Estimating Long-Run Relationship between Renewable Energy Use and CO2 Emissions: A Radial Basis Function Neural Network (RBFNN) Approach
Abstract
:1. Introduction
2. Literature Review
3. Materials
4. Development of Radial Basis Function Neural Network (RBFNN) Based CO2 Prediction Model
- (1)
- Training is faster in RBFNN as it involves a smaller number of computations. Hence it gives faster convergence.
- (2)
- The function of each hidden node can be easily interpreted in RBFNN.
- (3)
- There is no requirement to decide apriori the number of hidden layers in RBFNN, which is needed in some other models.
5. Simulation Study
5.1. Data Preprocessing
5.2. Training of the Model
5.3. Testing of the Model
6. Results
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shahbaz, M.; Sinha, A. Environmental Kuznets curve for CO2 emissions: A literature survey. J. Econ. Stud. 2019, 46, 106–168. [Google Scholar] [CrossRef] [Green Version]
- Joshi, P.; Beck, K. Democracy and carbon dioxide emissions: Assessing the interactions of political and economic freedom and the environmental Kuznets curve. Energy Res. Soc. Sci. 2018, 1, 46–54. [Google Scholar] [CrossRef]
- You, W.H.; Zhu, H.M.; Yu, K.; Peng, C. Democracy, financial openness, and global carbon dioxide emissions: Heterogeneity across existing emission levels. World Dev. 2015, 1, 189–207. [Google Scholar] [CrossRef] [Green Version]
- Grossman, G.M.; Krueger, A.B. Environmental Impacts of a North American Free Trade Agreement; National Bureau of Economic Research: Cambridge, MA, USA, 1991. [Google Scholar] [CrossRef]
- Grossman, G.M.; Krueger, A.B. Economic growth and the environment. Q. J. Econ. 1995, 110, 353–377. [Google Scholar] [CrossRef] [Green Version]
- Shafik, N.; Bandyopadhyay, S. Economic Growth and Environmental Quality: Time-Series and Cross-Country Evidence; World Bank Publications; The World Bank: Washington, DC, USA, 1992; Volume 904. [Google Scholar]
- Selden, T.M.; Song, D. Environmental quality and development: Is there a Kuznets curve for air pollution emissions? J. Environ. Econ. Manag. 1994, 27, 147–162. [Google Scholar] [CrossRef]
- Solarin, S.A.; Al-Mulali, U.; Musah, I.; Ozturk, I. Investigating the pollution haven hypothesis in Ghana: An empirical investigation. Energy 2017, 124, 706–719. [Google Scholar] [CrossRef]
- Stern, D.I. The rise and fall of the environmental Kuznets curve. World Dev. 2004, 32, 1419–1439. [Google Scholar] [CrossRef]
- Antweiler, W.; Copeland, B.R.; Taylor, M.S. Is free trade good for the environment? Am. Econ. Rev. 2001, 91, 877–908. [Google Scholar] [CrossRef] [Green Version]
- Managi, S.; Hibiki, A.; Tsurumi, T. Does trade openness improve environmental quality? J. Environ. Econ. Manag. 2009, 58, 346–363. [Google Scholar] [CrossRef]
- Tsurumi, T.; Managi, S. Decomposition of the environmental Kuznets curve: Scale, technique, and composition effects. Environ. Econ. Pol. Stud. 2010, 11, 19–36. [Google Scholar] [CrossRef]
- Tsurumi, T.; Managi, S. The effect of trade openness on deforestation: Empirical analysis for 142 countries. Environ. Econ. Pol. Stud. 2014, 16, 305–324. [Google Scholar] [CrossRef] [Green Version]
- Kagohashi, K.; Tsurumi, T.; Managi, S. The effects of international trade on water use. PLoS ONE 2015, 10, e0132133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abe, K.; Ishimura, G.; Tsurumi, T.; Managi, S.; Sumaila, U.R. Does trade openness reduce a domestic fisheries catch? Fish. Sci. 2017, 83, 897–906. [Google Scholar] [CrossRef]
- Shahbaz, M.; Khan, S.; Tahir, M.I. The dynamic links between energy consumption, economic growth, financial development and trade in China: Fresh evidence from multivariate framework analysis. Energy Econ. 2013, 40, 8–21. [Google Scholar] [CrossRef]
- Sugiawan, Y.; Managi, S. The environmental Kuznets curve in Indonesia: Exploring the potential of renewable energy. Energy Pol. 2016, 98, 187–198. [Google Scholar] [CrossRef] [Green Version]
- Sinha, A.; Shahbaz, M. Estimation of environmental Kuznets curve for CO2 emission: Role of renewable energy generation in India. Renew. Energy 2018, 119, 703–711. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Zhang, S.; Bae, J. The impact of renewable energy and agriculture on carbon dioxide emissions: Investigating the environmental Kuznets curve in four selected ASEAN countries. J. Clean. Prod. 2017, 164, 1239–1247. [Google Scholar] [CrossRef]
- Apergis, N.; Jebli, M.B.; Youssef, S.B. Does renewable energy consumption and health expenditures decrease carbon dioxide emissions? Evidence for sub-Saharan Africa countries. Renew. Energy 2018, 127, 1011–1016. [Google Scholar] [CrossRef]
- Adams, S.; Nsiah, C. Reducing carbon dioxide emissions; Does renewable energy matter? Sci. Total Environ. 2019, 693, 133288. [Google Scholar] [CrossRef]
- Saidi, K.; Omri, A. Reducing CO2 emissions in OECD countries: Do renewable and nuclear energy matter? Prog. Nucl. Energy 2020, 126, 103425. [Google Scholar] [CrossRef]
- Menyah, K.; Wolde-Rufael, Y. Energy consumption, pollutant emissions and economic growth in South Africa. Energy Econ. 2010, 32, 1374–1382. [Google Scholar] [CrossRef]
- Sinha, A.; Shahbaz, M.; Sengupta, T. Renewable energy policies and contradictions in causality: A case of next 11 countries. J. Clean. Prod. 2018, 197, 73–84. [Google Scholar] [CrossRef] [Green Version]
- Tanti, P.C.; Srujana, I.S.; Jena, P.R. Can increase in the share of renewable energy in economic growth shift turning point of EKC? Evidence from time-series analysis in India. J. Environ. Account. Manag. 2020, 8, 257–266. [Google Scholar] [CrossRef]
- Liu, J. China’s renewable energy law and policy: A critical review. Renew. Sustain. Energy Rev. 2019, 99, 212–219. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, J.; Lai, Z.; Wang, Z.; Xia, H. Exploring the effects of economic growth, and renewable and non-renewable energy consumption on China’s CO2 emissions: Evidence from a regional panel analysis. Renew. Energy 2019, 1, 341–353. [Google Scholar] [CrossRef]
- Bilgili, F.; Kuşkaya, S.; Khan, M.; Awan, A.; Türker, O. The roles of economic growth and health expenditure on CO2 emissions in selected Asian countries: A quantile regression model approach. Environ. Sci. Pollut. Res. 2021, 28, 44949–44972. [Google Scholar] [CrossRef]
- Gyamfi, B.A.; Adedoyin, F.F.; Bein, M.A.; Bekun, F.V. Environmental implications of N-shaped environmental Kuznets curve for E7 countries. Environ. Sci. Pollut. Res. 2021, 28, 33072–33082. [Google Scholar] [CrossRef]
- Kirikkaleli, D.; Adebayo, T.S. Do public-private partnerships in energy and renewable energy consumption matter for consumption-based carbon dioxide emissions in India? Environ. Sci. Pollut. Res. 2021, 28, 30139–30152. [Google Scholar] [CrossRef]
- Yang, M.; Wang, E.Z.; Hou, Y. The relationship between manufacturing growth and CO2 emissions: Does renewable energy consumption matter? Energy 2021, 232, 121032. [Google Scholar] [CrossRef]
- Khattak, S.I.; Ahmad, M.; Khan, Z.U.; Khan, A. Exploring the impact of innovation, renewable energy consumption, and income on CO2 emissions: New evidence from the BRICS economies. Environ. Sci. Pollut. Res. 2020, 27, 13866–13881. [Google Scholar] [CrossRef]
- Zeraibi, A.; Balsalobre-Lorente, D.; Shehzad, K. Testing the environmental Kuznets curve hypotheses in Chinese provinces: A nexus between regional government expenditures and environmental quality. Int. J. Environ. Res. Public Health 2021, 18, 9667. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wang, Z.; Zhong, Z. CO2 emissions, economic growth, renewable and non-renewable energy production and foreign trade in China. Renew. Energy 2019, 131, 208–216. [Google Scholar] [CrossRef]
- Khan, M.T.I.; Yaseen, M.R.; Ali, Q. Nexus between financial development, tourism, renewable energy, and greenhouse gas emission in high-income countries: A continent-wise analysis. Energy Econ. 2019, 83, 293–310. [Google Scholar] [CrossRef]
- Yao, S.; Zhang, S.; Zhang, X. Renewable energy, carbon emission and economic growth: A revised environmental Kuznets Curve perspective. J. Clean. Prod. 2019, 235, 1338–1352. [Google Scholar] [CrossRef]
- Zeraibi, A.; Ahmed, Z.; Shehzad, K.; Murshed, M.; Nathaniel, S.P.; Mahmood, H. Revisiting the EKC hypothesis by assessing the complementarities between fiscal, monetary, and environmental development policies in China. Environ. Sci. Pollut. Res. 2021, 29, 23545–23560. [Google Scholar] [CrossRef] [PubMed]
- Balsalobre-Lorente, D.; Shahbaz, M.; Roubaud, D.; Farhani, S. How economic growth, renewable electricity and natural resources contribute to CO2 emissions? Energy Policy 2018, 113, 356–367. [Google Scholar] [CrossRef] [Green Version]
- Paramati, S.R.; Mo, D.; Gupta, R. The effects of stock market growth and renewable energy use on CO2 emissions: Evidence from G20 countries. Energy Econ. 2017, 66, 360–371. [Google Scholar] [CrossRef]
- Kim, J.; Park, K. Financial development and deployment of renewable energy technologies. Energy Econ. 2016, 59, 238–250. [Google Scholar] [CrossRef]
- Dasgupta, P.; Maler, K.G. Poverty, institutions, and the environmental resource-base. In Handbook of Development Economics; Behrman, J., Srinivaan, T.N., Eds.; Elsevier Science: Amsterdam, The Netherlands, 1995; Volume 3A. [Google Scholar]
- Romuald, K.S. Democratic Institutions and Environmental Quality: Effects and Transmission Channels. No. 120396. In Proceedings of the 2011 European Association of Agricultural Economists International Congress, Zurich, Switzerland, 30 August–2 September 2011. [Google Scholar]
- Goel, R.K.; Herrala, R.; Mazhar, U. Institutional quality and environmental pollution: MENA countries versus the rest of the world. Econ. Syst. 2013, 37, 508–521. [Google Scholar] [CrossRef]
- Barrett, S.; Graddy, K. Freedom, growth, and the environment. Environ. Dev. Econ. 2000, 5, 433–456. [Google Scholar] [CrossRef]
- Torras, M.; Boyce, J.K. Income, inequality, and pollution: A reassessment of the environmental Kuznets curve. Ecol. Econ. 1998, 25, 147–160. [Google Scholar] [CrossRef]
- Li, Q.; Reuveny, R. Democracy and environmental degradation. Int. Stud. Q. 2006, 50, 935–956. [Google Scholar] [CrossRef]
- Farzin, Y.H.; Bond, C.A. Democracy and environmental quality. J. Dev. Econ. 2006, 81, 213–235. [Google Scholar] [CrossRef]
- Midlarsky, M.I. Democracy and the environment: An empirical assessment. J. Peace Res. 1998, 35, 341–361. [Google Scholar] [CrossRef]
- Roberts, J.T.; Parks, B.C. A Climate of Injustice: Global Inequality, North-South Politics, and Climate Policy; MIT Press: Cambridge, MA, USA, 2007. [Google Scholar]
- Scruggs, L.A. Political and economic inequality and the environment. Ecol. Econ. 1998, 26, 259–275. [Google Scholar] [CrossRef]
- World Bank. World Development Indicators; World Bank: Washington, DC, USA, 2021. [Google Scholar]
- Freedom House. Freedom in the World. 2021. Available online: www.freedomhouse.org/ratings/index.htm (accessed on 2 February 2022).
- Haykin, S. Neural Networks and Learning Machines; Prentice Hall: New York, NY, USA, 2009. [Google Scholar]
- Geng, Y.; Sarkis, J.; Bleischwitz, R. How to Globalize the Circular Economy. Nature 2019, 153–155. [Google Scholar] [CrossRef] [Green Version]
- Shahbaz, M.; Shahzad, S.J.H.; Mahalik, M.K. Is globalization detrimental to CO2 emissions in Japan? New threshold analysis. Environ. Model. Assess. 2018, 23, 557–568. [Google Scholar] [CrossRef] [Green Version]
- Jena, P.R. Does trade liberalization create more pollution? Evidence from a panel regression analysis across the states of India. Environ. Econ. Pol. Stud. 2018, 20, 861–877. [Google Scholar] [CrossRef]
- Shahbaz, M.; Nasir, M.A.; Roubaud, D. Environmental degradation in France: The effects of FDI, financial development, and energy innovations. Energy Econ. 2018, 74, 843–857. [Google Scholar] [CrossRef] [Green Version]
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M.I.; et al. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. In Climate Change 2021: The Physical Science Basis; Cambridge University Press: Cambridge, UK, in Press; Available online: https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_SPM_final.pdf (accessed on 2 February 2022).
Sl. No. | Emission Share of Selected Countries |
---|---|
1 | China (28%) |
2 | U.S. (15%) |
3 | India (7%) |
4 | Russia (5%) |
5 | Japan (3%) |
6 | Iran (2%) |
7 | South Korea (2%) |
8 | Saudi Arabia (2%) |
9 | Indonesia (2%) |
10 | Germany (2%) |
11 | Canada (2%) |
12 | Brazil (1%) |
13 | South Africa (1%) |
14 | Mexico (1%) |
15 | Turkey (1%) |
16 | Australia (1%) |
17 | United Kingdom (1%) |
18 | Italy (1%) |
19 | France (1%) |
Variables | Data Source |
---|---|
Carbon dioxide emissions (mega ton) | World Development Indicators [51] |
Renewable energy share in total energy use (%) | World Development Indicators [51] |
GDP (constant 2005 US$) | World Development Indicators [51] |
Urban Population Ratio | World Development Indicators [51] |
Trade openness (ratio of imports plus exports to GDP | World Development Indicators [51] |
Sum of the Freedom House Political Rights and Civil Liberties Indices | Freedom House [52] |
Parameter | Value |
---|---|
Structure of RBF full model | 5:4:1 (No. of inputs: 5, hidden neurons: 4, output: 1) |
Structure of RBF partial model | 4:4:1 (No. of inputs: 4, hidden neurons: 4, output: 1) |
Number of Centres or nodes in the hidden layer | 04 |
Number of experiments | 2000 |
Number of training tuples (80%) | 30 |
Number of testing tuples (20%) | 07 |
Value of µ (learning parameter) | 0.1 |
Emission Intensity | Countries | Full Model (with Renewable Energy) | Partial Model (without Renewable Energy) |
---|---|---|---|
High-emission countries | China | 1.63 | 100.00 |
The USA | 1.95 | 6.44 | |
India | 2.46 | 3.06 | |
Russia | 5.40 | 100.00 | |
Japan | 2.80 | 4.19 | |
Iran | 4.38 | 4.76 | |
South Korea | 2.17 | 2.78 | |
Saudi Arabia | 8.17 | 4.98 | |
Indonesia | 4.41 | 4.57 | |
Germany | 3.56 | 5.56 | |
Canada | 1.4 | 1.01 | |
Low-emission countries | Brazil | 2.16 | 4.65 |
South Africa | 4.82 | 6.47 | |
Mexico | 3.45 | 5.32 | |
Turkey | 3.05 | 6.73 | |
Australia | 2.06 | 1.82 | |
UK | 2.96 | 4.88 | |
Italy | 2.94 | 11.38 | |
France | 4.37 | 8.26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jena, P.R.; Majhi, B.; Majhi, R. Estimating Long-Run Relationship between Renewable Energy Use and CO2 Emissions: A Radial Basis Function Neural Network (RBFNN) Approach. Sustainability 2022, 14, 5260. https://doi.org/10.3390/su14095260
Jena PR, Majhi B, Majhi R. Estimating Long-Run Relationship between Renewable Energy Use and CO2 Emissions: A Radial Basis Function Neural Network (RBFNN) Approach. Sustainability. 2022; 14(9):5260. https://doi.org/10.3390/su14095260
Chicago/Turabian StyleJena, Pradyot Ranjan, Babita Majhi, and Ritanjali Majhi. 2022. "Estimating Long-Run Relationship between Renewable Energy Use and CO2 Emissions: A Radial Basis Function Neural Network (RBFNN) Approach" Sustainability 14, no. 9: 5260. https://doi.org/10.3390/su14095260