WAMS-Based Fuzzy Logic PID Secondary Voltage Control of the Egyptian Grid
Abstract
:1. Introduction
- i.
- Optimal WAMS configuration optimization problem for a real power grid considering geographical regions for secondary voltage control;
- ii.
- Optimal selection of the pilot bus in each region as a multi-objective optimization problem;
- iii.
- Design of a secondary voltage fuzzy logic PID control system, and then applied to the real Egyptian grid 500/220 kV model;
- iv.
- Application of tertiary voltage control in the Egyptian grid to achieve the maximum reactive power reserve in different operation conditions.
2. Egyptian Power Grid
3. Secondary Voltage Control and Pilot Bus Selection
3.1. Secondary Voltage Control Concept
3.2. Pilot Buses Selection
3.3. Secondary Voltage Control Strategy
4. Wide Area Measurement System (WAMS)
- i.
- The optimal PMU placement was carried out in the modeled grid;
- ii.
- A complete optimal WAMS configuration was designed for the grid in a normal case, including national and regional PDCs;
- iii.
- A complete optimal WAMS configuration was designed for the grid to achieve (N-1)/(N-2) contingency (outage of PMU, transmission line, cable, or transformer) according to the Egyptian power grid code.
4.1. Optimization for PMU Placement
4.2. Optimization for PDC Placement
5. Tertiary Voltage Control (TerVC)
6. Optimization and Simulation Results
6.1. Optimal WAMS Configuration Results
6.2. Results of Pilot Bus Selection
6.3. TerVC and SecVC Results
6.3.1. Case 1: Line Outage
6.3.2. Case 2: Generation Outage
6.3.3. Case 3: Load Increase Disturbance Test in Cairo Region
6.4. Voltage Deviation Index
7. Discussion
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fayek, H.H.; Abdalla, O.H. Operation of the Egyptian Power Grid with Maximum Penetration Level of Renewable Energies Using Corona Virus Optimization Algorithm. Smart Cities 2022, 5, 34–53. [Google Scholar] [CrossRef]
- Abdalla, O.H.; Fayek, H.H.; Ghany, A.M.A. Secondary Voltage Control Application in a Smart Grid with 100% Renewables. Inventions 2020, 5, 37. [Google Scholar] [CrossRef]
- Simpson-Porco, J.W.; Dörfler, F.; Bullo, F. Voltage collapse in complex power grids. Nat. Commun. 2016, 7, 10790. [Google Scholar] [CrossRef]
- Guo, Q.; Sun, H.; Zhang, M.; Tong, J.; Zhang, B.; Wang, B. Optimal voltage control of PJM smart transmission grid: Study, implementation, and evaluation. IEEE Trans. Smart Grid 2013, 4, 1665–1674. [Google Scholar] [CrossRef]
- Morattab, A.; Akhrif, O.; Saad, M. Decentralized Coordinated Secondary Voltage Control of Multi-Area Power Grids Using Model Predictive Control. Proc. IET Gener. Transm. Distrib. 2017, 11, 4546–4555. [Google Scholar] [CrossRef]
- Lagonotte, P.; Sabonnadiere, J.C.; Léost, J.Y.; Paul, J.P. Structural Analysis of the Electrical System: Application to the Secondary Voltage Control in France. IEEE Trans. Power Syst. 1989, 4, 479–484. [Google Scholar] [CrossRef]
- Abdalla, O.H.; Fayek, H.H.; Ghany, A.G.M.A. Secondary and Tertiary Voltage Control of a Multi-Region Power System. Electricity 2020, 1, 37–59. [Google Scholar] [CrossRef]
- Corsi, S.; Chinnici, R.; Lena, R.; Vannelli, G.; Bazzi, U.; Cima, E. General application to the main Enel’s power plants of an advanced voltage and reactive power regulator for HV network support. In Proceedings of the CIGRE Conference, Struga, North Macedonia, 23–25 September 1998. [Google Scholar]
- Su, H.-Y.; Liu, T.-Y. Enhanced Worst-Case Design for Robust Secondary Voltage Control Using Maximum Likelihood Approach. IEEE Trans. Power Syst. 2018, 33, 7324–7326. [Google Scholar] [CrossRef]
- Su, H.-Y.; Kang, F.-M.; Liu, C.-W. Transmission Grid Secondary Voltage Control Method Using PMU Data. IEEE Trans. Smart Grid 2018, 9, 2908–2917. [Google Scholar] [CrossRef]
- Daher, N.A.; Mougharbel, I.; Saad, M.; Kanaan, H.Y.; Asber, D. Pilot Buses Selection Based on Reduced Jacobian Matrix. In Proceedings of the 2015 IEEE International Conference on Smart Energy Grid Engineering (SEGE), Oshawa, ON, Canada, 17–19 August 2015; pp. 1–7. [Google Scholar] [CrossRef]
- Su, H.-Y.; Hong, H.-H. A Stochastic Multi-Objective Approach to Pilot Bus Selection for Secondary Voltage Regulation. IEEE Trans. Power Syst. 2020, 35, 3262–3265. [Google Scholar] [CrossRef]
- Mohammadi, M.B.; Hooshmand, R.-A.; Fesharaki, F.H. A new approach for optimal placement of PMUs and their required communication infrastructure in order to minimize the cost of the WAMS. IEEE Trans. Smart Grid 2016, 7, 84–93. [Google Scholar] [CrossRef]
- Pierrou, G.; Wang, X. An Online Network Model-Free Wide-Area Voltage Control Method Using PMUs. IEEE Trans. Power Syst. 2021, 36, 4672–4682. [Google Scholar] [CrossRef]
- Jeong, B.-C.; Kwon, D.-H.; Park, J.-Y.; Kim, Y.-J.; Gomis-Bellmunt, O. Optimal Secondary Control to Suppress Voltage Fluctuations in an HVDC-Linked Wind Farm Grid. IEEE Trans. Power Syst. 2022, 37, 2563–2577. [Google Scholar] [CrossRef]
- Martinez, D.A.; Mojica-Nava, E.; Al-Sumaiti, A.S.; Rivera, S. A Distortion-Based Potential Game for Secondary Voltage Control in Micro-Grids. IEEE Access 2020, 8, 110611–110622. [Google Scholar] [CrossRef]
- Ma, Z.; Wang, Z.; Guo, Y.; Yuan, Y.; Chen, H. Nonlinear Multiple Models Adaptive Secondary Voltage Control of Microgrids. IEEE Trans. Smart Grid 2021, 12, 227–238. [Google Scholar] [CrossRef]
- Ge, P.; Zhu, Y.; Green, T.C.; Teng, F. Resilient Secondary Voltage Control of Islanded Microgrids: An ESKBF-Based Distributed Fast Terminal Sliding Mode Control Approach. IEEE Trans. Power Syst. 2021, 36, 1059–1070. [Google Scholar] [CrossRef]
- Habibi, S.I.; Bidram, A. Unfalsified Switching Adaptive Voltage Control for Islanded Microgrids. IEEE Trans. Power Syst. 2022, 37, 3394–3407. [Google Scholar] [CrossRef]
- Xu, Y.; Sun, H.; Gu, W.; Xu, Y.; Li, Z. Optimal Distributed Control for Secondary Frequency and Voltage Regulation in an Islanded Microgrid. IEEE Trans. Ind. Inform. 2019, 15, 225–235. [Google Scholar] [CrossRef]
- Abdalla, O.H.; Ghany, A.M.A.; Fayek, H.H. Coordinated PID secondary voltage control of a power system based on genetic algorithm. In Proceedings of the 2016 Eighteenth International Middle East Power Systems Conference (MEPCON), Cairo, Egypt, 27–29 December 2016; pp. 214–219. [Google Scholar]
- Yin, L.; Luo, S.; Wang, Y.; Gao, F.; Yu, J. Coordinated Complex-Valued Encoding Dragonfly Algorithm and Artificial Emotional Reinforcement Learning for Coordinated Secondary Voltage Control and Automatic Voltage Regulation in Multi-Generator Power Systems. IEEE Access 2020, 8, 180520–180533. [Google Scholar] [CrossRef]
- Khan, I.; Xu, Y.; Kar, S.; Chow, M.-Y.; Bhattacharjee, V. Compressive Sensing and Morphology Singular Entropy-Based Real-Time Secondary Voltage Control of Multiarea Power Systems. IEEE Trans. Ind. Inform. 2019, 15, 3796–3807. [Google Scholar] [CrossRef]
- Abdalla, O.H.; Fayek, H.H.; Ghany, A.A. Secondary Voltage Control of a Multi-region Power System. In Proceedings of the 2019 21st International Middle East Power Systems Conference (MEPCON), 17–19 December 2019; pp. 1223–1229. [Google Scholar] [CrossRef]
- Abdalla, O.H.; Ghany, A.A.; Fayek, H. Development of a digital model of the Egyptian power grid for steady-state and transient studies. In Proceedings of the 11th International Conference on Electrical Engineering (ICEENG-11) Paper No 83-EPS, Cairo, Egypt, 3–5 April 2018. [Google Scholar] [CrossRef]
- Global Energy Institute, National Energy Grid Egypt. Available online: http://www.geni.org/globalenergy/library/national_energy_grid/egypt/egyptiannationalelectricitygrid.shtml (accessed on 3 February 2022).
- Conejo, A.; Gbmez, T.; de la Fuente, J.I. Pilot-bus selection for secondary voltage control. Eur. Trans. Electr. Power 1993, 3, 359–366. [Google Scholar] [CrossRef]
- Conejo, A.; Aguilar, M.J. Secondary Voltage Control: Nonlinear Selection of Pilot Buses, Design of an Optimal Control Law, and Simulation Results. IEE Proc. Gener. Transm. Distrib. 1998, 145, 77–81. [Google Scholar] [CrossRef]
- Cui, W.; Rao, Y.; Li, C.; Liu, Y.; Ren, P.; Gao, Z.; Wang, H. Voltage Control Partitioning of Wind Power Integration System Based on Pilot-Bus Control Space. In Proceedings of the 2019 IEEE PES Innovative Smart Grid Technologies Asia (ISGT Asia), Changdu, China, 21–24 May 2019; pp. 1919–1923. [Google Scholar] [CrossRef]
- Yang, Y.; Sun, Y.; Wang, Q.; Liu, F.; Zhu, L. Fast Power Grid Partition for Voltage Control with Balanced-Depth-Based Community Detection Algorithm. IEEE Trans. Power Syst. 2022, 37, 1612–1622. [Google Scholar] [CrossRef]
- Fayek, H.H.; Davis, K.R.; Ghany, A.A.; Abdalla, O.H. Configuration of WAMS and Pilot Bus Selection for Secondary Voltage Control in the Egyptian Grid. In Proceedings of the 2018 North American Power Symposium (NAPS), Fargo, North Dakota, 9–11 September 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Corsi, S. Voltage Control and Protection in Electrical Power Systems: From System Components to Wide-Area Control; Springer: New York, NY, USA, 2015. [Google Scholar]
- Agrawal, V.K.; Ararwal, P.K. Challenges faced and lessons learnt in implementation of first synchrophasors project in the Northern India. In Proceedings of the 3rd International Exhibition & Conference, New Delhi, India, 19–20 April 2011. [Google Scholar]
- Al-Hinai, A.; Karami-Horestani, A.; Alhelou, H.H. A multi-objective optimal PMU placement considering fault-location topological observability of lengthy lines: A case study in OMAN grid. Energy Rep. 2023, 9, 1113–1123. [Google Scholar] [CrossRef]
- Arya, L.; Singh, P.; Titare, L. Anticipatory reactive power reserve maximization using differential evolution. Int. J. Electr. Power Energy Syst. 2012, 35, 66–73. [Google Scholar] [CrossRef]
- Liu, Y.; Xia, W.B.; Zheng, S.; Wang, K.; Wu, P.; Fang, S. A semi-definite programming approach for solving optimal reactive power reserve dispatch. In Proceedings of the 2017 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), Bangalore, India, 8–10 November 2017; pp. 1–6. [Google Scholar]
- EETC. “Transmission Grid Code”, Egyptian Electricity Transmission Company. Available online: https://www.eetc.net.eg/grid_code.html (accessed on 2 January 2022).
- Fayek, H.H.; Abdalla, O.H. Optimal Settings of BTB-VSC in Interconnected Power System Using TFWO. In Proceedings of the 2021 IEEE 30th International Symposium on Industrial Electronics (ISIE), Kyoto, Japan, 20–23 July 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Pal, A.; Vullikanti, A.K.S.; Ravi, S.S. A PMU placement scheme considering realistic costs and modern trends in relaying. IEEE Trans. Power Syst. 2016, 32, 552–561. [Google Scholar] [CrossRef]
- Arpanahi, M.K.; Alhelou, H.H.; Siano, P. A Novel Multiobjective OPP for Power System Small Signal Stability Assessment Considering WAMS Uncertainties. IEEE Trans. Ind. Inform. 2020, 16, 3039–3050. [Google Scholar] [CrossRef]
Method | Condition | Number of PMUs | Location of PDC | Number of Switches | Total Cost (USD) | Number of PMUs not Sending Data to the Right Regional Center |
---|---|---|---|---|---|---|
Proposed method | Base case | 51 | South 220 | 98 | 15.7 million | 0 |
(N-1) case | 103 | Nubaria 500 | 160 | 25.7 million | 0 | |
Method in [14] | Base case | 48 | South 220 | 96 | 14.9 million | 3 |
(N-1) case | 98 | Nubaria 500 | 154 | 24.6 million | 5 |
Rank of the Contingency | Transmission Line |
---|---|
1 | Line connecting High Dam bus and Nagaa Hammady bus |
2 | Line connecting Zaafarana 2 bus and Ras Gharib bus |
3 | Line connecting Ain Sokhna bus and Zaafarana bus |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdalla, O.H.; Fayek, H.H. WAMS-Based Fuzzy Logic PID Secondary Voltage Control of the Egyptian Grid. Sustainability 2023, 15, 3338. https://doi.org/10.3390/su15043338
Abdalla OH, Fayek HH. WAMS-Based Fuzzy Logic PID Secondary Voltage Control of the Egyptian Grid. Sustainability. 2023; 15(4):3338. https://doi.org/10.3390/su15043338
Chicago/Turabian StyleAbdalla, Omar H., and Hady H. Fayek. 2023. "WAMS-Based Fuzzy Logic PID Secondary Voltage Control of the Egyptian Grid" Sustainability 15, no. 4: 3338. https://doi.org/10.3390/su15043338
APA StyleAbdalla, O. H., & Fayek, H. H. (2023). WAMS-Based Fuzzy Logic PID Secondary Voltage Control of the Egyptian Grid. Sustainability, 15(4), 3338. https://doi.org/10.3390/su15043338