18 | ||
Sum of ranks | 2391.00 | 2559.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Obeng, P.A.; Awere, E.; Obeng, P.A.; Oteng-Peprah, M.; Mwinsuubo, A.K.; Bonoli, A.; Quaye, S.A. Usage and Microbial Safety of Shared and Unshared Excreta Disposal Facilities in Developing Countries: The Case of a Ghanaian Rural District. Sustainability 2023, 15, 10282. https://doi.org/10.3390/su151310282
Obeng PA, Awere E, Obeng PA, Oteng-Peprah M, Mwinsuubo AK, Bonoli A, Quaye SA. Usage and Microbial Safety of Shared and Unshared Excreta Disposal Facilities in Developing Countries: The Case of a Ghanaian Rural District. Sustainability. 2023; 15(13):10282. https://doi.org/10.3390/su151310282
Chicago/Turabian StyleObeng, Peter Appiah, Eric Awere, Panin Asirifua Obeng, Michael Oteng-Peprah, Albert Kaabieredomo Mwinsuubo, Alessandra Bonoli, and Sharon Amanda Quaye. 2023. "Usage and Microbial Safety of Shared and Unshared Excreta Disposal Facilities in Developing Countries: The Case of a Ghanaian Rural District" Sustainability 15, no. 13: 10282. https://doi.org/10.3390/su151310282
APA StyleObeng, P. A., Awere, E., Obeng, P. A., Oteng-Peprah, M., Mwinsuubo, A. K., Bonoli, A., & Quaye, S. A. (2023). Usage and Microbial Safety of Shared and Unshared Excreta Disposal Facilities in Developing Countries: The Case of a Ghanaian Rural District. Sustainability, 15(13), 10282. https://doi.org/10.3390/su151310282