# The Impact of Macroeconomic Sustainability on Exchange Rate: Hybrid Machine-Learning Approach

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

#### 2.1. Materials

#### 2.2. Methods

#### 2.2.1. Learning Automata

#### 2.2.2. Prospect Theory

#### 2.2.3. Fuzzy Logic

#### 2.2.4. Support Vector Regression

## 3. Results

#### 3.1. Empirical Workflow

#### 3.2. Empirical Results

## 4. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Kandil, M.; Berument, H.; Dincer, N.N. The effects of exchange rate fluctuations on economic activity in Turkey. J. Asian Econ.
**2007**, 18, 466–489. [Google Scholar] [CrossRef] [Green Version] - Cehreli, C.; Dursun, I.; Barlas, Y. Speculative Dynamics of Exchange Rates in Turkey: A System Dynamics Approach. Yildiz Soc. Sci. Rev.
**2017**, 3, 103–120. [Google Scholar] - Sharma, H.; Sharma, D.K.; Hota, H.S. A Hybrid Neuro-Fuzzy Model for Foreign Exchange Rate Prediction. Acad. Account. Financ. Stud. J.
**2016**, 20, 1–13. [Google Scholar] - Korol, T. A fuzzy logic model for forecasting exchange rates. Knowl.-Based Syst.
**2014**, 67, 49–60. [Google Scholar] [CrossRef] - Yasir, M.; Durrani, M.; Afzal, S.; Maqsood, M.; Aadil, F.; Mehmood, I.; Rho, S. An Intelligent Event-Sentiment-Based Daily Foreign Exchange Rate Forecasting System. J. Appl. Sci.
**2019**, 9, 2980. [Google Scholar] [CrossRef] [Green Version] - Kara, Y.; Boyacioglu, M.A.; Baykan, Ö.K. Predicting direction of stock price index movement using artificial neural networks and support vector machines: The sample of the Istanbul Stock Exchange. Expert Syst. Appl.
**2011**, 38, 5311–5319. [Google Scholar] [CrossRef] - Chen, H.; Xiao, K.; Sun, J.; Wu, S. A double-layer neural network frame-work for high-frequency forecasting. ACM Trans. Manag. Inf. Syst.
**2017**, 7, 11:2–11:17. [Google Scholar] [CrossRef] - Zhong, X.; Enke, D. Forecasting daily stock market return using dimensionality reduction. Expert Syst. Appl.
**2017**, 67, 126–139. [Google Scholar] [CrossRef] - Bezerra, P.C.S.; Albuquerque, P.H.M. Volatility forecasting via SVR—GARCH with mixture of Gaussian kernels. Comput. Manag. Sci.
**2017**, 14, 179–196. [Google Scholar] [CrossRef] - Henrique, B.M.; Sobreiro, V.A.; Kimura, H. Building direct citation networks. Scientometrics
**2018**, 115, 817–832. [Google Scholar] [CrossRef] - Kumar, M.; Thenmozhi, M. Forecasting stock index returns using ARIMA-SVM, ARIMA-ANN, and ARIMA-random forest hybrid models. Int. J. Bank. Account. Financ.
**2014**, 5, 284–308. [Google Scholar] [CrossRef] - Saraç, T.B.; Karagöz, K. Impact of Short-term Interest Rate on Exchange Rate: The Case of Turkey. Procedia Econ. Financ.
**2016**, 38, 195–202. [Google Scholar] [CrossRef] [Green Version] - Bakhshi, Z.; Ebrahimi, M. The effect of real exchange rate on unemployment. Mark. Branding Res.
**2016**, 3, 4–13. [Google Scholar] [CrossRef] [Green Version] - De Grauwe, P. Exchange Rate Variability and the Slowdown in Growth of International Trade. IMF Staff Pap.
**1988**, 35, 63–84. [Google Scholar] [CrossRef] - Wang, J.J.; Wang, J.Z.; Zhang, Z.G.; Guo, S.P. Stock index forecasting based on a hybrid model. Omega
**2012**, 40, 758–766. [Google Scholar] [CrossRef] - Weng, B.; Ahmed, M.A.; Megahed, F.M. Stock market one-day ahead movement prediction using disparate data sources. Expert Syst. Appl.
**2017**, 79, 153–163. [Google Scholar] [CrossRef] - Oliveira, N.; Cortez, P.; Areal, N. The impact of microblogging data for stock market prediction: Using Twitter to predict returns, volatility, trading volume and survey sentiment indices. Expert Syst. Appl.
**2017**, 73, 125–144. [Google Scholar] [CrossRef] [Green Version] - Bollen, J.; Mao, H.; Zeng, X. Twitter mood predicts the stock market. J. Comput. Sci.
**2011**, 2, 1–8. [Google Scholar] [CrossRef] [Green Version] - Schumaker, R.P.; Chen, H. Textual analysis of stock market prediction using breaking financial news: The AZFin text system. ACM Trans. Inf. Syst.
**2009**, 27, 12. [Google Scholar] [CrossRef] - Kim, K. Financial time series forecasting using support vector machines. Neurocomputing
**2003**, 55, 307–319. [Google Scholar] [CrossRef] - Caporale, G.M.; Helmi, M.H. Islamic banking, credit, and economic growth, Some empirical evidence. Int. J. Financ. Econ.
**2018**, 23, 456–477. [Google Scholar] [CrossRef] - Bahloul, W.; Gupta, R. Impact of macroeconomic news surprises and uncertainty for major economies on returns and volatility of oil futures. Int. Econ.
**2018**, 156, 247–253. [Google Scholar] [CrossRef] - Hachula, M.; Nautz, D. The dynamic impact of macroeconomic news on long-term inflation expectations. Econ. Lett.
**2018**, 165, 39–43. [Google Scholar] [CrossRef] [Green Version] - Mehdian, S.; Nas, T.; Perry, M.J. An examination of investor reaction to unexpected political and economic events in Turkey. Glob. Financ. J.
**2008**, 18, 337–350. [Google Scholar] [CrossRef] - Zhang, L.; Li, J. Inflation Forecasting Using Support Vector Regression. In Proceedings of the Fourth International Symposium on Information Science and Engineering, Shanghai, China, 14–16 December 2012. [Google Scholar] [CrossRef]
- Barro, R.J.; Gordon, D.B. A Positive Theory of Monetary Policy in Natural Rate Model. J. Political Econ.
**1983**, 91, 589–610. [Google Scholar] [CrossRef] - Parsley, D.; Wei, S. A Prism into the PPP Puzzles: The Micro-Foundations of Big Mac Real Exchange Rates. Econ. J.
**2007**, 117, 1336–1356. [Google Scholar] [CrossRef] [Green Version] - Şen, H.; Kaya, A.; Kaptan, S.; Cömert, M. Interest rates, inflation, and exchange rates in fragile EMEs: A fresh look at the long-run interrelationships. J. Int. Trade Econ. Dev.
**2020**, 29, 289–318. [Google Scholar] [CrossRef] - Ozturk, I. Exchange Rate Volatility and Trade: A Literature Survey. Int. J. Appl. Econ. Quant. Stud.
**2006**, 3, 85–102. [Google Scholar] - Serenis, D.; Tsounis, N. Exchange rate volatility and foreign trade: The case for Cyprus and Croatia. Procedia Econ. Financ.
**2013**, 5, 677–685. [Google Scholar] [CrossRef] [Green Version] - Asteriou, D. Exchange rate volatility and international trade: International evidence from the MINT countries. Econ. Model.
**2016**, 58, 133–140. [Google Scholar] [CrossRef] [Green Version] - Karahan, Ö.; Çolak, O. Tradeoff between Inflation and Unemployment in Turkey. Empir. Econ. Lett.
**2012**, 11, 973–980. [Google Scholar] - Gruen, D.W.R.; Wilkinson, J. Australia’s Real Exchange Rate—Is it explained by the Terms of Trade or by Real Interest Rate Differential? Econ. Rec.
**1994**, 70, 204–219. [Google Scholar] [CrossRef] - Chen, S. A note on interest rate defense policy and exchange rate volatility. Econ. Model.
**2007**, 24, 768–777. [Google Scholar] [CrossRef] - He, Y.; Nielsson, U.; Wang, Y. Hurting without hitting: The economic cost of political tension. J. Int. Financ. Mark. Inst. Money
**2017**, 51, 106–124. [Google Scholar] [CrossRef] [Green Version] - Mateev, M. The Effect of Sovereign Credit Rating Announcements on Emerging Bond and Stock Markets: New Evidences. Oxf. J. Int. J. Bus. Econ.
**2012**, 7, 28–41. [Google Scholar] - Subaşi, F.Ö. The effect of sovereign rating changes on stock returns and exchange rates. Int. Res. J. Financ. Econ.
**2008**, 20, 46–54. [Google Scholar] - Nelson, M.; Illingworth, W.T. A Practical Guide to Neural Nets; Addison-Wesley Longman Publishing Co., Inc.: Boston, MA, USA, 1991; ISBN 978-0-201-52376-8. [Google Scholar]
- Jansen, D.J.; Haan, J. Talking heads: The effects of ECB statements on the euro-dollar exchange rate. J. Int. Money Financ.
**2005**, 24, 343–361. [Google Scholar] [CrossRef] - Turney, P.D. Thumbs Up or Thumbs Down?: Semantic Orientation Applied to Unsupervised Classification of Reviews. In Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, Philadelphia, PA, USA, 7–12 July 2002; pp. 417–424. [Google Scholar]
- Taboada, M.; Brooke, J.; Tofiloski, M.; Voll, K.; Stede, M. Lexicon-based methods for sentiment analysis. Comput. Linguist.
**2011**, 37, 267–307. [Google Scholar] [CrossRef] - Pradigis, I.; Karapistoli, E.; Tsintzos, P.; Sarigiannidis, A.; Ravenko, A.; Panou, G. Market Sentiment Models and Indicators. In Horizon 2020 Information and Communication Technologies; European Comission: Bruxelles, Belgium, 2020; pp. 12–64. [Google Scholar]
- Sarigiannidis, A.; Karypidis, P.-A.; Sarigiannidis, P.; Pragidis, I.-C. A Novel Lexicon-Based Approach in Determining Sentiment in Financial Data Using Learning Automata. In Proceedings of the International Conference on Internet Science, Thessaloniki, Greece, 22–24 November 2017; Springer: Cham, Switzerland, 2018; Volume 10750, pp. 47–48. [Google Scholar] [CrossRef]
- Kahneman, D.; Tuersky, A. Prospect Theory: An Analysis of Decision under Risk. Econometrica
**1979**, 47, 263–292. [Google Scholar] [CrossRef] [Green Version] - Von Neumann, J.; Morgenstern, O. Theory of Games and Economic Behavior, 2nd ed.; Princeton University Press: Princeton, NJ, USA, 1947. [Google Scholar]
- Gu, S.; Kelly, B.; Xiu, D. Empirical Asset Pricing via Machine Learning. Rev. Financ. Stud.
**2020**, 33, 2223–2273. [Google Scholar] [CrossRef] [Green Version] - Kahneman, D.; Tuersky, A. Advances in prospect theory: Cumulative representation of uncertainty. J. Risk Uncertain.
**1992**, 5, 297–323. [Google Scholar] - Liu, P.; Jin, F.; Zhang, X.; Su, Y.; Wang, M. Research on the multi-attribute decision-making under risk with interval probability based on prospect theory and the uncertain linguistic variables. Knowl.-Based Syst.
**2011**, 24, 554–561. [Google Scholar] [CrossRef] - Lattimore, P.K.; Baker, J.R.; Witte, A.D. The influence of probability on risky choice: A parametric examination. J. Econ. Behav. Organ.
**1992**, 17, 377–400. [Google Scholar] [CrossRef] - Fox, C.R.; Poldrack, R.A. Prospect theory and the brain. In Neuroeconomics: Decision Making and the Brain; Glimcher, P.W., Camerer, C.F., Fehr, E., Poldrack, R.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2009; pp. 145–173. [Google Scholar] [CrossRef]
- Zahed, L. Fuzzy sets. Inf. Control
**1965**, 8, 338–353. [Google Scholar] - Kecman, V. Learing and Soft Computing: Support Vector Machines, Neural Networks, and Fuzzy Logic Models; MIT Press: Cambridge, MA, USA, 2001; ISBN 978-0-262-11255-0. [Google Scholar]
- Cheng, M.-Y.; Roy, A.F.V. Evolutionary fuzzy decision model for cash flow prediction using time-dependent support vector machines. Int. J. Proj. Manag.
**2011**, 29, 56–65. [Google Scholar] [CrossRef] - Robinson, V.B. A Perspective on the Fundamentals of Fuzzy Sets and their Use in Geographic Information Systems. Trans. GIS
**2003**, 7, 3–30. [Google Scholar] [CrossRef] - Klir, G.J.; Folger, T.A. Fuzzy Sets, Uncertainty, and Information; Prentice-Hall, Inc.: Hoboken, NJ, USA, 1988; ISBN 0133456382. [Google Scholar]
- Drucker, H.; Burgers, C.J.C.; Kaufman, L.; Smola, A.J.; Vapnik, V. Support Vector Regression Machines. In Advances in Neural Information Processing Systems 9; Massachusetts Institute of Technology Press: Cambridge, MA, USA, 1996. [Google Scholar]
- Huang, C.F. A hybrid stock selection model using genetic algorithms and support vector regression. Appl. Soft Comput.
**2012**, 12, 807–818. [Google Scholar] [CrossRef] - Grigoryan, H. A Stock Market Prediction Method Based on Support Vector Machines (SVM) and Independent Component Analysis (ICA). Database Syst. J.
**2016**, 7, 12–21. [Google Scholar] - Hair, J.F., Jr.; Black, W.C.; Babin, B.J.; Anderson, R.E. Multivariate Data Analysis: A Global Perspective, 7th ed.; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2010; ISBN 0135153093. [Google Scholar]
- Hair, J.F.; Sarstedt, M.; Hopkins, L.; Kuppelweiser, V. Partial Least Squares Structural Equation Modeling (PLS-SEM): An Emerging Tool for Business Research. Eur. Bus. Rev.
**2014**, 26, 106–121. [Google Scholar] [CrossRef] - Mentaschi, L.; Besio, G.; Cassola, F.; Mazzino, A. Problems in RMSE-based wave model validations. Ocean Model.
**2013**, 72, 53–58. [Google Scholar] [CrossRef] - Swanson, D.A. On the Relationship among Values of the Same Summary Measure of Error when it is used across Multiple Characteristics at the Same Point in Time: An Examination of MALPE and MAPE. Rev. Econ. Financ.
**2015**, 5, 1–14. [Google Scholar] - Henseler, J.; Ringle, C.M.; Sinkovics, R.R. The use of partial least squares path modeling in international marketing. In New Challenges in International Marketing; Emerald Group Publishing: Bingley, UK, 2009; Volume 20, pp. 277–319. [Google Scholar] [CrossRef] [Green Version]
- Hair, J.F.; Ringle, C.M.; Sarstedt, M. Partial Least Squares Structural Equation Modeling: Rigorous Applications, Better Results and Higher Acceptance. Long Range Plan.
**2013**, 46, 1–12. [Google Scholar] [CrossRef] - Agathangelou, P.; Trihinas, D.; Katakis, I. A Multi-Factor Analysis of Forecasting Methods: A Study on the M4 Competition. Data
**2020**, 5, 41. [Google Scholar] [CrossRef] [Green Version]

Precision | Recall | F1-Score | |
---|---|---|---|

0 | 1.00 | 1.00 | 1.00 |

1 | 0.93 | 0.97 | 0.94 |

2 | 0.97 | 0.96 | 0.96 |

Accuracy | 0.96 | ||

Macro Avg | 0.95 | 0.98 | 0.95 |

Weighted Avg | 0.95 | 0.97 | 0.95 |

Statistical Test | Results |
---|---|

VMS | 0.919392 *** |

EVS | 0.928443 *** |

RMSE | 0.225206 ** |

MAPE | 0.039060 *** |

${R}^{2}$ | 0.924597 *** |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Erçen, H.İ.; Özdeşer, H.; Türsoy, T.
The Impact of Macroeconomic Sustainability on Exchange Rate: Hybrid Machine-Learning Approach. *Sustainability* **2022**, *14*, 5357.
https://doi.org/10.3390/su14095357

**AMA Style**

Erçen Hİ, Özdeşer H, Türsoy T.
The Impact of Macroeconomic Sustainability on Exchange Rate: Hybrid Machine-Learning Approach. *Sustainability*. 2022; 14(9):5357.
https://doi.org/10.3390/su14095357

**Chicago/Turabian Style**

Erçen, Hüseyin İlker, Hüseyin Özdeşer, and Turgut Türsoy.
2022. "The Impact of Macroeconomic Sustainability on Exchange Rate: Hybrid Machine-Learning Approach" *Sustainability* 14, no. 9: 5357.
https://doi.org/10.3390/su14095357