Sustainability Assessment of Municipal Solid Waste in Riyadh, Saudi Arabia, in the Framework of Circular Economy Transition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Scenario Description
2.3. LCA Methodology
2.3.1. System Boundaries
2.3.2. Life Cycle Inventory
2.3.3. Assumptions and Calculation Methods
Landfill
Organic Material Treatment
Material Recovery Facility (MRF) and Recycling
Waste to Energy
2.3.4. Life Cycle Impact Assessment Methodology
3. Results
3.1. Benefits from System Expansion
3.2. GHG Emissions of the MSW Treatment in Riyadh for the Period 2018–2045
3.3. Electricity Obtained from MSW in Riyadh
3.4. Key Limitations
3.5. Future Applications
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
LCA | life cycle assessment |
MRF | material recovery facilities |
MSWM | municipal solid waste management |
WtE | waste to energy |
MSW | municipal solid waste |
GHG | greenhouse gases |
SV2030 | Saudi Vision 2030 |
K.A.CARE | King Abdullah City for Atomic and Renewable Energy |
MAP | mean annual precipitation |
AD | anaerobic digestion |
WEEE | waste electrical and electronic equipment |
RDF | refused derived fuel |
SRF | solid recovered fuel |
FU | functional unit |
RnSE | renewable and sustainable energy |
LCIA | life cycle impact assessment |
References
- Arena, U.; Mastellone, M.L.; Perugini, F. The environmental performance of alternative solid waste management options: A life cycle assessment study. Chem. Eng. J. 2003, 96, 207–222. [Google Scholar] [CrossRef]
- Maalouf, A.; El-Fadel, M. Life cycle assessment for solid waste management in Lebanon: Economic implications of carbon credit. Waste Manag. Res. 2019, 37, 14–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rebitzer, G.; Ekvall, T.; Frischknecht, R.; Hunkeler, D.; Norris, G.; Rydberg, T.; Schmidt, W.P.; Suh, S.; Weidema, B.P.; Pennington, D.W. Life cycle assessment: Part 1: Framework, goal and scope definition, inventory analysis, and applications. Environ. Int. 2004, 30, 701–720. [Google Scholar] [CrossRef] [PubMed]
- Winkler, J.; Bilitewski, B. Comparative evaluation of life cycle assessment models for solid waste management. Waste Manag. 2007, 27, 1021–1031. [Google Scholar] [CrossRef]
- Güereca, L.P.; Gassó, S.; Baldasano, J.M.; Jiménez-Guerrero, P. Life cycle assessment of two biowaste management systems for Barcelona, Spain. Resour. Conserv. Recycl. 2006, 49, 32–48. [Google Scholar] [CrossRef]
- Abeliotis, K. Life Cycle Assessment in Municipal Solid Waste Management. In Integrated Waste Management; Kumar, S., Ed.; IntechOpen: Rijeka, Croatia, 2011; Volume I, Available online: https://www.intechopen.com/chapters/17450 (accessed on 27 February 2022). [CrossRef] [Green Version]
- Mendes, M.R.; Aramaki, T.; Hanaki, K. Comparison of the environmental impact of incineration and landfilling in São Paulo City as determined by LCA. Resour. Conserv. Recycl. 2004, 41, 47–63. [Google Scholar] [CrossRef]
- Khandelwal, H.; Thalla, A.K.; Kumar, S.; Kumar, R. Life cycle assessment of municipal solid waste management options for India. Bioresour. Technol. 2019, 288, 121515. [Google Scholar] [CrossRef]
- Oyoo, R.; Leemans, R.; Mol, A.P. Comparison of environmental performance for different waste management scenarios in East Africa: The case of Kampala City, Uganda. Habitat Int. 2014, 44, 349–357. [Google Scholar] [CrossRef]
- Dong, J.; Chi, Y.; Zou, D.; Fu, C.; Huang, Q.; Ni, M. Comparison of municipal solid waste treatment technologies from a life cycle perspective in China. Waste Manag. Res. 2014, 32, 13–23. [Google Scholar] [CrossRef]
- Skrzypkowski, K.; Korzeniowski, W.; Młynarska, P. Binding capability of ashes and dusts from municipal solid waste incineration with salt brine and geotechnical parameters of the cemented samples. Arch. Min. Sci. 2018, 63, 903–918. [Google Scholar] [CrossRef]
- Korzeniowski, W.; Poborska-Młynarska, K.; Skrzypkowsk, K. The idea of the recovery of municipal solid waste incineration(MSWI) residues in Kłodawa salt mine S.A. By filling the excavations with self-solidifying mixtures. Arch. Min. Sci. 2018, 63, 553–565. [Google Scholar] [CrossRef]
- Mumbach, G.D.; Alves, J.L.; Da Silva, J.C.; De Sena, R.F.; Marangoni, C.; Machado, R.A.; Bolzan, A. Thermal investigation of plastic solid waste pyrolysis via the deconvolution technique using the asymmetric double sigmoidal function: Determination of the kinetic triplet, thermodynamic parameters, thermal lifetime and pyrolytic oil composition for clean energy recovery. Energy Convers. Manag. 2019, 200, 112031. [Google Scholar]
- da Silva Filho, V.F.; Batistella, L.; Alves, J.L.; da Silva, J.C.; Althoff, C.A.; Moreira, R.D.; José, H.J. Evaluation of gaseous emissions from thermal conversion of a mixture of solid municipal waste and wood chips in a pilot-scale heat generator. Renew. Energy 2019, 141, 402–410. [Google Scholar] [CrossRef]
- Hadidi, L.A.; Ghaithan, A.; Mohammed, A.; Al-Ofi, K. Deploying municipal solid waste management 3R-WTE framework in Saudi Arabia: Challenges and future. Sustainability 2020, 12, 5711. [Google Scholar] [CrossRef]
- AlHumid, H.A.; Haider, H.; Alsaleem, S.S.; Shafiquzamman, M.; Sadiq, R. Performance indicators for municipal solid waste management systems in Saudi Arabia: Selection and ranking using fuzzy AHP and PROMETHEE II. Arab. J. Geosci. 2019, 12, 491. [Google Scholar] [CrossRef]
- Zafar, S. Solid Waste Management in Saudi Arabia. EcoMena Articles. 2013. Available online: http://www.ecomena.org/solidwaste-management-in-saudi-arabia/ (accessed on 16 January 2022).
- Mallick, J. Municipal solid waste landfill site selection based on fuzzy-AHP and geoinformation techniques in Asir Region Saudi Arabia. Sustainability 2021, 13, 1538. [Google Scholar] [CrossRef]
- Yaman, C.; Anil, I.; Alagha, O. Potential for greenhouse gas reduction and energy recovery from MSW through different waste management technologies. J. Clean. Prod. 2020, 264, 121432. [Google Scholar] [CrossRef]
- Garba, S.B. Managing urban growth and development in the Riyadh metropolitan area, Saudi Arabia. Habitat Int. 2004, 28, 593–608. [Google Scholar] [CrossRef]
- King Abdullah Petroleum Studies and Research. Available online: https://datasource.kapsarc.org/explore/dataset/saudi-arabia-population-by-administrative-region-nationality-and-sex/information/?disjunctive.administrative_region&disjunctive.gender (accessed on 15 February 2022).
- Bashir, B.; Alsalman, A.; Othman, A.A.; Obaid, A.K.; Bashir, H. New Approach to Selecting Civil Defense Centers in Al-Riyadh City (KSA) Based on Multi-Criteria Decision Analysis and GIS. Land 2021, 10, 1108. [Google Scholar] [CrossRef]
- Saudi Gazette. Riyadh Unveils New Waste Management and Recycling Plan. 2019. Available online: https://saudigazette.com.sa/article/571891 (accessed on 5 January 2022).
- Riyadh Environment. Comprehensive Waste Management Strategy for ArRiyadh City. Available online: https://www.riyadhenv.gov.sa/wp-content/uploads/2016/12/Comprehensive-Waste-Management-Strategy-for-ArRiyadh-City.pdf (accessed on 15 January 2022).
- Almutairi, A. Combined Nearest Greedy Algorithm with Randomized Iterated Greedy Algorithm to Solve Waste Collection Problem. Int. J. Stat. Probab. 2020, 9, 1–66. [Google Scholar] [CrossRef]
- Den Boer, J.; Den Boer, E.; Jager, J. LCA-IWM: A decision support tool for sustainability assessment of waste management systems. Waste Manag. 2007, 27, 1032–1045. [Google Scholar] [CrossRef] [PubMed]
- ISO-14040; Environmental Management—Life Cycle Assessment—Principles and Framework. ISO: Geneva, Switzerland, 2006.
- ISO-14044; Environmental Management—Life Cycle Assessment—Requirements and Guidelines. ISO: Geneva, Switzerland, 2006.
- Doka, G.; Hischier, R. Waste Treatment and Assessment of Long-Term Emissions (8pp). Int. J. Life Cycle Assess. 2005, 10, 77–84. [Google Scholar] [CrossRef]
- Gala, A.B.; Raugei, M.; Fullana-i-Palmer, P. Introducing a new method for calculating the environmental credits of end-of-life material recovery in attributional LCA. Int. J. Life Cycle Assess. 2015, 20, 645–654. [Google Scholar] [CrossRef]
- Laurent, A.; Clavreul, J.; Bernstad, A.; Bakas, I.; Niero, M.; Gentil, E.; Christensen, T.H.; Hauschild, M.Z. Review of LCA studies of solid waste management systems—Part II: Methodological guidance for a better practice. Waste Manag. 2014, 34, 589–606. [Google Scholar] [CrossRef]
- Khan, M.U. Saudi Arabia’s vision 2030. Def. J. 2016, 19, 36. [Google Scholar]
- Zell, E.; Gasim, S.; Wilcox, S.; Katamoura, S.; Stoffel, T.; Shibli, H.; Engel-Cox, J.; Al Subie, M. Assessment of solar radiation resources in Saudi Arabia. Sol. Energy 2015, 119, 422–438. [Google Scholar] [CrossRef] [Green Version]
- Doka, G. A Model for Waste-Specific and Climate-Specific Life Cycle Inventories of Open Dumps and Unsanitary Landfilling of Waste; Doka Life Cycle Assessments: Zurich, Switzerland, 2017; Available online: http://www.doka.ch/publications.htm (accessed on 15 January 2022).
- Doka, G. Inventory Parameters for Regionalised Mixes of Municipal Waste Disposal in Ecoinvent v3.5; Technical Report; Doka Life Cycle Assessments: Zurich, Switzerland, 2018. [Google Scholar]
- Blengini, G.A.; Fantoni, M.; Busto, M.; Genon, G.; Zanetti, M.C. Participatory approach, acceptability and transparency of waste management LCAs: Case studies of Torino and Cuneo. Waste Manag. 2012, 32, 1712–1721. [Google Scholar] [CrossRef]
- Schmidt, A. Gaining Benefits from Discarded Textiles: LCA of Different Treatment Pathways; Nordic Council of Ministers: Copenhagen, Denmark, 2016. [Google Scholar]
- Gaines, L.L.; Mintz, M.M. Energy Implications of Glass-Container Recycling; Argonne National Lab.: Lemont, IL, USA; National Renewable Energy Lab.: Golden, CO, USA, 1994.
- Gaurh, P.; Pramanik, H. Studies on pyrolysis of plastic wastes polyethylene to valuable hydrocarbons to minimize plastic wastes load to environment. In Proceedings of the 66th Annual Session of Indian Institute of Chemical Engineers Hosted at Institute of Chemical Technology, Mumbai, India, 27–30 December 2013. [Google Scholar]
- Luo, Q.; Yao, Z.; Qi, W.; Sun, J.; Gedanken, A.; Chen, X.; Sun, Y.; Liu, J.; Xu, S.; Wu, W. A comprehensive study on the combustion kinetic modeling of typical electronic plastic waste—Television set (TV) plastic shell. J. Air Waste Manag. Assoc. 2021, 71, 701–710. [Google Scholar] [CrossRef]
- Wäger, P.A.; Hischier, R. Life cycle assessment of post-consumer plastics production from waste electrical and electronic equipment (WEEE) treatment residues in a Central European plastics recycling plant. Sci. Total Environ. 2015, 529, 158–167. [Google Scholar] [CrossRef]
- Huijbregts, M.A.; Steinmann, Z.J.; Elshout, P.M.; Stam, G.; Verones, F.; Vieira, M.; Zijp, M.; Hollander, A.; van Zelm, R. ReCiPe2016: A harmonised life cycle impact assessment method at midpoint and endpoint level. Int. J. Life Cycle Assess. 2017, 22, 138–147. [Google Scholar] [CrossRef]
- Vitale, G.; Mosna, D.; Bottani, E.; Montanari, R.; Vignali, G. Environmental impact of a new industrial process for the recovery and valorisation of packaging materials derived from packaged food waste. Sustain. Prod. Consum. 2018, 14, 105–121. [Google Scholar] [CrossRef]
- Huijbregts, M.A.; Steinmann, Z.J.; Elshout, P.M.; Stam, G.; Verones, F.; Vieira, M.; Hollander, A.; Zijp, M.; Van Zelm, R. Available online: https://pre-sustainability.com/legacy/download/Report_ReCiPe_2017.pdf (accessed on 25 February 2022).
- PRé. SimaPro. Available online: http://www.pre-sustainability.com/simapro (accessed on 25 February 2022).
- Al-Awsat, A. Middle-East Arab News Business. Available online: https://english.aawsat.com/home/article/2782651/riyadh-strategy-boost-population-growth (accessed on 10 January 2022).
- General Authority for Statistics, Saudi Arabia. Available online: https://www.stats.gov.sa/en/1007-0 (accessed on 2 January 2022).
- Saudi Arabian Monetary Authority (SAMA). Annual Statistics 2019; Saudi Central Bank: Riyadh, Saudi Arabia, 2020.
Waste Management | S0 | S1 | S2 |
---|---|---|---|
Landfill | Open landfill: 100% | Landfill with gas and leachate extraction: 2% | Landfill with gas and leachate extraction: 1% |
Dry waste recycling | 0% | Material recycling (MRF—material recovery facility): 5% | Material recycling (MRF—material recovery facility): 10% |
Organic waste management | 0% | Composting and anaerobic digestion: 13% | Composting and anaerobic digestion: 21% |
Residual waste management | 0% | Waste to energy (WtE): 80% | Waste to energy (WtE): 68% |
Waste Category | % |
---|---|
Organic matter | 57.20 |
Paper/cardboard | 11.60 |
Plastic | 13.00 |
Metals | 2.30 |
Glass | 3.00 |
Textiles | 2.90 |
Wood | 6.60 |
Others | 3.40 |
Impact Category | Units | Landfill | Organic Treatment | Recycling | WtE | Total | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S0 | S1 | S2 | S0 | S1 | S2 | S0 | S1 | S2 | S0 | S1 | S2 | S0 | S1 | S2 | ||
Global warming | kg CO2 eq | 1294.34 | 3.22 | 0.14 | 0 | 10.38 | 17.53 | 0 | 29.1 | 57 | 0 | 537.25 | 469.02 | 1294.34 | 579.95 | 543.68 |
Ozone formation, human health | kg NOx eq | 1.08 | 0.0018 | 0.001 | 0 | 0.0112 | 0.0169 | 0 | 0.044 | 0.087 | 0 | 0.35 | 0.28 | 1.08 | 0.41 | 0.38 |
Fine particulate matter formation | kg PM2.5 eq | 13.2 | 0.00062 | 0.00033 | 0 | 0.0178 | 0.0224 | 0 | 0.031 | 0.06 | 0 | 0.06 | 0.05 | 13.2 | 0.11 | 0.13 |
Terrestrial acidification | kg SO2 eq | 0.42 | 0.0014 | 0.00069 | 0 | 0.1072 | 0.1175 | 0 | 0.08 | 0.15 | 0 | 0.17 | 0.14 | 0.42 | 0.35 | 0.4 |
Freshwater eutrophication | kg P eq | 0.0044 | 0.0001 | 0.000042 | 0 | 0.001 | 0.002 | 0 | 0.0022 | 0.0053 | 0 | 0.01 | 0.01 | 0.0044 | 0.02 | 0.02 |
Mineral resource scarcity | kg Cu eq | 0.0075 | 0.00088 | 0.00055 | 0 | 0.013 | 0.02 | 0 | 0.051 | 0.12 | 0 | 0.16 | 0.13 | 0.0075 | 0.23 | 0.27 |
Fossil resource scarcity | kg oil eq | 1.41 | 0.13 | 0.073 | 0 | 1.28 | 2.06 | 0 | 5.77 | 11.12 | 0 | 5.14 | 4.22 | 1.41 | 12.33 | 17.47 |
Organic Matter | Paper/Cardboard | Plastic | Metals | Glass | Textiles | Wood | Others | |
---|---|---|---|---|---|---|---|---|
Fraction contribution to the FU per weight | 57.20% | 11.60% | 13.00% | 2.30% | 3.00% | 2.90% | 6.60% | 3.40% |
S0 | ||||||||
Global warming | 61.66% | 26.84% | 1.80% | 2.48% | 0.01% | 2.78% | 0.78% | 3.66% |
Ozone formation, human health | 55.45% | 11.66% | 24.76% | 2.23% | 0.15% | 0.15% | 2.31% | 3.30% |
Fine particulate matter formation | 54.71% | 11.55% | 17.21% | 2.20% | 2.87% | 0.00% | 8.20% | 3.25% |
Terrestrial acidification | 55.98% | 12.63% | 23.25% | 2.25% | 0.18% | 0.17% | 2.23% | 3.33% |
Freshwater eutrophication | 87.59% | 1.74% | 0.47% | 3.52% | 0.11% | 0.11% | 1.25% | 5.21% |
Mineral resource scarcity | 57.20% | 11.60% | 13.00% | 2.30% | 3.00% | 2.90% | 6.60% | 3.40% |
Fossil resource scarcity | 57.20% | 11.60% | 13.00% | 2.30% | 3.00% | 2.90% | 6.60% | 3.40% |
S1 | ||||||||
Global warming | 40.94% | 2.00% | 49.19% | 0.70% | 1.24% | 3.73% | 0.14% | 2.06% |
Ozone formation, human health | 36.62% | 7.72% | 22.12% | 3.05% | 3.25% | 22.50% | 3.06% | 1.68% |
Fine particulate matter formation | 40.57% | 8.50% | 20.81% | 8.41% | 6.43% | 11.90% | 1.95% | 1.43% |
Terrestrial acidification | 50.36% | 4.56% | 18.87% | 6.33% | 5.55% | 11.67% | 1.54% | 1.12% |
Freshwater eutrophication | 72.92% | 2.88% | 6.49% | 9.83% | 1.26% | 1.66% | 1.83% | 3.12% |
Mineral resource scarcity | 41.86% | 7.02% | 22.87% | 11.52% | 2.86% | 8.31% | 3.84% | 1.72% |
Fossil resource scarcity | 31.19% | 3.85% | 25.99% | 10.18% | 19.60% | 6.25% | 1.25% | 1.68% |
S2 | ||||||||
Global warming | 37.42% | 3.24% | 49.31% | 1.27% | 2.25% | 3.36% | 0.15% | 2.99% |
Ozone formation, human health | 33.71% | 7.24% | 25.70% | 5.15% | 5.48% | 16.34% | 3.23% | 3.14% |
Fine particulate matter formation | 33.55% | 8.65% | 23.27% | 11.83% | 8.81% | 8.49% | 1.63% | 3.76% |
Terrestrial acidification | 43.44% | 3.65% | 22.19% | 9.44% | 8.18% | 8.72% | 1.34% | 3.03% |
Freshwater eutrophication | 60.98% | 2.16% | 7.62% | 14.87% | 1.72% | 1.17% | 1.69% | 9.80% |
Mineral resource scarcity | 32.07% | 4.84% | 24.83% | 16.12% | 3.22% | 4.80% | 3.23% | 10.88% |
Fossil resource scarcity | 23.78% | 2.55% | 27.77% | 12.05% | 23.31% | 6.46% | 0.89% | 3.18% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aldhafeeri, Z.M.; Alhazmi, H. Sustainability Assessment of Municipal Solid Waste in Riyadh, Saudi Arabia, in the Framework of Circular Economy Transition. Sustainability 2022, 14, 5093. https://doi.org/10.3390/su14095093
Aldhafeeri ZM, Alhazmi H. Sustainability Assessment of Municipal Solid Waste in Riyadh, Saudi Arabia, in the Framework of Circular Economy Transition. Sustainability. 2022; 14(9):5093. https://doi.org/10.3390/su14095093
Chicago/Turabian StyleAldhafeeri, Zaid M., and Hatem Alhazmi. 2022. "Sustainability Assessment of Municipal Solid Waste in Riyadh, Saudi Arabia, in the Framework of Circular Economy Transition" Sustainability 14, no. 9: 5093. https://doi.org/10.3390/su14095093