A Roadmap for the Design, Operation and Monitoring of Renewable Energy Communities in Italy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Renewable Energy Community Roadmap
- a goal, i.e., the final objective;
- activities, i.e., actions put in place by stakeholders to achieve intermediate targets;
- milestones, i.e., tangible outputs fundamental to achieve the goal;
- timeline, i.e., the temporal occurrence of activities.
- → all demands have been covered by the PV production and an electrical energy surplus occurs.
- → only a part of the total demand has been covered by the PV production and, consequently, additional electrical supply is needed to satisfy the remaining demand.
2.2. Linearization Technique
3. Case Study
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Indices and sets | |
Member of the REC | |
Time-step | |
Year | |
Subsets | |
Distributed members | |
Time-step for storage | |
Parameters | |
Unit investment cost for storage | |
AED | Annual energy demand [kWh/y] |
Continuous variables | |
Binary variables | |
, | |
, |
References
- Directive (EU) 2018/2001 of the European Parliament and of the Council on the Promotion of the Use of Energy from Renewable Sources. Off. J. Eur. Union 2018, OJ L 328, 82–209.
- Decreto Milleproroghe 2019, Legislative Decree 162/19, Article 42-bis. Available online: https://www.gazzettaufficiale.it/eli/id/2020/02/29/20A01353/sg (accessed on 1 March 2023).
- Law 8/2020, Italian Official Gazette on 29 February 2020. Available online: https://www.gazzettaufficiale.it/eli/id/2020/02/29/20G00021/sg (accessed on 1 March 2023).
- Delibera 27 December 2022, 727/2022/R/eel 328727, ARERA. Available online: https://www.arera.it/it/docs/22/727-22.htm (accessed on 1 March 2023).
- Ministerial Decree of the 16 September 2020, Official Gazette of the Italian Republic. Available online: https://www.gazzettaufficiale.it/eli/id/2020/11/16/20A06224/sg (accessed on 1 March 2023).
- Italian Recovery and Resilience Plan (PNRR). Available online: https://www.italiadomani.gov.it/it/home.html (accessed on 1 March 2023).
- Legislative Decree 199/2021, Official Gazette of the Italian Republic. Available online: https://www.gazzettaufficiale.it/eli/id/2021/11/30/21G00214/sg (accessed on 1 March 2023).
- GSE, Regole tecniche per l’accesso al servizio di valorizzazione e incentivazione dell’energia elettrica condivisa, 4 April 2022. Available online: https://www.gse.it/documenti_site/Documenti%20GSE/Servizi%20per%20te/AUTOCONSUMO/Gruppi%20di%20autoconsumatori%20e%20comunita%20di%20energia%20rinnovabile/Regole%20e%20procedure/Regole%20Tecniche%20per%20accesso%20al%20servizio%20di%20valorizzazione%20e%20incentivazione%20energia%20elettrica%20condivisa.pdf (accessed on 1 March 2023).
- Istituto Nazionale di Statistica (ISTAT). Available online: https://www.istat.it/en/archivio/poverty (accessed on 1 March 2023).
- Cruz-De-Jesús, E.; Martínez-Ramos, J.L.; Marano-Marcolini, A. Optimal Scheduling of Controllable Resources in Energy Communities: An Overview of the Optimization Approaches. Energies 2022, 16, 101. [Google Scholar] [CrossRef]
- Fichera, A.; Volpe, R.; Frasca, M. Assessment of the Energy Distribution in Urban Areas by Using the Framework of Complex Network Theory. Int. J. Heat Technol. 2016, 34, S430–S434. [Google Scholar] [CrossRef]
- Fichera, A.; Frasca, M.; Volpe, R. On Energy Distribution in Cities: A Model Based on Complex Networks. Int. J. Heat Technol. 2016, 34, 611–615. [Google Scholar] [CrossRef]
- Stentati, M.; Paoletti, S.; Vicino, A. Optimization of energy communities in the Italian incentive system. In Proceedings of the 2022 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe), Novi Sad, Serbia, 10–12 October 2022; pp. 1–5. [Google Scholar] [CrossRef]
- Cielo, A.; Margiaria, P.; Lazzeroni, P.; Mariuzzo, I.; Repetto, M. Renewable Energy Communities business models under the 2020 Italian regulation. J. Clean. Prod. 2021, 316, 128217. [Google Scholar] [CrossRef]
- Cosic, A.; Stadler, M.; Mansoor, M.; Zellinger, M. Mixed-integer linear programming based optimization strategies for renewable energy communities. Energy 2021, 237, 121559. [Google Scholar] [CrossRef]
- Jasiński, J.; Kozakiewicz, M.; Sołtysik, M. The Effectiveness of Energy Cooperatives Operating on the Capacity Market. Energies 2021, 14, 3226. [Google Scholar] [CrossRef]
- Zatti, M.; Moncecchi, M.; Gabba, M.; Chiesa, A.; Bovera, F.; Merlo, M. Energy Communities Design Optimization in the Italian Framework. Appl. Sci. 2021, 11, 5218. [Google Scholar] [CrossRef]
- Mucha-Kuś, K.; Sołtysik, M.; Zamasz, K.; Szczepańska-Woszczyna, K. Coopetitive Nature of Energy Communities—The Energy Transition Context. Energies 2021, 14, 931. [Google Scholar] [CrossRef]
- Moncecchi, M.; Meneghello, S.; Merlo, M. Energy Sharing in Renewable Energy Communities: The Italian Case. In Proceedings of the 2020 55th International Universities Power Engineering Conference (UPEC), Turin, Italy, 1–4 September 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Moncecchi, M.; Meneghello, S.; Merlo, M. A Game Theoretic Approach for Energy Sharing in the Italian Renewable Energy Communities. Appl. Sci. 2020, 10, 8166. [Google Scholar] [CrossRef]
- Viti, S.; Lanzini, A.; Minuto, F.D.; Caldera, M.; Borchiellini, R. Techno-economic comparison of buildings acting as Single-Self Consumers or as energy community through multiple economic scenarios. Sustain. Cities Soc. 2020, 61, 102342. [Google Scholar] [CrossRef]
- Trevisan, R.; Ghiani, E.; Ruggeri, S.; Mocci, S.; Pisano, G.; Pilo, F. Optimal sizing of PV and Storage for a Port Renewable Energy Community. In Proceedings of the 2022 2nd International Conference on Energy Transition in the Mediterranean Area (SyNERGY MED), Thessaloniki, Greece, 17–19 October 2022; pp. 1–5. [Google Scholar] [CrossRef]
- Jasiński, J.; Kozakiewicz, M.; Sołtysik, M. Determinants of Energy Cooperatives’ Development in Rural Areas—Evidence from Poland. Energies 2021, 14, 319. [Google Scholar] [CrossRef]
- Fichera, A.; Pluchino, A.; Volpe, R. Modelling energy distribution in residential areas: A case study including energy storage systems in catania, Southern Italy. Energies 2020, 13, 3715. [Google Scholar] [CrossRef]
- Fichera, A.; Fortuna, L.; Frasca, M.; Volpe, R. Integration of complex networks for urban energy mapping. Int. J. Heat Technol. 2015, 33, 181–184. [Google Scholar] [CrossRef]
- Aranzabal, I.; Gomez-Cornejo, J.; López, I.; Zubiria, A.; Mazón, J.; Feijoo-Arostegui, A.; Gaztañaga, H. Optimal Management of an Energy Community with PV and Battery-Energy-Storage Systems. Energies 2023, 16, 789. [Google Scholar] [CrossRef]
- Bachar, R.K.; Bhuniya, S.; Ghosh, S.K.; Sarkar, B. Controllable Energy Consumption in a Sustainable Smart Manufacturing Model Considering Superior Service, Flexible Demand, and Partial Outsourcing. Mathematics 2022, 10, 4517. [Google Scholar] [CrossRef]
- Guchhait, R.; Sarkar, B. Increasing Growth of Renewable Energy: A State of Art. Energies 2023, 16, 2665. [Google Scholar] [CrossRef]
- Mishra, M.; Ghosh, S.K.; Sarkar, B. Maintaining energy efficiencies and reducing carbon emissions under a sustainable supply chain management. AIMS Environ. Sci. 2022, 9, 603–635. [Google Scholar] [CrossRef]
- Mussadiq, U.; Ahmed, S.; Sajid, M.; Elkamchouch, D.H.; Hussain, L.; Gaddah, A.; Al-Wesabi, F.N.; Hilal, A.M. The intelligent modelling and optimization of an economic and ecosystem-friendly model for grid connected prosumer community. PLoS ONE 2023, 18, e0276510. [Google Scholar] [CrossRef]
- Lazdins, R.; Mutule, A. Scenario simulation of a small-scale energy community management. In Proceedings of the 2022 IEEE 63th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON), Riga, Latvia, 10–12 October 2022; pp. 1–5. [Google Scholar] [CrossRef]
- Mutani, G.; Todeschi, V.; Tartaglia, A.; Nuvoli, G. Energy Communities in Piedmont Region (IT). The case study in Pinerolo territory. In Proceedings of the 2018 IEEE International Telecommunications Energy Conference (INTELEC), Turino, Italy, 7–11 October 2018; pp. 1–8. [Google Scholar] [CrossRef]
- Ghiani, E.; Trevisan, R.; Rosetti, G.L.; Olivero, S.; Barbero, L. Energetic and Economic Performances of the Energy Community of Magliano Alpi after One Year of Piloting. Energies 2022, 15, 7439. [Google Scholar] [CrossRef]
- Di Silvestre, M.L.; Ippolito, M.G.; Sanseverino, E.R.; Sciumè, G.; Vasile, A. Energy self-consumers and renewable energy communities in Italy: New actors of the electric power systems. Renew. Sustain. Energy Rev. 2021, 151, 111565. [Google Scholar] [CrossRef]
- Aittahar, S.; de Villena, M.M.; Derval, G.; Castronovo, M.; Boukas, I.; Gemine, Q.; Ernst, D. Optimal control of renewable energy communities with controllable assets. Front. Energy Res. 2023, 11, 21. [Google Scholar] [CrossRef]
- Bianchi, F.; Bosio, B.; Conte, F.; Massucco, S.; Mosaico, G.; Natrella, G.; Saviozzi, M. Modelling and optimal management of renewable energy communities using reversible solid oxide cells. Appl. Energy 2023, 334, 120657. [Google Scholar] [CrossRef]
- Lowitzsch, J.; Hoicka, C.E.; van Tulder, F.J. Renewable energy communities under the 2019 European Clean Energy Package—Governance model for the energy clusters of the future? Renew. Sustain. Energy Rev. 2020, 122, 109489. [Google Scholar] [CrossRef]
- Zulianello, M.; Angelucci, V.; Moneta, D. Energy Community and Collective Self Consumption in Italy. In Proceedings of the 2020 55th International Universities Power Engineering Conference (UPEC), Turin, Italy, 1–4 September 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Lazzeroni, P.; Mariuzzo, I.; Quercio, M.; Repetto, M. Economic, Energy, and Environmental Analysis of PV with Battery Storage for Italian Households. Electronics 2021, 10, 146. [Google Scholar] [CrossRef]
- Lazzeroni, P.; Olivero, S.; Repetto, M. Economic perspective for PV under new Italian regulatory framework. Renew. Sustain. Energy Rev. 2017, 71, 283–295. [Google Scholar] [CrossRef]
- Lazzeroni, P.; Olivero, S.; FStirano Repetto, M. Impact of PV penetration in a distribution grid: A Middle-East study case. In Proceedings of the 2015 IEEE 1st International Forum on Research and Technologies for Society and Industry Leveraging a Better Tomorrow (RTSI), Turin, Italy, 16–18 September 2015; pp. 353–358. [Google Scholar] [CrossRef]
- Solar Irradiance Data (SolarGIS). Available online: https://solargis.com/ (accessed on 1 March 2023).
- NREL’s PVWatts Calculator. Available online: https://pvwatts.nrel.gov/ (accessed on 1 March 2023).
- Asghari, M.; Fathollahi-Fard, A.M.; Al-E-Hashem, S.M.J.M.; Dulebenets, M.A. Transformation and Linearization Techniques in Optimization: A State-of-the-Art Survey. Mathematics 2022, 10, 283. [Google Scholar] [CrossRef]
- Italian National Institute of Statistics (ISTAT). Available online: https://www.istat.it/ (accessed on 1 March 2023).
- Cutore, E.; Volpe, R.; Sgroi, R.; Fichera, A. Energy management and sustainability assessment of renewable energy communities: The Italian context. Energy Convers. Manag. 2023, 278, 116713. [Google Scholar] [CrossRef]
- GSE, Servizio Di Ritiro Dedicato. Available online: https://www.gse.it/servizi-per-te/fotovoltaico/ritiro-dedicato/come-accedere (accessed on 1 March 2023).
- GSE, Energy Communities Simulator. Available online: https://www.autoconsumo.gse.it/simulatore/input-base (accessed on 1 March 2023).
- Datasheet, Punto Energia Italia. Available online: https://www.puntoenergiashop.it/it/batterie/batterie-al-litio/weco/ (accessed on 1 March 2023).
- European Environment Agency (EEA). Available online: https://www.eea.europa.eu/ims/greenhouse-gas-emission-intensity-of-1 (accessed on 1 March 2023).
- Italy Electricity Prices, ARERA. Available online: https://www.arera.it/it/dati/eep35.htm (accessed on 1 March 2023).
Author(s) | Roadmap | Modelling Approach | Monitoring Phase | Technologies | Italian Context | ||
---|---|---|---|---|---|---|---|
PV | Batteries | Others | |||||
Stentati M. et al. [13] | MILP | x | x | x | |||
Cielo A. et al. [14] | MILP | x | x | x | |||
Cosic A. et al. [15] | MILP | x | x | ||||
Zatti M. et al. [17] | MILP | x | x | x | x | ||
Moncecchi M. et al. [19] | LP | x | x | x | |||
Moncecchi M. et al. [20] | Genetic algorithm | x | x | x | |||
Viti S. et al. [21] | Simulation | x | x | ||||
Trevisan R. et al. [22] | Simulation | x | x | x | |||
Mussadiq U. et al. [30] | Grid search algorithm-based | x | x | ||||
Lazdins R. et al. [31] | NA | x | x | ||||
Mutani G. et al. [32] | NA | x | x | x | |||
Aittahar S. et al. [35] | Open-loop control problem | x | x | ||||
Bianchi F.R. et al. [36] | Stochastic model predictive control | x | x | x | |||
This study | x | MILP | x | x | x | x |
Bulding_Id | Facing-South Surface Area [m2] | Maximum PV Capacity [kWn] | Maximum Battery Capacity [kWh] | Annual Electricity Consumption [kWh] |
---|---|---|---|---|
m0 | - | 50 | - | - |
m1 | 31.00 | 3.00 | 2 | 1139.71 |
m2 | 32.00 | 3.00 | 2 | 1728.25 |
m3 | 28.00 | 3.00 | 2 | 1298.30 |
m4 | 31.00 | 3.00 | 2 | 2548.63 |
m5 | 30.00 | 3.00 | 2 | 3419.14 |
m6 | 28.00 | 3.00 | 2 | 1367.65 |
m7 | 22.00 | 2.00 | 1 | 26,952.03 |
m8 | 23.00 | 2.00 | 1 | 26,952.03 |
m9 | 20.00 | 2.00 | 1 | 27,032.58 |
m10 | 21.00 | 2.00 | 1 | 27,032.58 |
m11 | 22.00 | 2.00 | 1 | 26,935.92 |
m12 | 20.00 | 2.00 | 1 | 26,935.92 |
m13 | 11.00 | 1.00 | 1 | 26,919.81 |
m14 | 9.00 | 1.00 | 1 | 26,919.81 |
m15 | 240.00 | 24.00 | 16 | 35,046.24 |
m16 | 238.00 | 24.00 | 16 | 35,046.24 |
m17 | 332.00 | 33.00 | 22 | 24,461.42 |
Total | 1138 | 113 | 74 | 321,736.3 |
Description (Symbol) | Value | UoM | Ref. |
---|---|---|---|
PV capex | 1200 | €/kWn | [48] |
PV opex | 2% capex | (€/kWn)/yr | [19] |
PV efficiency | 14% | - | [43] |
1000 | €/kWh | [48] | |
1% capex | (€/kWh)/yr | [19] | |
Depth of Discharge (DoD) | 10% | - | [49] |
Depth of Charge (DoC) | 100% | - | [15] |
95% | - | [15] | |
95% | - | [15] | |
2% | - | [15] | |
Energy to capacity ratio (ecr) | 34% | - | [15] |
Valorization of shared electricity (val) | 0.00848 | €/kWh | [8] |
Incentivization of shared electricity (inc) | 0.110 | €/kWh | [8] |
Emission factor power grid (efg) | 0.247 | kgCO2/kWh | [50] |
Discount rate (i) | 4% | - | [19] |
Investment life (y) | 20 | yr | [8] |
Space occupation of PV | 10 | m2/kWn | [49] |
Data | Value | UoM | |
---|---|---|---|
NPV without REC | −2,317,422.40 | ||
Scenario #1 | Scenario #2 | ||
NPV with REC | −862,407.24 | −399,208.23 | |
Initial investment PV | 195,600 | 255,600 | |
Initial investment BESS | 0 | 0 | |
Annual cost | 135,515.22 | 135,514.50 | |
Annual revenues | 90,695.50 | 125,863.7 | |
Grid-related emissions CO2 | 49,093.2 | 47,824.5 | |
Self-consumption ratio (SCR) | 27.16% | 19.51% | - |
Self-sufficiency ratio (SSR) | 20.52% | 20.52% | - |
Energy shared ratio (VSSR) | 17.28% | 19.29% | - |
Total self-consumption (TSCR) | 37.81% | 39.82% | - |
CO2, avoided | 38.2% | 39.9% | - |
Energy poverty help (EPHI) | 51 | 67 | #families |
Scenario #1.1 | Scenario #1.2 | Scenario #1.3 | Scenario #1.4 | |
---|---|---|---|---|
NPV | −€1,366,426.93 | −€358,387.55 | −€549,444.73 | −€1,175,369.75 |
Annual costs | €169,393.46 | €101,637.38 | €135,515.42 | €135,515.42 |
Annual revenues | €90,695.50 | €90,695.50 | €111,731.50 | €69,659.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cutore, E.; Fichera, A.; Volpe, R. A Roadmap for the Design, Operation and Monitoring of Renewable Energy Communities in Italy. Sustainability 2023, 15, 8118. https://doi.org/10.3390/su15108118
Cutore E, Fichera A, Volpe R. A Roadmap for the Design, Operation and Monitoring of Renewable Energy Communities in Italy. Sustainability. 2023; 15(10):8118. https://doi.org/10.3390/su15108118
Chicago/Turabian StyleCutore, Emanuele, Alberto Fichera, and Rosaria Volpe. 2023. "A Roadmap for the Design, Operation and Monitoring of Renewable Energy Communities in Italy" Sustainability 15, no. 10: 8118. https://doi.org/10.3390/su15108118
APA StyleCutore, E., Fichera, A., & Volpe, R. (2023). A Roadmap for the Design, Operation and Monitoring of Renewable Energy Communities in Italy. Sustainability, 15(10), 8118. https://doi.org/10.3390/su15108118