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Abstract: Increasing anthropogenic emissions due to rapid industrialization have triggered environ-
mental pollution and pose a threat to the well-being of the ecosystem. In this study, the first scenario
involved the spatio-temporal assessment of topsoil contamination with trace metals in the Dammam
region, and samples were taken from 2 zones: the industrial (ID), and the agricultural (AG) area.
For this purpose, more than 130 spatially distributed samples of topsoil were collected from residen-
tial, industrial, and agricultural areas. Inductively coupled plasma—optical emission spectroscopy
(ICP-OES)—was used to analyze the samples for various trace metals. The second scenario involved
the creation of different artificial intelligence (AI) models, namely an artificial neural network (ANN)
and a support vector regression (SVR), for the estimation of zinc (Zn), copper (Cu), chromium (Cr),
and lead (Pb) using feature-based input selection. The experimental outcomes depicted that the
average concentration levels of HMs were as follows: Chromium (Cr) (31.79 ± 37.9 mg/kg), Copper
(Cu) (6.76± 12.54 mg/kg), Lead (Pb) (6.34± 14.55 mg/kg), and Zinc (Zn) (23.44± 84.43 mg/kg). The
modelling accuracy, based on different evaluation criteria, showed that agricultural and industrial
stations showed performance merit with goodness-of-fit ranges of 51–91% and 80–99%, respectively.
This study concludes that AI models could be successfully applied for the rapid estimation of soil
trace metals and related decision-making.

Keywords: artificial intelligence; Dammam; heavy metals; topsoil; Saudi Arabia

1. Introduction

Generally, heavy metals (HMs) and trace elements (TE) are among the most critical
environmental problems. They may be found in soils, water, and the environment, and they
pose a severe threat to water scarcity, water quality, and groundwater contamination [1,2].
In recent years, HMs contamination of the environment has been a growing environmen-
tal and public health problem around the world. Furthermore, due to an exponential
expansion in their usage in various activities such as agriculture, industry, technology,
and urban applications, human exposure has increased considerably [1,2]. According to
the World Health Organization (WHO), the ecosystem has been endangered with several
physiochemical such as DO (dissolved oxygen), TOC (total organic carbon), pH, BOD
(biological oxygen demand), EC (conductivity), TDS (total dissolved solids), temperature,
TSS (total suspended solids), turbidity, total alkalinity, COD (chemical oxygen demand),
nutrients, and HMs elements as a result of rapid industrialization, agricultural, and ur-
banization trends [3]. For decades, technical research has been conducted with the aim of
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minimizing the concentration levels of common HMs in the environment based on various
case studies (such as mining, agriculture, food industries, etc.). It is well known that the
experimental and physics-based approaches implemented to control the HMs which are
generally associated with high costs and resource consumption due to the uncertain, intri-
cate, and dynamic nature of the contaminants. In addition, such methodologies necessitate
skilled management and supervision as a result of heterogeneity, kinetic phenomena, and
geological and spatio-temporal variability [4–6].

Generally, HMs or trace elements are found in trace concentrations in soils and parent
rock formations. They occur in the environment naturally, with broad changes in concen-
tration [7]. Emissions from anthropogenic activities have significantly increased the pace
of contamination, contributing to a rise in HMs in our ecosystem. Trace metals such as
Fe, Co, Cu, Mn, and Mo are essential in varying levels for flora and fauna. Enormous
concentrations of HMs, on the other hand, might be harmful to organisms. Certain trace
minerals, such as Hg, Pu, and Pd, have been proven to be hazardous metal elements, and
their buildup in human bodies over time can be harmful. HMs are present in minute levels
in soil and rocks, either naturally or as a result of human activity on the surface of the
Earth [8]. Trace metals including Al, As, Cu, Cd, Fe, Ni, Hg, Pd, and Se are employed in the
production of various commodities, which raises their naturally existing concentrations,
making them available as industrial waste and occasionally accumulating in the ecosystem.
Moreover, based on the kind of factories, HMs in the industrial region and those adjacent
to it are predicted to be at increased levels. For example, Cd levels in Helena, U.S.A.,
which happens to contain a smelting company, were found to be 72 mg/kg inside and
1.4 mg/kg between 18 and 60 km away [9,10]. Massive HMs emissions and accumulation
have been attributed to agricultural and industrial processes, requiring the international
community’s specific attention. The natural ecosystem is being polluted by constant human
activities with different pollution classifications such as water, air, noise, and soil. At high
concentrations, these HMs may cause serious harm to sustainable development and pose
significant health problems for humans and animals. Understanding these contaminants
from various sources is essential for public health and environmental management.

According to Bazoobandi et al. [11] mining industries and agriculture are the primary
source of HMs, which cause a significant imbalance in physiochemical and physical proper-
ties [12]. In line with this, both Yaseen [3] and Yu et al. [13] reported that the concentration
of toxic metals is usually identified in specialized laboratories, but numerous limitations are
still faced, such as the cost of field monitoring and resources, as well as the time gap between
data collection, analysis, and reporting. Estimation approaches have been developed to
overcome these concerns, thus reducing the expense of environmental monitoring and pro-
viding early warnings during periods of HMs contamination. Although they can provide
efficient monitoring and detection of water contamination, soil remediation and restoration
are complex and sometimes impossible. HMs in the soil comprise various traditional
assessing approaches. For example, atomic spectrometry has been used correctly even
though it is expensive, time-consuming, and resource-consuming. Other methods include
separation, chromatography, and more [14,15]. Scientists must identify both point- and non-
point source HMs from industries and agricultural soils at the local level due to the high
spatial diversity of HMs in soils, the wide range of contamination causes, and inadequate
long-term monitoring data; therefore, finding appropriate approaches to address this issue
is critical. Simulations using soft computing methodologies represent a powerful strategy
in HM source analysis and have shown promise for resolving all of these challenges [16].
The implementation of computer simulations, i.e., artificial Intelligence (AI), can reduce the
enormous economic stress on hydro-environmental science, spatial-geological science, and
engineering in terms of labor, cost, time, and space requirements.

AI and other computational machine learning models have been recently developed
and have been demonstrated to be effective in comparison to various classical, statistical
physics-based, and mathematical models [17–20]. The promising applications of AI-based
models are not limited to the understanding and removal of HMs but also extend to the
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system identification of science and engineering problems [21–27]. The superiority of
data-driven models is attributed to certain factors, such as the building of models, type
of learning, data type, and basin characteristics. Hence, achieving complex modelling
such as that required for HMs requires both black-box and white-box expertise to facilitate
the stochastic and experimental process [28–31]. Despite a number of published technical
studies on the simulation of HMs using AI-based models such as artificial neural networks
(ANN), adaptive neuro-fuzzy inference systems (ANFIS), support vector machines (SVM),
etc. others that work on the application of AI in the rea of HMs include [12,16,32,33].
Recently, Yaseen [3] conducted a comprehensive review for modelling HMs using soft
computing models. In this regard, the established works from 2000–2021 indicate that there
is clear interest in this domain (HMs simulation) around the world.

Although various studies of AI-based HMS simulation have been published, several
aspects should be explored with respect to the long-term viability of modelling HMs. The
current discussion is centered on the limitations of traditional and chemometric methodolo-
gies. There is a need for new data pre-processing, such as feature selection and spatiotem-
poral linkage using remote sensing (RS) and geographical information systems (GIS) to
understand the processes of chemical reaction and energy balance. Although conducting
environmental impact assessment (EIA) studies and monitoring programs are required
by Saudi environmental regulations, only minimal soil pollution studies in the Kingdom
have been reported. The objective of the current study is to: (i) assess the geochemical
condition of HM contamination of topsoil in the Dammam Region, Eastern Saudi Arabia,
based on different spatio-distributed samples from the industrial and agriculture areas:
(ii) to employ the capability of different AI-based models based on the dependency feature
selection approach on two essential HMs. The principal motivation of this study is to
conduct sensitivity analysis to inspect the potential influence of various parameters on the
target variables, which will ease the selection attribute.

2. Study Area and Sample Locations

Dammam is located between latitudes 26◦20′ and 26◦32′ and longitudes 49◦49′ and
50◦09′. It is an important port on the Arabian Gulf in the east of Saudi Arabia. It is the
largest city in the eastern region with a population of over a million. The most important
centers in the world for the production and refining of petroleum are located close by. It
is also surrounded by many farms that produce dates and other fruits and vegetables. It
also has two (2) main industrial cities for small to medium size industries. Dammam has
recently experienced migration, sub-urbanization, and rapid industrialization. As stated
above, the geological Map and AG and ID areas were considered and are presented in
Figure 1. The top soil samples were collected in 132 locations from 4 different locations
in the Dammam area over a two (2) month period (i.e., February to March 2014). The
procedure is considered as a powerful acid digesting process capable of dissolving all
elements that are naturally widespread in the environment.
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Figure 1. The geological Map and sample locations.

3. Proposed Methodology

The modelling was carried out using the experimental data on the trace metals levels
in the topsoil of the Dammam Area, Saudi Arabia. The average and standard deviation
of each factor under consideration for each zone are included in the data summary. Each
trace metal’s concentration is measured in milligrams per kilogram of body weight. Data
(inputs and outputs) were prepared for each of the eleven (11) elements under study,
namely Arsenic (As), Barium (Ba), Cadmium (Cd), Chromium (Cr), Copper (Cu), Mercury
(Hg), Nickel (Ni), Lead (Pb), Titanium (Ti), Vanadium (V), and Zinc (Zn). The viability of
using soft computing to estimate trace metals was investigated in this work. As a result,
selecting the best methodology or the most appropriate solution for a particular situation is
challenging for forecasters. Data pre-processing such as data normalization, outlier removal,
cleaning, and detecting the missing data was carried out for all the inputs and outputs
before the development of the models, and cross-validation was employed to ensure there
was no overfitting or underfitting in the training and testing data. The splitting of the data
was performed using 70% for calibration and 30% for verification [34–36]. Furthermore,
10-k-fold cross-validation was employed during the modelling. In this technique, the data
is split into k-fold equal number of sets. On the first trial, the first set was used as the test
data, while the remaining sets were used to train the model. On the subsequent trial, the
second set was used as the test set. In reality, determining whether one feature selection is
superior to another is challenging. Hence this study employed correlation-based feature
selection to understand the relationship between the AG and ID stations (Figure 2a,b).
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3.1. Analysis of Soil Sampling

Experimental samples were produced according to the USEPA technique 3050B for
soil, sediment, and sludge digestion [37]. Subsequently, they were evaluated using an
Inductively Coupled Plasma-optical Emission Spectrometer (ICP-OES), from SPECTRO
Analytical Instruments Germany [37]. The chemical reagent employed complied with
the standards of the ACSCAR (American Chemical Society’s Committee on Analytical
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Reagents). Distilled water (DI), concentrated nitric acid (HNO3), concentrated hydrochloric
acid (HCl), and 30% hydrogen peroxide are examples of such reagents (H2O2). Because
the digestion required the use of acid, it was done in a fume hood under the supervision
of an expert and with the certified and recommended laboratory safety equipment. The
equipment was calibrated using a multi-element standard solution. To confirm the equip-
ment’s appropriateness and accuracy, six working standard samples and one blank were
used. Each batch of processed samples was also subjected to quality control techniques.
Each batch had 20 samples: one duplicate, two spiked samples, two blank samples, and
two standard samples.

For sampling purposes, the Dammam area was divided into four (4) zones: residential
(R), industrial (ID), agricultural (AG), and background (BG) areas; however, for this study,
only the AG and ID areas were considered, as shown in Figure 3. The background area was
selected west of Dammam, away from any known industrial, agriculture, or residential
activities. From each zone, 33 representative samples were collected, with a total of
132 samples. Representative soil samples of a uniform soil type in each sampling zone
were collected using an auger at a depth of 10–15 cm. Geographical coordinates of all
sample locations were recorded with the aid of handheld Global Positioning System (GPS)
instruments (Garmen Handheld, ETrex 20). However, google maps, google street view,
and satellite imagery were used in deciding the best sample locations and also helped
in avoiding sampling repetition. The samples collected were then stored in polythene
bags, placed in a hard box casing, and transported to the environmental laboratory at the
Geosciences Department of KFUPM.
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3.2. Artificial Neural Network (ANN)

The ANN is a form of artificial intelligence based on the study of human neurons to
simulate how the human brain processes information [38]. It is a computational model
that produces outputs of the received inputs through several processing elements based on
their predefined activation function. It has the ability to analyze the relationship between
the inputs from multiple sources in an intuitive way [39] (Figure 4). For soil application,
the ANN has been used to predict soil properties with reasonable accuracy by several
researchers. Licznar and Nearing [40] used the ANN to predict soil erosion and runoff.
Ramadan et al. [41] applied the ANN to estimate the percentage of some soil properties (clay,
sand, silt, and organic carbon) from a microbial community DNA dataset. Zhao et al. [42]
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produced high-resolution maps of soil properties (soil texture, soil organic carbon, and soil
drainage) based on DEM-generated topo-hydrological data.
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3.3. Support Vector Regression (SVR)

A support vector machine (SVR) is a machine learning technique that is widely used
to perform classification and regression analysis using data analysis and pattern recogni-
tion [43,44]. It was developed by Vapnik [45], as shown in Figure 5. The SVR has been used
as a standalone technique or combined with other machine learning techniques (e.g., ANN)
to predict, map, and model soil properties (e.g., soil moisture, infiltration rate, soil salinity,
organic content, total hydrocarbon etc.) in several studies, such as [46–51]. In the literature,
it has been reported that SVR models have been utilized by several researchers to estimate
the concentration of trace and heavy metals in soil [52–54]. Equation (1) represents the SVR
function with notations xk and m as the support vectors and their numbers, while the bias
term (b) and the Lagrange coefficient αk need to be determined analytically for optimal SVR
network identification.

f (x) =
m

∑
k=1

αk.K(xk, x) + b (1)
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3.4. ‘Top Soil’s Trace Metal Impact on Subsurface Water Quality

In this regard, the issue of groundwater interaction with polluted soil is equally
crucial. This research intends to create spatial concentrations of HMs in the region’s
topsoil, the “hot spot” area, and the regional distribution of the pollutants, allowing
the authorities to monitor company operations and offer a decent quality of life for the
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general population. The presence of high quantities of trace metals in soil can contaminate
groundwater. These substances can enter aquifers through a variety of mechanisms. HMs
with geological formation; underground water contacts with the surface that contain such
metals; percolation of precipitation water, including dissolved, colloidal, and suspended
materials; and direct access from the land surface via wells are examples of such channels.
For instance, HMs include metals such as Arsenic (As), which is a naturally occurring
element in the earth’s crust. Volcanic ash, degradation of AS-containing minerals, and ores
dissolved in groundwater are some of the naturally occurring exposure mechanisms. Food,
water, earth, and air contain them [8,12,54].

The water footprint (WF) indicates the amount of freshwater used by consumers or
products in direct or indirect ways [55]. It is an accepted international indicator that reflects
the human impact on the quantity and quality of water resources [56]. The water footprint
consists of three types: GWF (green water footprint), BWF (blue water footprint), and
gray WF (gray water footprint). The green water footprint (GWF) indicates the volume of
rainwater consumed to produce a product or service. In other terms, it relates to the quantity
of water from rainfall that is either lost by evaporation and transpiration or absorbed by
plants after being held in the root zone of the soil (called green water). However, the amount
of water obtained from sources such as groundwater and surface bodies are referred to as
BWF. This type of water can also originate from several sources, including shallow and deep
aquifers, lakes, rivers, and wetlands, which indicates the amount of groundwater and surface
water used in the service production [57]. The grey WF refers to the quantity of water used
to dilute a certain amount of contamination in order to meet the required standard. Gray WF
was introduced to meet the needs of the ambient water quality standards by considering the
essential water volume for the dilution of the commercial, agricultural, and mining industries,
as well as municipal discharges, ranging from point and non-point sources of pollution.
To meet the need of several international health bodies and to maintain environmental
sustainability as stated by sustainable development goals, these three WF indicators emerged
as essential requirements for measuring environmental indicators (Figure 6).
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4. Results and Discussion

The overall well-being of individuals and groups has attracted the global community’s
interest for decades. Such well-being cannot be measured purely by income and jobs,
but also by the sustainability of the built environment and the inhabitants’ physical and
mental health. Dammam has seen significant urbanization and industrialization due to the
discovery and production of oil and gas, as well as petrochemical and other industries. The
area has become more urbanized due to industrialization, necessitating an evaluation of
the topsoil in the area because many of the industries in the vicinity have the potential to
release harmful HMs into the ecosystem. As mentioned in Section 1, the complex nature of
HMs and associated elements tends to introduce an emerging soft computing knowledge
and the internet of things. This study aims to assess different trace elements’ concentrations
and spatial distributions at the selected AG and ID zones. Additionally, machine learning
is applied for the simulation and modelling of four HMs: Zn, Cu, Cr, and Pb. Other trace
elements can also be simulated using the feasibility of the same approach.

4.1. Spatiotemporal Analysis of Trace Metals

The American Association of State Highway and Transportation Officials (AASHTO)
sieve analysis procedure was adopted to assess the concentrations and spatial distributions
of different trace elements in the AG and ID areas. This provided a method for addressing
soil research through a systematic and thorough methodology. The grain size distribution
and soil consistency were used to classify soil characteristics. The topsoil was classified
using a unified soil classification method. The geochemical map of the sample sites was
created using AutoCAD (Autodesk: San Rafael, CA, USA) and ArcMap (Esri: Redlands,
CA, USA) software. During sample collection, a portable GPS was used to record sample
locations. The geochemical spatial distribution map of each element discovered in the
different regions was then created using Surfer 8 software (Golden Software: Golden,
CO, USA). After analysis, the trace metal content in each place was combined with the
geographical coordinates of each sample location obtained during sample collection. The
levels of metals are presented below in parenthesis with the mean levels followed by
the maximum level detected in (mg/kg) in the sampled locations. Since the Kingdom of
Saudi Arabia does not have well-defined guidelines regarding the limits of trace metals
in soil, the Canadian Environmental Soil Quality Guidelines (CESQG) standards for the
Protection of Environment and Human Health (PEHH) were adopted for comparison
purposes. The results of the study showed that barium (Ba) was higher in industrial
areas (Median = 120.90 mg/kg, Max = 1966.50 mg/kg, Min = 0.00 mg/kg), followed by
agricultural (Median = 32.78 mg/kg, Max = 100.650 mg/kg, Min = 7.80 mg/kg), and
residential areas (Median = 33.77 mg/kg, Max = 98.55 mg/kg, Min = 0.33 mg/kg) (Figure 7).

Some of the samples from the industrial areas exceeded the allowable limit of 500 mg/kg.
The elevated levels of Ba in industrial areas can be associated with the use of Ba com-
pounds or oxides for several industrial activities [58]. Barium nitrate is used in fire-
works to give them a green colour. Chromium (Cr) was highest in industrial soil sam-
ples (Median = 26.99 mg/kg, Max = 247.60 mg/kg, Min = 0.12 mg/kg), followed by the
residential area (Median = 25.65 mg/kg, Max = 120.20 mg/kg, Min = 0.07 mg/kg) and
the agricultural areas (Median = 23.12 mg/kg, Max = 74.70 mg/kg, Min = 3.03 mg/kg).
Some of the samples from each of the three sampled areas measured above the allowable
limit of 74 mg/kg. The elevated levels of Cr in agricultural soil may be attributed either
to natural sources or atmospheric deposition of Cr containing compounds, as presented
in Figure 7. However, the concentration of Zinc (Zn) was highest in the industrial area
(Median = 10.88 mg/kg, Max = 676.50 mg/kg, Min = 0.10 mg/kg), followed by the agricul-
tural (Median = 9.65 mg/kg, Max = 46.73 mg/kg, Min = 1.02 mg/kg) and residential areas
(Median = 4.87 mg/kg, Max = 30.54 mg/kg, Min = 0.01 mg/kg). None of the samples ex-
ceeded the allowable limit of 200 mg/kg (see, Figure 7). Nickel (Ni) was highest in the indus-
trial area (Median = 11.60 mg/kg, Max = 45.20 mg/kg, Min = 4.76 mg/kg), followed by the
agricultural (Median = 8.68 mg/kg, Max = 16.25 mg/kg, Min = 4.60 mg/kg) and residential
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areas (Median = 6.07 mg/kg, Max = 13.23 mg/kg, Min = 2.25 mg/kg). None of the samples
exceeded the allowable limit of 50 mg/kg (see, Figure 7). The Copper (Cu) level was highest
in the industrial area (Median = 3.94 mg/kg, Max = 95.75 mg/kg, Min = 0.18 mg/kg), fol-
lowed by the agricultural (Median = 8.66 mg/kg, Max = 31.64 mg/kg, Min = 0.97 mg/kg)
and residential areas (Median = 3.53 mg/kg, Max = 16.80 mg/kg, Min = 0.04 mg/kg). Two
of the samples from the industrial area exceeded the allowable limit of 63 mg/kg. The
elevated levels of Cu in 2 out of 33 industrial samples may be attributed to the use of Cu in
the production of electrical wires, roofing, plumbing, and industrial machinery.
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Close analysis also indicated that lead (Pb) was highest in the industrial area
(Median = 1.92 mg/kg, Max = 100.25 mg/kg, Min = 0.04 mg/kg), followed by the agri-
cultural (Median = 4.61 mg/kg, Max = 52.35 mg/kg, Min = 0.90 mg/kg) and residential
areas (Median = 1.89 mg/kg, Max = 25.60 mg/kg, Min = 0.08 mg/kg). None of the samples
exceeded the allowable limit of 140 mg/kg. Lead occurs naturally in the environment in
very small amounts. The results also showed that low levels of As, Cd, Hg, and V were
detected in the top soil samples collected in the study. As was highest in the industrial
area (1.58, 4.56), followed by the agricultural area (1.52, 3.14 mg/kg), while the lowest
level was in the residential area (Mean = 0.97 mg/kg, Max = 2.22 mg/kg). However, none
of the samples exceeded the threshold of 12 mg/kg. Cadmium (Cd) was highest in the
industrial area (Median = 0.05 mg/kg, Max = 28.69 mg/kg, Min = 0.00 mg/kg), followed
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by the residential area (Median = 0.03 mg/kg, Max = 23.01 mg/kg, Min = 0.00 mg/kg) and
the agricultural area (Median = 0.03 mg/kg, Max = 1.14 mg/kg, Min = 0.00 mg/kg). One
sample from each of the industrial and agricultural areas measured above the allowable
limit of 10 mg/kg. On the other hand, Mercury (Hg) was highest in the industrial area
(Median = 0.05 mg/kg, Max = 1.44 mg/kg, Min = 0.01 mg/kg), followed by the agri-
cultural (Median = 0.05 mg/kg, Max = 1.212 mg/kg, Min = 0.00 mg/kg) and residential
areas (Median = 0.03 mg/kg, Max = 0.59 mg/kg, Min = 0.00 mg/kg). None of the samples
exceeded the allowable limit of 6.6 mg/kg. Vanadium (V) was highest in the industrial
area (Median = 14.78 mg/kg, Max = 20.42 mg/kg, Min = 0.09 mg/kg), followed by the
agricultural (Median = 12.43 mg/kg, Max = 21.89 mg/kg, Min = 1.64 mg/kg) and residential
areas (Median = 7.62 mg/kg, Max = 17.73 mg/kg, Min = 0.02 mg/kg). None of the samples
exceeded the allowable limit of 130 mg/kg.

4.2. Simulation Using AI-Based Models

Classical techniques have been adopted for the analytical exploration, extraction,
and quantification of trace metals despite several limitations and an unrealistic way of
predicting the trace metals. As a result of AI-based technological developments and an
industrial 4.0 IoT, a more reliable and understanding estimation of trace metals can now
be achieved. To achieve the AI-based objective of this paper, a widely used AI model
(ANN) and recently employed machine learning regression (SVM) are explored to simulate
four different HMs (Zn, Cu, Cr, and Pb) in the AG and ID regions of Dammam, Saudi
Arabia (Figure 8). The sensitive nature of the data and sampling sites has been a focus
of global attention recently; on the other hand, AI-based models provide an efficient and
economic advantage that leads to strong policies related to trace elements. According
to Yaseen [3] it is clear that Zn, Cu, Cr, and Pb are the most explored HMs using soft
computing techniques owing to their hazardous nature. The selection of input variable
features is crucial for any computational development and can play an influential role in
increasing the learning and robustness of the models; this study used a Pearson-based
input combination, as mentioned above. For the ANN model, modelling was carried
out using several trial-and-error approaches to optimize the best hyper-turning variable,
such as hidden nodes, iteration, momentum parameter, and activation constant. Similarly,
SVM modelling was fine-tuned to optimize the results. The performance efficacy of the
models was evaluated using a statistical variable (NSE, MSE, RMSE). In addition to the
effective analysis in terms of the reliability of the predictive models, the quantitative and
visual presentations of the findings provide an in-depth understanding of the impact and
significance of each parameter of the proximate analysis regarding this determination.

The outcomes of the simulated models are discussed and evaluated in this section for
the AG and ID sample stations. The overall results for both the calibration and verification
are presented in Table 1. The calibration phase showed that the highest goodness-of-fit for
AG and ID are attributed to Zn (ANN = NSE = 0.7087, 0.7038), Cu (ANN = 0.6471, 0.6535),
Cr (SVR = 0.7898, 0.7244), Pb (0.9175, 0.8615), Zn (ANN = 0.9947, 0.8624), Cu (0.9709, 0.9203),
Cr (0.9999, 0.9994), and Pb (0.8451, 0.7935), respectively. The simulated model performed
consistently throughout the calibration and verification modelling processes, as evidenced
by the evaluation values of the performance indicators reported. This is common, since the
prediction models react differently depending on the simulated dataset’s learning process.

Moreover, this emphasizes that various statistical performance indicators and vi-
sualizations are used for the prediction models to be analyzed and evaluated. Further
understanding of the results is presented in the form of spider plots in Figure 9. The figure
identifies several variations of the NSE value that directly indicate the determination coeffi-
cient; the NSE establishes the relative degree of the noise or residual variance compared to
the experimental data variance. The NSE values range between AG (51–91% and 51–87%)
and ID (80–99% and 79–99%) for calibration and verification, respectively. Based on the
reported graphical visualization of spider plots, it can be seen that AI-based models (ANN
and SVR) are promising techniques for capturing nonlinear patterns of HMs. Almost all
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the ID station modelling justified merit with an NSE value above 80%. Some of the results
for AG station are within the marginal borderline, which indicates a lot of warning signals
with regard to the agricultural station.
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Table 1. Modeling results for AG and ID sampling stations.

Calibration Phase Verification Phase

Model NSE MSE RMSE NSE MSE RMSE
AG-ANN-Zn 0.7087 47.2766 6.8758 0.7038 44.5276 6.6729
AG-ANN-Cu 0.6471 29.3537 5.4179 0.6535 18.1850 4.2644
AG-ANN-Cr 0.6467 129.9120 11.3979 0.6892 73.0208 8.5452
Ag-ANN-Pb 0.9175 8.4408 2.9053 0.8615 9.1211 3.0588
AG-SVR-Zn 0.6394 58.5171 7.6496 0.6414 33.7146 5.8064
AG-SVR-Cu 0.5165 40.2166 6.3417 0.5153 48.1094 6.8477
AG-SVR-Cr 0.7898 77.3022 8.7922 0.7244 11.3772 3.3730
AG-SVR-Pb 0.9156 8.6432 2.9399 0.8706 7.8771 2.8066
ID-ANN-Zn 0.9949 169.2347 13.0090 0.8624 34.3614 5.8619
ID-ANN-Cu 0.9709 19.3972 4.4042 0.9203 16.0177 4.0022
ID-ANN-Cr 0.9999 0.7317 0.8554 0.9994 0.3002 0.5479
ID-ANN-Pb 0.8451 131.7541 11.4784 0.7935 15.7520 3.9689
ID-SVR-Zn 0.9853 484.2152 22.0049 0.8904 25.7545 5.0749
ID-SVR-Cu 0.8705 86.2372 9.2864 0.8401 13.2993 3.6468
ID-SVR-Cr 0.8015 996.3607 31.5652 0.8062 544.0536 23.3250
ID-SVR-Pb 0.8327 142.3087 11.9293 0.8385 19.1382 4.3747

Sustainability 2022, 14, x FOR PEER REVIEW 14 of 21 
 

Moreover, this emphasizes that various statistical performance indicators and visu-
alizations are used for the prediction models to be analyzed and evaluated. Further un-
derstanding of the results is presented in the form of spider plots in Figure 9. The figure 
identifies several variations of the NSE value that directly indicate the determination co-
efficient; the NSE establishes the relative degree of the noise or residual variance com-
pared to the experimental data variance. The NSE values range between AG (51–91% and 
51–87%) and ID (80–99% and 79–99%) for calibration and verification, respectively. Based 
on the reported graphical visualization of spider plots, it can be seen that AI-based models 
(ANN and SVR) are promising techniques for capturing nonlinear patterns of HMs. Al-
most all the ID station modelling justified merit with an NSE value above 80%. Some of 
the results for AG station are within the marginal borderline, which indicates a lot of 
warning signals with regard to the agricultural station. 

Table 1. Modeling results for AG and ID sampling stations. 

  Calibration Phase  Verification Phase 
Model NSE MSE RMSE NSE MSE RMSE 

AG-ANN-Zn 0.7087 47.2766 6.8758 0.7038 44.5276 6.6729 
AG-ANN-Cu 0.6471 29.3537 5.4179 0.6535 18.1850 4.2644 
AG-ANN-Cr 0.6467 129.9120 11.3979 0.6892 73.0208 8.5452 
Ag-ANN-Pb 0.9175 8.4408 2.9053 0.8615 9.1211 3.0588 
AG-SVR-Zn 0.6394 58.5171 7.6496 0.6414 33.7146 5.8064 
AG-SVR-Cu 0.5165 40.2166 6.3417 0.5153 48.1094 6.8477 
AG-SVR-Cr 0.7898 77.3022 8.7922 0.7244 11.3772 3.3730 
AG-SVR-Pb 0.9156 8.6432 2.9399 0.8706 7.8771 2.8066 
ID-ANN-Zn 0.9949 169.2347 13.0090 0.8624 34.3614 5.8619 
ID-ANN-Cu 0.9709 19.3972 4.4042 0.9203 16.0177 4.0022 
ID-ANN-Cr 0.9999 0.7317 0.8554 0.9994 0.3002 0.5479 
ID-ANN-Pb 0.8451 131.7541 11.4784 0.7935 15.7520 3.9689 
ID-SVR-Zn 0.9853 484.2152 22.0049 0.8904 25.7545 5.0749 
ID-SVR-Cu 0.8705 86.2372 9.2864 0.8401 13.2993 3.6468 
ID-SVR-Cr 0.8015 996.3607 31.5652 0.8062 544.0536 23.3250 
ID-SVR-Pb 0.8327 142.3087 11.9293 0.8385 19.1382 4.3747 

 
Figure 9. The spider-plot showing the goodness-of-fit of the models. 

For a better examination of the computational result, a graphical visualization was 
performed using scatter and time series plots. The two graphs can be used to evaluate the 
produced model’s precision. According to the NSE, the scatter plots of the models in the 
ANN and SVR models are displayed in Figure 10 (a) AG (b) ID. For most of the models in 

Figure 9. The spider-plot showing the goodness-of-fit of the models.

For a better examination of the computational result, a graphical visualization was
performed using scatter and time series plots. The two graphs can be used to evaluate the
produced model’s precision. According to the NSE, the scatter plots of the models in the
ANN and SVR models are displayed in Figure 10 (a) AG (b) ID. For most of the models in
Figure 10, the accumulation of data points is high, around the 45◦ line in the scatter plots.
The scatter plot has the critical manner of evaluating the performance of the ML model to
demonstrate the degree of deviation from the ideal line. Furthermore, as seen in the time
series plots, the trend of the predicted HMs closely matches the pattern of the individual
experimental HMs (Figure 10). These are arguments for the remarkable correlations be-
tween the projected HMs using these models and the experimental HMs, particularly at
the ID station. As a result, the models are accurate and consistent in their predictions. To
validate the promising capability of ANN and SVR models, Keshavarzi et al. [59] used an
ANN to estimate soil phosphorus by combining satellite-based topography and vegetation
data with field-based soil data. The ANN has been used to estimate the soil water retention
curve based on field-based soil data [60]. Recently, Pham et al. [61] used the ANN to predict
the soil coefficient of consolidation as a mechanical parameter to define the compaction
or consolidation status of the soil. Khan et al. [62] establish an ANN-predictive model of
soil temperature as geotechnical properties of clay-rich soil using a field dataset. Most of
these studies have used an ANN to predict the temporal variation of the heavy and trace
metals in soil [63]. The SVR is widely used owing to its optimization objective, since it aims
to minimize the generalized error bound instead of the sum squared errors between the
actual and predicted outputs that are peculiar in polynomial regression. Figure 11 depicts
the time series plot for the models.
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Figure 10. Scatter plot between the observed and simulated models (a) AG (b) ID stations.
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Figure 11. Time series plot for (a) AG and (b) ID stations.

It is clear that the AI-based model implementation outperformed the traditional
models in capturing the pattern of the system. Additionally, careful examination of the
error plot in Figure 12 indicates that the ANN model generated the smallest error term of
RMSE at both the AG and ID stations. The discrepancies between the range of observed
and predicted values in most of the models are within the acceptable limit despite some
variations observed for ID-SVR-Cr in the verification phase. The error evaluation criteria
depict the extent of the closeness of the predicted results to the observed values. Essentially,
lower values are indications of a better correlation of the developed model. It is important
to note that various factors influence the concentration of trace elements, including not
only physiochemical but also hydrological, climatic, and Lithological factors. As a result,
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examining the AI model’s capabilities with restricted input data is more advantageous for
low-income and developing nations that lack the resources to create a broader range of
input variables, such as hydrological and meteorological variables.

Sustainability 2022, 14, x FOR PEER REVIEW 18 of 21 
 

 
Figure 12. Error plot in terms of RMSE-values for both (a) AG and (b) ID stations. 

5. Conclusions 
The primary objective of this study was to use an integrated scenario, (i) integrating 

the GIS to evolve the spatial distribution of HMs in the eastern province of Dammam area, 
which was accomplished successfully. The outcomes of the field and laboratory tests re-
vealed that some collected samples had exceeded the standard range, and (ii) the study 
employed AI-based models, namely ANN and SVR, to control and understand the feasi-
bility of simulating trace metals in the topsoil. The concentration of ten essential trace 
metals in the soils of the Dammam area followed a general trend in almost all metals. They 
were found at higher concentrations in the samples taken from the soils of industrial areas, 
followed by agricultural and residential areas. Only in a few of the samples were the max-
imum levels higher than the allowable limits. However, the mean concentration of all met-
als exceeded the allowable thresholds. These findings provide relief that the concentra-
tions of all the metals studied were within acceptable limits, and they pose no immediate 
threat to the environment. Ultimately, the natural environmental resources, as well as an-
imal and human health, might be exposed to the risks/hazards associated with these met-
als. The modelling approach indicated that ANN and SVR models are capable of estimat-
ing the HMs with high accuracy, especially in the ID stations. However, AG stations are 
within the range of marginal-to-good accuracy. This showed that more robust models 
need to be explored, such as adaptive neuro-fuzzy inference systems (ANFIS), Elman neu-
ral networks, extreme learning machines (ELM), hybrid models, and optimization algo-
rithms, to boost the accuracy of the predictions. 

Author Contributions: Conceptualization, B.T., and S.I.A.; methodology, S.I.A., M.B., M.A.Y. and 
J.A.A.; validation, M.A.Y., M.B., and S.I.A.; formal analysis. B.T., S.I.A. and J.A.A.; investigation, 
S.I.A., M.A.Y., J.A.A. and M.B.; resources, S.I.A., J.A.A., and M.A.Y.; data curation, J.A.A. and A.A.-
S.; writing—original draft preparation, B.T., S.I.A., M.A.Y., M.B., J.A.A. and A.A.-S.; writing—re-
view and editing, S.I.A.; visualization, M.A.Y., and S.I.A.; supervision, M.A.Y., B.T.; project admin-
istration, B.T. and A.A.-S.; funding acquisition, A.A.-S. and B.T. All authors have read and agreed 
to the published version of the manuscript. 

Funding: This research was funded by King Fahd University of Petroleum and Minerals. 

Institutional Review Board Statement: Not applicable. 

2

4

6

8

10

12

AG-A
NN-Zn

AG-A
NN-C

u

AG-A
NN-C

r

Ag-A
NN-P

b

AG-S
VR-Zn

AG-S
VR-C

u

AG-S
VR-C

r

AG-S
VR-P

b

RMSE-Calibration
RMSE-Verification

(a)

0

4

8

12

16

20

24

28

32

ID
-A

NN-Zn

ID
-A

NN-C
u

ID
-A

NN-C
r

ID
-A

NN-P
b

ID
-S

VR-Zn

ID
-S

VR-C
u

ID
-S

VR-C
r

ID
-S

VR-P
b

RMSE-Calibration
RMSE-Verification

(b)

Figure 12. Error plot in terms of RMSE-values for both (a) AG and (b) ID stations.

To make the fair judgment deep into the current literature, the outcomes are in line
with those of Pyo et al. [8], who employed an ANN, a convolutional neural network
(CNN), and random forest regression (RFR) for estimating heavy metals in soil (Pb, Cu,
AS). It was observed in the study that the R2 value ranged from 0.6–0.94 for both Pb
and Cu. In addition, Bazoobandi et al. [7] applied an ANN, ANFIS, and MLR model,
and the outcomes showed that the range of R2 was 0.6–0.89 and 0.3–0.93 for ANN and
ANFIS, respectively. Because HMs are widely used in agriculture, industry, and other
areas, they have become part of the environment, increasing the risk of the metals having a
harmful influence on the ecosystem. By enacting legislation to that effect, the United States,
for example, has outlawed the use of items suspected of elevating trace metals levels in
the soil. For example, the United States Environmental Protection Agency (USEPA) has
established specified HM thresholds that must be present in bio-solids before authorization
for land spreading can be given. HMS contamination has undeniable consequences for our
environment and human health. Although there have been several types of research on
pollution in Saudi Arabia, such research has evaluated metals content in marine, coastal,
and air environments, with limited research on topsoil.

5. Conclusions

The primary objective of this study was to use an integrated scenario, (i) integrating
the GIS to evolve the spatial distribution of HMs in the eastern province of Dammam
area, which was accomplished successfully. The outcomes of the field and laboratory
tests revealed that some collected samples had exceeded the standard range, and (ii) the
study employed AI-based models, namely ANN and SVR, to control and understand the
feasibility of simulating trace metals in the topsoil. The concentration of ten essential trace
metals in the soils of the Dammam area followed a general trend in almost all metals.
They were found at higher concentrations in the samples taken from the soils of industrial
areas, followed by agricultural and residential areas. Only in a few of the samples were
the maximum levels higher than the allowable limits. However, the mean concentration
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of all metals exceeded the allowable thresholds. These findings provide relief that the
concentrations of all the metals studied were within acceptable limits, and they pose no
immediate threat to the environment. Ultimately, the natural environmental resources, as
well as animal and human health, might be exposed to the risks/hazards associated with
these metals. The modelling approach indicated that ANN and SVR models are capable of
estimating the HMs with high accuracy, especially in the ID stations. However, AG stations
are within the range of marginal-to-good accuracy. This showed that more robust models
need to be explored, such as adaptive neuro-fuzzy inference systems (ANFIS), Elman neural
networks, extreme learning machines (ELM), hybrid models, and optimization algorithms,
to boost the accuracy of the predictions.
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