Design, Modeling, and ModelFree Control of Permanent MagnetAssisted Synchronous Reluctance Motor for eVehicle Applications
Abstract
:1. Introduction
2. ModelFree Control and Control Law (Brief Introduction)
2.1. ModelFree Control
2.2. Control Law
2.3. Controller Design
3. Applying ModelFree Control to PMaSynRM Drive
3.1. Mathematic Model of PMaSynRM/Inverter
3.2. ModelFree of Current and Speed Control Development
3.3. Trajectory Planning
4. Simulation and Experimental Validation of the ModelFree Control Applied to PMaSynRM
4.1. Experimental Setup
4.2. Simulations
4.3. Experimental Validation of PMaSynRM Drive Based on ModelFree Control
5. Comparison of Traditional FOC with PI Controller, MBC, and ModelFree Control
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
 Sadeghi, Z.; Shahparasti, M.; Rajaei, A.; Laaksonen, H. ThreeLevel Reduced Switch AC/DC/AC Power Conversion System for High Voltage Electric Vehicles. Sustainability 2022, 14, 1620. [Google Scholar] [CrossRef]
 Krings, A.; Monissen, C. Review and Trends in Electric Traction Motors for Battery Electric and Hybrid Vehicles. In Proceedings of the 2020 International Conference on Electrical Machines (ICEM), Gothenburg, Sweden, 23–26 August 2020. [Google Scholar] [CrossRef]
 Husain, I.; Ozpineci, B.; Islam, M.; Gurpinar, E.; Su, G.; Yu, W.; Chowdhury, S.; Xue, L.; Rahman, D.; Sahu, R. Electric Drive Technology Trends, Challenges, and Opportunities for Future Electric Vehicles. Proc. IEEE 2021, 109, 1039–1059. [Google Scholar] [CrossRef]
 Lukic, M.; Giangrande, P.; Hebala, A.; Nuzzo, S.; Galea, M. Review, Challenges, and Future Developments of Electric Taxiing Systems. IEEE Trans. Transp. Electrif. 2019, 5, 1441–1457. [Google Scholar] [CrossRef]
 Rahrovi, B.; Ehsani, M. A Review of the More Electric Aircraft Power Electronics. In Proceedings of the 2019 IEEE Texas Power and Energy Conference (TPEC), College Station, TX, USA, 7–8 February 2019. [Google Scholar] [CrossRef]
 Noland, J.K.; Leandro, M.; Suul, J.A.; Molinas, M. HighPower Machines and StarterGenerator Topologies for More Electric Aircraft: A Technology Outlook. IEEE Access 2020, 8, 130104–130123. [Google Scholar] [CrossRef]
 Tang, M.; Bifaretti, S.; Pipolo, S.; Formentini, A.; Odhano, S.; Zanchetta, P. A Novel Low Computational Burden DualObserver PhaseLocked Loop with Strong Disturbance Rejection Capability for More Electric Aircraft. IEEE Trans. Ind. Appl. 2021, 57, 3832–3841. [Google Scholar] [CrossRef]
 Ooi, S.; Morimoto, S.; Sanada, M.; Inoue, Y. Performance Evaluation of a HighPowerDensity PMASynRM with Ferrite Magnets. IEEE Trans. Ind. Appl. 2013, 49, 1308–1315. [Google Scholar] [CrossRef]
 Trancho, E.; Ibarra, E.; Arias, A.; Kortabarria, I.; Jurrgens, J.; Marengo, L.; Fricasse, A.; Gragger, J.V. PMAssisted Synchronous Reluctance Machine Flux Weakening Control for EV and HEV Applications. IEEE Trans. Ind. Electron. 2017, 65, 2986–2995. [Google Scholar] [CrossRef] [Green Version]
 Capecchi, E.; Guglielmi, P.; Pastorelli, M.; Vagati, A. Positionsensorless control of the transverselaminated synchronous reluctance motor. IEEE Trans. Ind. Appl. 2001, 37, 1768–1776. [Google Scholar] [CrossRef]
 Niazi, P. Permanent Magnet Assisted Synchronous Reluctance Motor Design and Performance Improvement. Ph.D. Thesis, Texas A & M University, College Station, TX, USA, 2005. [Google Scholar]
 Joo, K.; Kim, I.; Lee, J.; Go, S. Robust Speed Sensorless Control to Estimated Error for PMaSynRM. IEEE Trans. Magn. 2017, 53, 1–4. [Google Scholar] [CrossRef]
 Sriprang, S.; Poonnoy, N.; Guilbert, D.; NahidMobarakeh, B.; Takorabet, N.; Bizon, N.; Thounthong, P. Design, Modeling, and Differential Flatness Based Control of Permanent MagnetAssisted Synchronous Reluctance Motor for eVehicle Applications. Sustainability 2021, 13, 9502. [Google Scholar] [CrossRef]
 Wang, Y.; Li, H.; Liu, R.; Yang, L.; Wang, X. Modulated ModelFree Predictive Control with Minimum Switching Losses for PMSM Drive System. IEEE Access 2020, 8, 20942–20953. [Google Scholar] [CrossRef]
 Lin, C.K.; Agustin, C.A.; Yu, J.T.; Cheng, Y.S.; Chen, F.M.; Lai, Y.S. A Modulated ModelFree Predictive Current Control for FourSwitch ThreePhase InverterFed SynRM Drive Systems. IEEE Access 2021, 9, 162984–162995. [Google Scholar] [CrossRef]
 Lyu, Z.; Wu, X.; Gao, J.; Tan, G. An Improved FiniteControlSet Model Predictive Current Control for IPMSM under Model Parameter Mismatches. Energies 2021, 14, 6342. [Google Scholar] [CrossRef]
 Hashjin, S.A.; Pang, S.; Miliani, E.H.; AitAbderrahim, K.; NahidMobarakeh, B. DataDriven ModelFree Adaptive Current Control of a Wound Rotor Synchronous Machine Drive System. IEEE Trans. Transp. Electrif. 2020, 6, 1146–1156. [Google Scholar] [CrossRef]
 Precup, R.E.; Radac, M.B.; Roman, R.C.; Petriu, E.M. Modelfree sliding mode control of nonlinear systems: Algorithms and experiments. Inf. Sci. 2017, 381, 176–192. [Google Scholar] [CrossRef]
 Sriprang, S.; NahidMobarakeh, B.; Takorabet, N.; Pierfederici, S.; Mungporn, P.; Thounthong, P.; Bizon, N.; Kuman, P.; Shah, Z. Model FreeBased Torque Control of Permanent Magnet Synchronous Motor Drives. In Proceedings of the 2019 Research, Invention, and Innovation Congress (RI2C), Bangkok, Thailand, 11–13 December 2019. [Google Scholar] [CrossRef]
 Fliess, M.; Join, C. Modelfree control. Int. J. Control 2013, 86, 2228–2252. [Google Scholar] [CrossRef] [Green Version]
 Fliess, M.; Join, C. Stability margins and modelfree control: A first look. In Proceedings of the 2014 European Control Conference (ECC), Strasbourg, France, 24–27 June 2014. [Google Scholar] [CrossRef] [Green Version]
 Battiston, A.; Miliani, E.H.; Martin, J.P.; NahidMobarakeh, B.; Pierfederici, S.; MeibodyTabar, F. A Control Strategy for Electric Traction Systems Using a PMMotor Fed by a Bidirectional $Z$Source Inverter. IEEE Trans. Veh. Technol. 2014, 63, 4178–4191. [Google Scholar] [CrossRef]
 Thounthong, P.; Sikkabut, S.; Poonnoy, N.; Mungporn, P.; Yodwong, B.; Kumam, P.; Bizon, N.; Pierfederici, S.; Poonnoi, N.; Nahidmobarakeh, B. Nonlinear Differential FlatnessBased Speed/Torque Control with StateObservers of Permanent Magnet Synchronous Motor Drives. IEEE Trans. Ind. Appl. 2018, 54, 2874–2884. [Google Scholar] [CrossRef]
 Fliess, M.; Sira–Ramírez, H. An algebraic framework for linear identification. ESAIM Control Optim. Calc. Var. 2003, 9, 151–168. [Google Scholar] [CrossRef]
 Fliess, M.; SiraRamírez, H. Closedloop Parametric Identification for Continuoustime Linear Systems via New Algebraic Techniques. In Identification of ContinuousTime Models from Sampled Data; Part of the Advances in Industrial Control Book Series (AIC); Springer: London, UK, 2008; pp. 363–391. [Google Scholar] [CrossRef]
 Sriprang, S.; NahidMobarakeh, B.; Takorabet, N.; Pierfederici, S.; Kumam, P.; Bizon, N.; Taghavi, N.; Vahedi, A.; Mungporn, P.; Thounthong, P. Design and control of permanent magnet assisted synchronous reluctance motor with copper loss minimization using MTPA. J. Electr. Eng. 2020, 71, 11–19. [Google Scholar] [CrossRef]
Symbol  Quantity  Value 

P_{rated}  Rated power  1 kW 
n_{rated}  Rated speed  1350 rpm 
T_{rated}  Rated torque  7.07 Nm 
n_{p}  Number of pole pairs  2 
P.F.  Power factor  0.80 
R_{s}  Resistance (motor + inverter)  3.2 Ω 
L_{d}  Nominal daxis inductance  288 mH 
L_{q}  Nominal qaxis inductance  38 mH 
J  Equivalent inertia  0.017 kg m^{2} 
B_{f}  Viscous friction coefficient  0.008 Nm s/rad 
Ψ_{m}  PMs flux linkage  0.138 Wb 
f_{s}  Switching frequency  16 kHz 
V_{dc}  DC bus voltage  400 V 
Symbol  Quantity  Value 

ζ_{1d}  Damping ratio 1  0.7 
ω_{n1d}  Natural frequency 1  3000 Rad s^{−1} 
ζ_{1q}  Damping ratio 1  0.7 pu. 
ω_{n1q}  Natural frequency 1  2000 Rad s^{−1} 
ζ_{2}  Damping ratio 2  0.7 
ω_{n2}  Natural frequency 2  107.1419 Rad s^{−1} 
ζ_{3d}  Damping ratio 3  1 
ω_{n3d}  Natural frequency 3  300 Rad s^{−1} 
ζ_{3q}  Damping ratio 3  1 
ω_{n3q}  Natural frequency 3  200 Rad s^{−1} 
ζ_{4}  Damping ratio 4  1 
ω_{n4}  Natural frequency 4  150 Rad s^{−1} 
T_{emax}  Maximum torque reference  +6 Nm 
T_{emin}  Minimum torque reference  −6 Nm 
Vdc  DC bus voltage  400 V 
f_{s}  Switching frequency  16 kHz 
FOC + PI Controller  Differential FlatnessBased Control  ModelFree Control 




Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. 
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sriprang, S.; Poonnoy, N.; NahidMobarakeh, B.; Takorabet, N.; Bizon, N.; Mungporn, P.; Thounthong, P. Design, Modeling, and ModelFree Control of Permanent MagnetAssisted Synchronous Reluctance Motor for eVehicle Applications. Sustainability 2022, 14, 5423. https://doi.org/10.3390/su14095423
Sriprang S, Poonnoy N, NahidMobarakeh B, Takorabet N, Bizon N, Mungporn P, Thounthong P. Design, Modeling, and ModelFree Control of Permanent MagnetAssisted Synchronous Reluctance Motor for eVehicle Applications. Sustainability. 2022; 14(9):5423. https://doi.org/10.3390/su14095423
Chicago/Turabian StyleSriprang, Songklod, Nitchamon Poonnoy, Babak NahidMobarakeh, Noureddine Takorabet, Nicu Bizon, Pongsiri Mungporn, and Phatiphat Thounthong. 2022. "Design, Modeling, and ModelFree Control of Permanent MagnetAssisted Synchronous Reluctance Motor for eVehicle Applications" Sustainability 14, no. 9: 5423. https://doi.org/10.3390/su14095423