Spatiotemporal Variability Assessment of Trace Metals Based on Subsurface Water Quality Impact Integrated with Artificial Intelligence-Based Modeling
Abstract
:1. Introduction
2. Study Area and Sample Locations
3. Proposed Methodology
3.1. Analysis of Soil Sampling
3.2. Artificial Neural Network (ANN)
3.3. Support Vector Regression (SVR)
3.4. ‘Top Soil’s Trace Metal Impact on Subsurface Water Quality
4. Results and Discussion
4.1. Spatiotemporal Analysis of Trace Metals
4.2. Simulation Using AI-Based Models
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kiiza, C.; Pan, S.-Q.; Bockelmann-Evans, B.; Babatunde, A. Predicting pollutant removal in constructed wetlands using artificial neural networks (ANNs). Water Sci. Eng. 2020, 13, 14–23. [Google Scholar] [CrossRef]
- Therrien, J.-D.; Nicolaï, N.; Vanrolleghem, P.A. A critical review of the data pipeline: How wastewater system operation flows from data to intelligence. Water Sci. Technol. 2020, 82, 2613–2634. [Google Scholar] [CrossRef] [PubMed]
- Yaseen, Z.M. An insight into machine learning models era in simulating soil, water bodies and adsorption heavy metals: Review, challenges and solutions. Chemosphere 2021, 277, 130126. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Yilihamu, Q.; Yuan, M.; Bai, H.; Xu, H.; Wu, J. Prediction models of soil heavy metal(loid)s concentration for agricultural land in Dongli: A comparison of regression and random forest. Ecol. Indic. 2020, 119, 106801. [Google Scholar] [CrossRef]
- Wang, X.; Li, X.; Ma, R.; Li, Y.; Wang, W.; Huang, H.; Xu, C.; An, Y. Quadratic discriminant analysis model for assessing the risk of cadmium pollution for paddy fields in a county in China. Environ. Pollut. 2018, 236, 366–372. [Google Scholar] [CrossRef]
- Zhang, X.; Lin, F.; Jiang, Y.; Wang, K.; Wong, M.T. Assessing soil Cu content and anthropogenic influences using decision tree analysis. Environ. Pollut. 2008, 156, 1260–1267. [Google Scholar] [CrossRef]
- Allen, A.; Nemitz, E.; Shi, J.; Harrison, R.; Greenwood, J. Size distributions of trace metals in atmospheric aerosols in the United Kingdom. Atmos. Environ. 2001, 35, 4581–4591. [Google Scholar] [CrossRef]
- Alloway, B.J. Trace Metals and Metalloids in Soils and their Bioavailability; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Abadin, H.; Ashizawa, A.; Stevens, Y.-W.; Llados, F.; Diamond, G.; Sage, G.; Citra, M.; Quinones, A.; Bosch, S.J.; Swarts, S.G. Toxicological Profile for Lead; Agency for Toxic Substances and Disease Registry: Atlanta, GA, USA, 2007; p. 582.
- Ramelli, G.; Taddeo, I.; Herrmann, U.; Weber, P. V13 Poster location 013 Paroxysmal tonic upgaze of infancy: 5 additional cases. Eur. J. Paediatr. Neurol. 2009, 13, S10. [Google Scholar] [CrossRef]
- Bazoobandi, A.; Emamgholizadeh, S.; Ghorbani, H. Estimating the amount of cadmium and lead in the polluted soil using artificial intelligence models. Eur. J. Environ. Civ. Eng. 2019, 1–19. [Google Scholar] [CrossRef]
- Pyo, J.; Hong, S.M.; Kwon, Y.S.; Kim, M.S.; Cho, K.H. Estimation of heavy metals using deep neural network with visible and infrared spectroscopy of soil. Sci. Total Environ. 2020, 741, 140162. [Google Scholar] [CrossRef]
- Yu, K.; Ren, J.; Zhao, Y. Principles, developments and applications of laser-induced breakdown spectroscopy in agriculture: A review. Artif. Intell. Agric. 2020, 4, 127–139. [Google Scholar] [CrossRef]
- Wei, L.; Yuan, Z.; Yu, M.; Huang, C.; Cao, L. Estimation of Arsenic Content in Soil Based on Laboratory and Field Reflectance Spectroscopy. Sensors 2019, 19, 3904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, T.; Chen, Y.; Liu, Y.; Wu, G. Visible and near-infrared reflectance spectroscopy—An alternative for monitoring soil contamination by heavy metals. J. Hazard. Mater. 2014, 265, 166–176. [Google Scholar] [CrossRef] [PubMed]
- Sihag, P.; Keshavarzi, A.; Kumar, V. Comparison of different approaches for modeling of heavy metal estimations. SN Appl. Sci. 2019, 1, 780. [Google Scholar] [CrossRef] [Green Version]
- Alamrouni, A.; Aslanova, F.; Mati, S.; Maccido, H.S.; Jibril, A.A.; Usman, A.G.; Abba, S.I. Multi-Regional Modeling of Cumulative COVID-19 Cases Integrated with Environmental Forest Knowledge Estimation: A Deep Learning Ensemble Approach. Int. J. Environ. Res. Public Health 2022, 19, 738. [Google Scholar] [CrossRef] [PubMed]
- Hadi, S.J.; Abba, S.I.; Sammen, S.S.; Salih, S.Q.; Al-Ansari, N.; Yaseen, Z.M. Non-Linear Input Variable Selection Approach Integrated with Non-Tuned Data Intelligence Model for Streamflow Pattern Simulation. IEEE Access 2019, 7, 141533–141548. [Google Scholar] [CrossRef]
- Tiyasha; Tung, T.M.; Yaseen, Z.M. A survey on river water quality modelling using artificial intelligence models: 2000–2020. J. Hydrol. 2020, 585, 124670. [Google Scholar] [CrossRef]
- Tao, H.; Salih, S.; Oudah, A.Y.; Abba, S.I.; Ameen, A.M.S.; Awadh, S.M.; Alawi, O.A.; Mostafa, R.R.; Surendran, U.P.; Yaseen, Z.M. Development of new computational machine learning models for longitudinal dispersion coefficient determination: Case study of natural streams, United States. Environ. Sci. Pollut. Res. 2022, 1–21. [Google Scholar] [CrossRef]
- Malami, S.I.; Anwar, F.H.; Abdulrahman, S.; Haruna, S.; Ali, S.I.A.; Abba, S. Implementation of hybrid neuro-fuzzy and self-turning predictive model for the prediction of concrete carbonation depth: A soft computing technique. Results Eng. 2021, 10, 100228. [Google Scholar] [CrossRef]
- Elkiran, G.; Nourani, V.; Abba, S.I. Multi-step ahead modelling of river water quality parameters using ensemble artificial intelligence-based approach. J. Hydrol. 2019, 577, 123962. [Google Scholar] [CrossRef]
- Malami, S.I.; Musa, A.A.; Haruna, S.I.; Aliyu, U.U.; Usman, A.G.; Abdurrahman, M.I.; Bashir, A.; Abba, S.I. Implementation of soft-computing models for prediction of flexural strength of pervious concrete hybridized with rice husk ash and calcium carbide waste. Model. Earth Syst. Environ. 2021, 1–15. [Google Scholar] [CrossRef]
- Haruna, S.I.; Malami, S.I.; Adamu, M.; Usman, A.G.; Farouk, A.; Ali, S.I.A.; Abba, S.I. Compressive Strength of Self-Compacting Concrete Modified with Rice Husk Ash and Calcium Carbide Waste Modeling: A Feasibility of Emerging Emotional Intelligent Model (EANN) Versus Traditional FFNN. Arab. J. Sci. Eng. 2021, 46, 11207–11222. [Google Scholar] [CrossRef]
- Musa, B.; Yimen, N.; Abba, S.; Adun, H.; Dagbasi, M. Multi-State Load Demand Forecasting Using Hybridized Support Vector Regression Integrated with Optimal Design of Off-Grid Energy Systems—A Metaheuristic Approach. Processes 2021, 9, 1166. [Google Scholar] [CrossRef]
- Mahmoud, K.; Bebiş, H.; Usman, A.G.; Salihu, A.N.; Gaya, M.S.; Dalhat, U.F.; Abdulkadir, R.A.; Jibril, M.B.; Abba, S.I. Prediction of the effects of environmental factors towards COVID-19 outbreak using AI-based models. IAES Int. J. Artif. Intell. (IJ-AI) 2021, 10, 35–42. [Google Scholar] [CrossRef]
- Yaseen, Z.M.; Sulaiman, S.O.; Deo, R.C.; Chau, K.-W. An enhanced extreme learning machine model for river flow forecasting: State-of-the-art, practical applications in water resource engineering area and future research direction. J. Hydrol. 2018, 569, 387–408. [Google Scholar] [CrossRef]
- Abba, S.I.; Abdulkadir, R.A.; Sammen, S.S.; Usman, A.G.; Meshram, S.G.; Malik, A.; Shahid, S. Comparative implementation between neuro-emotional genetic algorithm and novel ensemble computing techniques for modelling dissolved oxygen concentration. Hydrol. Sci. J. 2021, 66, 1584–1596. [Google Scholar] [CrossRef]
- Sammen, S.S.; Ehteram, M.; Abba, S.I.; Abdulkadir, R.A.; Ahmed, A.N.; El-Shafie, A. A new soft computing model for daily streamflow forecasting. Stoch. Hydrol. Hydraul. 2021, 35, 2479–2491. [Google Scholar] [CrossRef]
- Pham, Q.B.; Abba, S.I.; Usman, A.G.; Linh, N.T.T.; Gupta, V.; Malik, A.; Costache, R.; Vo, N.D.; Tri, D.Q. Potential of Hybrid Data-Intelligence Algorithms for Multi-Station Modelling of Rainfall. Water Resour. Manag. 2019, 33, 5067–5087. [Google Scholar] [CrossRef]
- Pham, Q.B.; Gaya, M.; Abba, S.; Abdulkadir, R.; Esmaili, P.; Linh, N.T.T.; Sharma, C.; Malik, A.; Khoi, D.N.; Dung, T.D.; et al. Modelling of Bunus regional sewage treatment plant using machine learning approaches. Desalination Water Treat. 2020, 203, 80–90. [Google Scholar] [CrossRef]
- Lakshmi, D.; Akhil, D.; Kartik, A.; Gopinath, K.P.; Arun, J.; Bhatnagar, A.; Rinklebe, J.; Kim, W.; Muthusamy, G. Artificial intelligence (AI) applications in adsorption of heavy metals using modified biochar. Sci. Total Environ. 2021, 801, 149623. [Google Scholar] [CrossRef]
- Kazemi, S.; Hosseini, S. Comparison of spatial interpolation methods for estimating heavy metals in sediments of Caspian Sea. Expert Syst. Appl. 2011, 38, 1632–1649. [Google Scholar] [CrossRef]
- Usman A., G.; Işik, S.; Abba, S.I. A Novel Multi-model Data-Driven Ensemble Technique for the Prediction of Retention Factor in HPLC Method Development. Chromatographia 2020, 83, 933–945. [Google Scholar] [CrossRef]
- Usman, A.G.; Işik, S.; Abba, S.I.; Meriçli, F. Chemometrics-based models hyphenated with ensemble machine learning for retention time simulation of isoquercitrin in Coriander sativum L. using high-performance liquid chromatography. J. Sep. Sci. 2020, 44, 843–849. [Google Scholar] [CrossRef] [PubMed]
- Abba, S.I.; Pham, Q.B.; Usman, A.G.; Linh, N.T.T.; Aliyu, D.S.; Nguyen, Q.; Bach, Q.-V. Emerging evolutionary algorithm integrated with kernel principal component analysis for modeling the performance of a water treatment plant. J. Water Process. Eng. 2020, 33, 101081. [Google Scholar] [CrossRef]
- Yeskis, D.; Zavala, B. Ground-Water Sampling Guidelines for Superfund and RCRA Project Managers; U.S. Environmental Protection Agency: Chicago, IL, USA, 2022.
- Alas, M.; Ali, S.I.A.; Abdulhadi, Y.; Abba, S.I. Experimental Evaluation and Modeling of Polymer Nanocomposite Modified Asphalt Binder Using ANN and ANFIS. J. Mater. Civ. Eng. 2020, 32, 04020305. [Google Scholar] [CrossRef]
- Eshragh, F.; Pooyandeh, M.; Marceau, D.J. Automated negotiation in environmental resource management: Review and assessment. J. Environ. Manag. 2015, 162, 148–157. [Google Scholar] [CrossRef]
- Licznar, P.; Nearing, M.A. Artificial neural networks of soil erosion and runoff prediction at the plot scale. Catena 2003, 51, 89–114. [Google Scholar] [CrossRef]
- Ramadan, Z.; Hopke, P.K.; Johnson, M.J.; Scow, K.M. Application of PLS and back-propagation neural networks for the es-timation of soil properties. Chemom. Intell. Lab. Syst. 2005, 75, 23–30. [Google Scholar] [CrossRef]
- Zhao, Z.; Meng, F.-R.; Yang, Q.; Zhu, H. Using Artificial Neural Networks to Produce High-Resolution Soil Property Maps. In Advanced Applications for Artificial Neural Networks; El-Shahat, A., Ed.; IntechOpen: London, UK, 2017. [Google Scholar] [CrossRef] [Green Version]
- Guzman, S.M.; Paz, J.O.; Tagert, M.L.M.; Mercer, A.E. Evaluation of Seasonally Classified Inputs for the Prediction of Daily Groundwater Levels: NARX Networks Vs Support Vector Machines. Environ. Model. Assess. 2018, 24, 223–234. [Google Scholar] [CrossRef]
- Karmy, J.P.; López, J.; Maldonado, S. Simultaneous model construction and noise reduction for hierarchical time series via Support Vector Regression. Knowl.-Based Syst. 2021, 232, 107492. [Google Scholar] [CrossRef]
- Vapnik, V.N. The Nature of Statistical Learning Theory; Springer: Cham, Switzerland, 1995. [Google Scholar]
- Akinpelu, A.A.; Ali, E.; Owolabi, T.O.; Johan, M.R.; Saidur, R.; Olatunji, S.O.; Chowdbury, Z. A support vector regression model for the prediction of total polyaromatic hydrocarbons in soil: An artificial intelligent system for mapping environmental pollution. Neural Comput. Appl. 2020, 32, 14899–14908. [Google Scholar] [CrossRef]
- Achieng K., O. Modelling of soil moisture retention curve using machine learning techniques: Artificial and deep neural net-works vs. support vector regression models. Comput. Geosci. 2019, 133, 104320. [Google Scholar] [CrossRef]
- Taghizadeh-Mehrjardi, R.; Schmidt, K.; Toomanian, N.; Heung, B.; Behrens, T.; Mosavi, A.; Band, S.S.; Amirian-Chakan, A.; Fathabadi, A.; Scholten, T. Improving the spatial prediction of soil salinity in arid regions using wavelet transformation and support vector regression models. Geoderma 2020, 383, 114793. [Google Scholar] [CrossRef]
- Were, K.; Bui, D.T.; Dick, Ø.B.; Singh, B.R. A comparative assessment of support vector regression, artificial neural networks, and random forests for predicting and mapping soil organic carbon stocks across an Afromontane landscape. Ecol. Indic. 2015, 52, 394–403. [Google Scholar] [CrossRef]
- Sihag, P.; Tiwari, N.K.; Ranjan, S. Support vector regression-based modeling of cumulative infiltration of sandy soil. ISH J. Hydraul. Eng. 2018, 26, 44–50. [Google Scholar] [CrossRef]
- Pasolli, L.; Notarnicola, C.; Bruzzone, L. Estimating Soil Moisture with the Support Vector Regression Technique. IEEE Geosci. Remote Sens. Lett. 2011, 8, 1080–1084. [Google Scholar] [CrossRef]
- Liu, N.; Zhao, G.; Liu, G. Accurate SWASV detection of Cd (II) under the interference of Pb (II) by coupling support vector re-gression and feature stripping currents. J. Electroanal. Chem. 2021, 889, 115227. [Google Scholar] [CrossRef]
- Liu, N.; Zhao, G.; Liu, G. Coupling Square Wave Anodic Stripping Voltammetry with Support Vector Regression to Detect the Concentration of Lead in Soil under the Interference of Copper Accurately. Sensors 2020, 20, 6792. [Google Scholar] [CrossRef]
- Yousefi, G.; Homaee, M.; Norouzi, A.A. Estimating soil heavy metals concentration at large scale using visible and near-infrared reflectance spectroscopy. Environ. Monit. Assess. 2018, 190, 513. [Google Scholar] [CrossRef]
- Hoekstra A., Y.; Chapagain, A.K.; Mekonnen, M.M.; Aldaya, M.M. The Water Footprint Assessment Manual: Setting the Global Standard; Earthscan: London, UK, 2011. [Google Scholar]
- Muratoglu, A. Grey water footprint of agricultural production: An assessment based on nitrogen surplus and high-resolution leaching runoff fractions in Turkey. Sci. Total Environ. 2020, 742, 140553. [Google Scholar] [CrossRef]
- Morera, S.; Corominas, L.; Poch, M.; Aldaya, M.M.; Comas, J. Water footprint assessment in wastewater treatment plants. J. Clean. Prod. 2016, 112, 4741–4748. [Google Scholar] [CrossRef] [Green Version]
- Choudhury, H.; Cary, R. Barium and Barium Compounds; World Health Organization: Geneva, Switzerland, 2001.
- Keshavarzi, A.; Sarmadian, F.; Omran, E.-S.E.; Iqbal, M. A neural network model for estimating soil phosphorus using terrain analysis. Egypt. J. Remote Sens. Sp. Sci. 2015, 18, 127–135. [Google Scholar] [CrossRef] [Green Version]
- de Melo, T.M.; Pedrollo, O.C. Artificial neural networks for estimating soil water retention curve using fitted and measured data. Appl. Environ. Soil Sci. 2015, 2015, 535216. [Google Scholar] [CrossRef] [Green Version]
- Pham B., T.; Singho, S.K.; Ly, H.-B. Using Artificial Neural Network (ANN) for prediction of soil coefficient of consolidation. Vietnam J. Earth Sci. 2020, 42, 311–319. [Google Scholar]
- Khan, M.S.; Ivoke, J.; Nobahar, M.; Amini, F. Artificial Neural Network (ANN) based Soil Temperature model of Highly Plastic Clay. Geéomeéch. Geoengin. 2021, 1–17. [Google Scholar] [CrossRef]
- Shadrin, D.; Pukalchik, M.; Kovaleva, E.; Fedorov, M. Artificial intelligence models to predict acute phytotoxicity in petroleum contaminated soils. Ecotoxicol. Environ. Saf. 2020, 194, 110410. [Google Scholar] [CrossRef]
Calibration Phase | Verification Phase | |||||
---|---|---|---|---|---|---|
Model | NSE | MSE | RMSE | NSE | MSE | RMSE |
AG-ANN-Zn | 0.7087 | 47.2766 | 6.8758 | 0.7038 | 44.5276 | 6.6729 |
AG-ANN-Cu | 0.6471 | 29.3537 | 5.4179 | 0.6535 | 18.1850 | 4.2644 |
AG-ANN-Cr | 0.6467 | 129.9120 | 11.3979 | 0.6892 | 73.0208 | 8.5452 |
Ag-ANN-Pb | 0.9175 | 8.4408 | 2.9053 | 0.8615 | 9.1211 | 3.0588 |
AG-SVR-Zn | 0.6394 | 58.5171 | 7.6496 | 0.6414 | 33.7146 | 5.8064 |
AG-SVR-Cu | 0.5165 | 40.2166 | 6.3417 | 0.5153 | 48.1094 | 6.8477 |
AG-SVR-Cr | 0.7898 | 77.3022 | 8.7922 | 0.7244 | 11.3772 | 3.3730 |
AG-SVR-Pb | 0.9156 | 8.6432 | 2.9399 | 0.8706 | 7.8771 | 2.8066 |
ID-ANN-Zn | 0.9949 | 169.2347 | 13.0090 | 0.8624 | 34.3614 | 5.8619 |
ID-ANN-Cu | 0.9709 | 19.3972 | 4.4042 | 0.9203 | 16.0177 | 4.0022 |
ID-ANN-Cr | 0.9999 | 0.7317 | 0.8554 | 0.9994 | 0.3002 | 0.5479 |
ID-ANN-Pb | 0.8451 | 131.7541 | 11.4784 | 0.7935 | 15.7520 | 3.9689 |
ID-SVR-Zn | 0.9853 | 484.2152 | 22.0049 | 0.8904 | 25.7545 | 5.0749 |
ID-SVR-Cu | 0.8705 | 86.2372 | 9.2864 | 0.8401 | 13.2993 | 3.6468 |
ID-SVR-Cr | 0.8015 | 996.3607 | 31.5652 | 0.8062 | 544.0536 | 23.3250 |
ID-SVR-Pb | 0.8327 | 142.3087 | 11.9293 | 0.8385 | 19.1382 | 4.3747 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tawabini, B.; Yassin, M.A.; Benaafi, M.; Adetoro, J.A.; Al-Shaibani, A.; Abba, S.I. Spatiotemporal Variability Assessment of Trace Metals Based on Subsurface Water Quality Impact Integrated with Artificial Intelligence-Based Modeling. Sustainability 2022, 14, 2192. https://doi.org/10.3390/su14042192
Tawabini B, Yassin MA, Benaafi M, Adetoro JA, Al-Shaibani A, Abba SI. Spatiotemporal Variability Assessment of Trace Metals Based on Subsurface Water Quality Impact Integrated with Artificial Intelligence-Based Modeling. Sustainability. 2022; 14(4):2192. https://doi.org/10.3390/su14042192
Chicago/Turabian StyleTawabini, Bassam, Mohamed A. Yassin, Mohammed Benaafi, John Adedapo Adetoro, Abdulaziz Al-Shaibani, and S. I. Abba. 2022. "Spatiotemporal Variability Assessment of Trace Metals Based on Subsurface Water Quality Impact Integrated with Artificial Intelligence-Based Modeling" Sustainability 14, no. 4: 2192. https://doi.org/10.3390/su14042192
APA StyleTawabini, B., Yassin, M. A., Benaafi, M., Adetoro, J. A., Al-Shaibani, A., & Abba, S. I. (2022). Spatiotemporal Variability Assessment of Trace Metals Based on Subsurface Water Quality Impact Integrated with Artificial Intelligence-Based Modeling. Sustainability, 14(4), 2192. https://doi.org/10.3390/su14042192