Analysis of Pollen Concentrations from Various Tree Pollen Types and Their Interrelation with Different Airborne Pollutants in the Madrid Region (Spain)
Abstract
:1. Introduction
2. Material
2.1. Study Area
2.2. Pollen Data
2.3. Air pollutant Data
3. Methods
4. Results
Pollen Types (Size Major Axis in μm) | Mean | Standard Deviation | Coefficient of Variation (%) | %PT 1994–1999 | %PT 2013–2017 |
---|---|---|---|---|---|
Cupressaceae | 16.1 | 17.8 | |||
(22–28) | 32.206 | 67.613 | 209.938 | (8.2–23.6) | (13.1–27.3) |
6.4 | 5.4 | ||||
Olea (18–25) | 9.789 | 31.531 | 322.117 | (4.2–9.6) | (1.6–8.7) |
4.9 | 6.6 | ||||
Pinus (68–95) | 11.662 | 29.009 | 248.736 | (2.1–7.8) | (3.3–10.9) |
21.6 | 22.6 | ||||
Platanus (17–22) | 48.767 | 180.791 | 370.723 | (4.0–36.5) | (1.5–43.7) |
4.0 | 3.1 | ||||
Populus (29–35) | 6.005 | 23.485 | 391.085 | (1.5–7.1) | (1.2–6.8) |
2.9 | 2.1 | ||||
Ulmus (23–30) | 4.445 | 17.446 | 392.527 | (1.0–5.9) | (0.4–5.8) |
Airborne Pollutants | Mean | Standard Deviation | Coefficient of Variation (CV) | Threshold Values |
---|---|---|---|---|
Ozone (O3) (µg/m3) | 50.902 | 20.735 | 40.736% | 120 (daily maximum of the mobile eight-hourly means) Objective value (mean for 2010, 2011 and 2012) |
Nitrogen dioxide (NO2) (µg/m3) | 33.745 | 14.840 | 43.976% | 40 (mean annual value) Threshold value in force since 2010 |
Particles < 10 µm (PM10) (µg/m3) | 21.107 | 6.308 | 29.887% | 40 (mean annual value) Threshold value in force since 2005 |
Particles < 2.5 µm (PM2.5) (µg/m3) | 10.957 | 3.214 | 9.337% | 25 (mean annual value) Threshold value in force since 2015 |
Carbon monoxide (CO) (mg/m3) | 0.375 | 0.140 | 37.434% | 10 (daily maximum of the mobile eight-hourly means) Threshold value in force since 2005 |
Sulphur dioxide (SO2) (µg/m3) | 4.147 | 3.251 | 78.390% | 125 (mean daily value) Threshold value in force since 2005 |
4.1. Correlation Analysis for All the Study Zones and the Period 2013–2017
4.2. Correlation Analysis in Each Study Zone and by Years
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Geoffrey, H. Donovan Including public-health benefits of trees in urban-forestry decision making. Urban For. Urban Green. 2017, 22, 120–123. [Google Scholar]
- Van den Berg, M.; van Poppel, M.; van Kamp, I.; Andrusaityte, S.; Balseviciene, B.; Cirach, M.; Danileviciute, A.; Ellis, N.; Hurst, G.; Masterson, D.; et al. Visiting green space is associated with mental health and vitaly: A cross sectional study in four European cities. Health Place 2016, 38, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Jansson, M. Green space in compact cities: The benefits and values of urban ecosystem services in planning. Nord. J. Archit. Res. 2014, 26, 139–160. [Google Scholar]
- Alcock, I.; White, M.; Cherrie, M.; Wheeler, B.; Taylor, J.; McInnes, R.; Otte im Kampe, E.; Vardoulakis, S.; Sarran, C.; Soyiri, I.; et al. Land cover and air pollution are associated with asthma hospitalisations: A cross-sectional study. Environ. Int. 2017, 109, 29–41. [Google Scholar] [CrossRef]
- Chan, C.-S. Health-related elements in green space branding in Hong Kong. Urban For. Urban Green. 2017, 21, 192–202. [Google Scholar] [CrossRef]
- Badach, J.; Dymnicka, M.; Baranowski, A. Urban Vegetation in Air Quality Management: A Review and Policy Framework. Sustainability 2020, 12, 1258. [Google Scholar] [CrossRef] [Green Version]
- Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. Environmental and health impacts of air pollution: A review. Front. Public Health 2020, 8, 14. [Google Scholar] [CrossRef] [Green Version]
- Lin, L.; Li, T.; Sun, M.; Liang, Q.; Ma, Y.; Wang, F.; Duan, J.; Sun, Z. Effect of particulate matter exposure on the prevalence of allergic rhinitis in children: A systematic review and meta-analysis. Chemosphere 2021, 268, 128841. [Google Scholar] [CrossRef]
- Dick, S.; Friend, A.; Dynes, K.; Alkandari, F.; Doust, E.; Cowie, H.; Ayres, J.G.; Turner, S.W. A systematic review of associations between environmental exposures and development of asthma in children aged up to 9 years. BMJ Open 2014, 4, e006554. [Google Scholar] [CrossRef]
- Bălă, G.P.; Râjnoveanu, R.M.; Tudorache, E.; Motișan, R.; Oancea, C. Air pollution exposure—The (in) visible risk factor for respiratory diseases. Environ. Sci. Pollut. Res. 2021, 28, 19615–19628. [Google Scholar] [CrossRef]
- Rondón, C.; Eguiluz-Gracia, I.; Campo, P. Is the evidence of local allergic rhinitis growing? Curr. Opin. Allergy Clin. Immunol. 2018, 18, 342–349. [Google Scholar] [CrossRef] [PubMed]
- Subiza, J. Papel de la polución en el aumento de la polinosis. Centro de Asma y Alergia Subiza, Madrid. Salud Rural. 2004, 21, 1–6. [Google Scholar]
- Sedghy, F.; Varasteh, A.R.; Sankian, M.; Moghadam, M. Interaction between air pollutants and pollen grains: The role on the rising trend in allergy. Rep. Biochem. Mol. Biol. 2018, 6, 219. [Google Scholar] [PubMed]
- Bédard, A.; Bousquet, J.; Antó, J.; Garcia-Aymerich, J.; Arnavielhe, S.; Laune, D.; Sofiev, M.; Basagaña, X. Interaction between air pollution and pollen seasons on allergic rhinitis control. Environ. Epidemiol. 2019, 3, 26. [Google Scholar] [CrossRef]
- Gutiérrez Bustillo, M.; Sáenz Laín, C.; Aránguez Ruíz, E.; Ordóñez Iriarte, J.M. Polen Atmosférico En La Comunidad De Madrid; Documentos técnicos de salud pública; Dirección General de Salud Pública, Consejería de Sanidad, Comunidad de Madrid: Madrid, Spain, 2001. [Google Scholar]
- Díaz de la Guardia, C.; Sabariego, S.; Alba, F.; Ruíz, L.; García Mozo, H.; Toro Gil, F.J.; Valencia, R.; Rodríguez Rajo, F.J.; Guardia, A.; Cervigón, P. Aeropalynological study of the genus Platanus l. in the Iberian Peninsula. Polen 1999, 10, 89–97. [Google Scholar]
- Subiza, J.; Feo Brito, F.; Pola, J.; Moral, A.; Fernández, J.; Jerez, M.; Ferreiro, M. Pólenes alergénicos y polinosis en 12 ciudades españolas. Comité de Aerobiología de la SEAIC. Rev. Esp. Alergol. Inmunol. Clin. 1998, 13, 45–58. [Google Scholar]
- Orozco Barrenetxea, C.; Pérez Serrano, A.; González Delgado, M.N.; Rodríguez Vidal, F.J.; Alfayate Blanco, J.M. Contaminación ambiental; Una visión desde la Química. Departamento de Química. Escuela Politécnica Superior; Paraninfo, Ed.; Universidad de Burgos: Burgos, Spain, 2003. [Google Scholar]
- Directiva 2008/50/CE Del Parlamento Europeo y Del Consejo, De 21 De Mayo De 2008, Relativa a La Calidad Del Aire Ambiente Y a Una Atmósfera Más Limpia En Europa. Available online: https://www.boe.es/buscar/doc.php?id=DOUE-L-2008-81053 (accessed on 16 April 2021).
- Protected Natural Spaces in the Madrid Region. Available online: https://www.comunidad.madrid/servicios/urbanismo-medio-ambiente/espacios-naturales-protegidos (accessed on 13 April 2021).
- Parks in Madrid. Available online: https://www.madrid.es/portales/munimadrid/es/Inicio/El-Ayuntamiento/Parques-y-jardines/Patrimonio-Verde/Parques-en-Madrid/?vgnextfmt=default&vgnextchannel=38bb1914e7d4e210VgnVCM1000000b205a0aRCRD (accessed on 13 April 2021).
- Madrid recognised Tree City 2019. Available online: https://www.madrid.es/portales/munimadrid/es/Inicio/Medio-ambiente/Parques-y-jardines/Madrid-reconocida-Ciudad-arborea-del-mundo-2019-por-la-FAO-y-la-Fundacion-Arbor-Day/?vgnextfmt=default&vgnextoid=3cdf84fec1732710VgnVCM2000001f4a900aRCRD&vgnextchannel=2ba279ed268fe410VgnVCM1000000b205a0aRCRD (accessed on 13 April 2021).
- Información de la Red Palinocam. Available online: https://www.comunidad.madrid/servicios/salud/aerobiologia-polen-esporas#red-palinocam (accessed on 8 April 2021).
- Dirección General de Medio Ambiente y Sostenibilidad (2022). Informe Anual Sobre la Calidad del Aire en la Comunidad de Madrid. Año 2021. Available online: http://gestiona.madrid.org/azul_internet/run/j/DescargaFicheros.icm?urlFichero=Informe_anual_2021.pdf (accessed on 7 April 2022).
- Martín Fernández, S.; Ayuga Téllez, E.; González García, C.; Martín Fernández, A. Guía Completa de Statgraphics. Desde MS-DOS a Statgraphics Plus; Complete Guide of STATGRAPHICS. From MS-DOS to Statgraphics Plus; Díaz de Santos: Madrid, Spain, 2001. [Google Scholar]
- Marchevsky, A.M.; Diniz, M.A.; Manzoor, D.; Walts, A.E. Prognosis in pathology: Are we “prognosticating” or only establishing correlations between independent variables and survival? A study with various analytics cautions about the overinterpretation of statistical results. Ann. Diagn. Pathol. 2020, 46, 151525. [Google Scholar] [CrossRef]
- Ščevková, J.; Vašková, Z.; Sepšiová, R.; Jozef Dušička, J.; Jozef Kováč, J. Relationship between Poaceae pollen and Phl p 5 allergen concentrations and the impact of weather variables and air pollutants on their levels in the atmosphere. Heliyon 2020, 6, e04421. [Google Scholar] [CrossRef]
- Cariñanos, P.; Foyo-Moreno, I.; Alados, I.; Guerrero-Rascado, J.L.; Ruiz-Peñuela, S.; Titos, G.; Cazorla, A.; Alados-Arboledas, L.; Díaz de la Guardia, C. Bioaerosols in urban environments: Trends and interactions with pollutants and meteorological variables based on quasi-climatological series. J. Environ. Manag. 2021, 282, 111963. [Google Scholar] [CrossRef]
- Ribeiro, H.; Duque, L.; Guimarães, F.; Abreu, I.; Noronha, F. Airborne Acer pollen wall elemental analysis and adhered particulate matter. Comun. Geológicas 2014, 101, 1355–1358. [Google Scholar]
- Yu, H.R.; Lin, C.R.; Tsai, J.H.; Hsieh, Y.T.; Tsai, T.A.; Tsai, C.K.; Lee, Y.C.; Liu, T.Y.; Tsai, C.M.; Chen, C.C.; et al. A Multifactorial Evaluation of the Effects of Air Pollution and Meteorological Factors on Asthma Exacerbation. Int. J. Environ. Res. Public Health 2020, 17, 4010. [Google Scholar] [CrossRef] [PubMed]
- Vo, G.T.; Liu, Z.; Chou, O.; Zhong, B.; Barrow, C.J.; Dunshea, F.R.; Suleria, H.A. Screening of phenolic compounds in australian grown grapes and their potential antioxidant activities. Food Biosci. 2022, 47, 101644. [Google Scholar] [CrossRef]
- Valores Límite y Objetivo, Según RD 102/2011. Available online: http://gestiona.madrid.org/azul_internet/html/web/2_3.htm?ESTADO_MENU=2_3 (accessed on 5 April 2021).
- Oduber, F.; Calvo, A.I.; Blanco-Alegre, C.; Castro, A.; Vega-Maray, A.M.; Valencia-Barrera, R.M.; Fernández-González, D.; Fraile, R. Links between recent trends in airborne pollen concentration, meteorological parameters and air pollutants. Agric. For. Meteorol. 2019, 264, 16–26. [Google Scholar] [CrossRef]
- Borrajo, J.M.; Rastrollo, A.; Nowak, D. Valor del Bosque Urbano de Madrid; Edita Ayuntamiento de Madrid: Madrid, Spain, 2018. [Google Scholar]
- Charpin, D.; Calleja, M.; Pichot, C.; Penel, V.; Hugues, B.; Poncet, P. Cypress pollen allergy. Rev. Des Mal. Respir. 2013, 30, 868–878. [Google Scholar] [CrossRef]
- Gaussorgues, R. The olive tree and its pollen in the Mediterranean basin. An allergy risk. Rev. Fr. Allergol. 2009, 49, 52–66. [Google Scholar]
- Ovidiu, B. Oleaceae pollen allergy and its cross-reactivity in the Mediterranean area in the context of globalization. Iran. J. Allergy Asthma Immunol 2014, 13, 290–295. [Google Scholar]
- Grundström, M.; Dahl, Å.; Ou, T.; Chen, D.; Pleijel, H. The relationship between birch pollen, air pollution and weather types and their effect on antihistamine purchase in two Swedish cities. Aerobiologia 2017, 33, 457–471. [Google Scholar] [CrossRef] [Green Version]
- Cabrera, M.; Subiza, J.; Fernández-Caldas, E.; García, B.G.; Moreno-Grau, S.; Subiza, J.L. Influence of environmental drivers on allergy to pollen grains in a case study in Spain (Madrid): Meteorological factors, pollutants, and airborne concentration of aeroallergens. Environ. Sci. Pollut. Res. 2021, 28, 53614–53628. [Google Scholar] [CrossRef]
- Puc, M.; Bosiacka, B. Effects of Meteorological Factors and Air Pollution on Urban Pollen Concentrations. Pol. J. Environ. Stud. 2011, 20, 611–618. [Google Scholar]
- Manninen, H.E.; Bäck, J.; Shito-Nishilä, S.L.; Huffman, J.A.; Pessi, A.M.; Hiltunen, V.; Aalto, P.P.; Hidalgo, P.J.; Hari, P.; Saarto, A.; et al. Patterns in airborne pollen and other primary biological aerosol particles (PBAP), and their contribution to aerosol mass and number in a boreal forest. Boreal Environ. Res. 2014, 19, 383–405. [Google Scholar]
- Lu, S.; Ren, J.; Hao, X.; Liu, D.; Zhang, R.; Wu, M.; Yi, F.; Lin, J.; Shinich, Y.; Wang, Q. Characterization of protein expression of Platanus pollen following exposure to gaseous pollutants and vehicle exhaust particles. Aerobiologia 2014, 30, 281–291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ravindra, K.; Goyal, A.; Mor, S. Influence of meteorological parameters and air pollutants on the airborne pollen of city Chandigarh, India. Sci. Total Environ. 2022, 818, 151829. [Google Scholar] [CrossRef] [PubMed]
Stations in the Palinocam Network | Air Quality Network Stations | Distance between Stations (m) |
---|---|---|
Alcalá de Henares | Alcalá de Henares | 985 |
Alcobendas | Alcobendas | 693 |
Aranjuez | Aranjuez | 634 |
Coslada | Coslada | 1957 |
Getafe | Getafe | 1436 |
Leganés | Leganés | 1586 |
Collado Villalba | Collado Villalba | 2648 |
Madrid: Salamanca District | Escuelas Aguirre | 1718 |
Madrid: City Hall | Farolillo | 3200 |
Madrid: Faculty of Pharmacy | Casa de Campo | 3450 |
Las Rozas | Majadahonda | 8784 |
Airborne Pollutants | Cupressaceae | Olea | Pinus | Platanus | Populus | Ulmus |
---|---|---|---|---|---|---|
Ozone (O3) | −0.4071 | 0.6776 | 0.6427 | 0.3621 | 0.0964 | −0.0984 |
(658) | (658) | (658) | (658) | (658) | (658) | |
0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0134 | 0.0117 | |
Nitrogen dioxide (NO2) | 0.2119 | −0.3818 | −0.3749 | −0.1651 | −0.0979 | 0.0066 |
(658) | (658) | (658) | (658) | (658) | (658) | |
0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0121 | 0.8655 | |
Particles < 10 µm (PM10) | −0.2666 | 0.0627 | −0.1378 | −0.2019 | −0.3248 | −0.3387 |
(622) | (622) | (622) | (622) | (622) | (622) | |
0.0000 | 0.1185 | 0.0006 | 0.0000 | 0.0000 | 0.0000 | |
Particles < 2.5 µm (PM2.5) | 0.0251 | −0.1418 | −0.1656 | −0.3033 | −0.2839 | −0.2724 |
(179) | (179) | (179) | (179) | (179) | (179) | |
0.7381 | 0.0585 | 0.0272 | 0.0001 | 0.0002 | 0.0003 | |
Carbon monoxide (CO) | 0.2940 | −0.3652 | −0.3424 | −0.2460 | 0.0083 | 0.1050 |
(311) | (311) | (311) | (311) | (311) | (311) | |
0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.8832 | 0.0645 | |
Sulphur dioxide (SO2) | 0.2281 | −0.1165 | −0.1212 | 0.1318 | 0.1360 | 0.1605 |
(347) | (347) | (347) | (347) | (347) | (347) | |
0.0000 | 0.0303 | 0.0241 | 0.0142 | 0.0114 | 0.0028 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chico-Fernández, J.; Ayuga-Téllez, E. Analysis of Pollen Concentrations from Various Tree Pollen Types and Their Interrelation with Different Airborne Pollutants in the Madrid Region (Spain). Sustainability 2022, 14, 5259. https://doi.org/10.3390/su14095259
Chico-Fernández J, Ayuga-Téllez E. Analysis of Pollen Concentrations from Various Tree Pollen Types and Their Interrelation with Different Airborne Pollutants in the Madrid Region (Spain). Sustainability. 2022; 14(9):5259. https://doi.org/10.3390/su14095259
Chicago/Turabian StyleChico-Fernández, Javier, and Esperanza Ayuga-Téllez. 2022. "Analysis of Pollen Concentrations from Various Tree Pollen Types and Their Interrelation with Different Airborne Pollutants in the Madrid Region (Spain)" Sustainability 14, no. 9: 5259. https://doi.org/10.3390/su14095259