Investigations of Metal Pollution in Road Dust of Steel Industrial Area and Application of Magnetic Separation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Metal Analysis
2.3. Pollution and Ecological Risk Assessment
2.4. Estimation of the Metal Loading in Magnetic and Non-Magnetic Road Dust
3. Results and Discussion
3.1. Metal Concentrations in Magnetic and Non-Magnetic Road Dust
Al | Fe | Li | Ti | V | Cr | Mn | Co | Ni | Cu | Zn | As | Mo | Cd | Sn | Sb | Pb | Hg | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
% | mg/kg | |||||||||||||||||
Magnetic road dust | ||||||||||||||||||
Min | 2.8 | 22.9 | 16.4 | 1262 | 29 | 1963 | 9152 | 16.9 | 96 | 268 | 794 | 0.1 | 0.5 | 0.9 | 0.5 | 1.6 | 101 | 0.03 |
Max | 6.2 | 44.3 | 25.0 | 4487 | 441 | 12,367 | 37,292 | 194 | 970 | 779 | 8269 | 34.1 | 59.4 | 19.7 | 23.4 | 34.3 | 1930 | 10.0 |
Mean | 4.3 | 32.5 | 21.0 | 3143 | 194 | 4788 | 17,848 | 36.2 | 328 | 452 | 2885 | 8.6 | 15.8 | 4.5 | 8.6 | 11.9 | 371 | 1.1 |
St. Dev | 0.8 | 6.6 | 2.6 | 764 | 103 | 2388 | 7005 | 38.6 | 214 | 151 | 1889 | 9.1 | 14.4 | 4.4 | 6.7 | 9.0 | 437 | 2.2 |
CV (%) | 19 | 20 | 12 | 24 | 53 | 50 | 39 | 107 | 65 | 33 | 65 | 106 | 91 | 98 | 77 | 75 | 118 | 211 |
Non-magnetic road dust | ||||||||||||||||||
Min | 6.4 | 2.4 | 25.4 | 2529 | 56.3 | 289 | 1938 | 4.2 | 11.7 | 23.7 | 232 | 7.5 | 0.1 | 0.5 | 1.6 | 3.5 | 65.4 | 0.02 |
Max | 8.1 | 8.8 | 55.2 | 4639 | 275 | 3919 | 22,500 | 16.3 | 614 | 672 | 1881 | 71.6 | 28.5 | 9.8 | 18.6 | 32.5 | 543 | 5.6 |
Mean | 7.3 | 4.2 | 36.2 | 3237 | 98.7 | 1293 | 7965 | 8.7 | 59.5 | 156 | 855 | 19.2 | 6.4 | 2.2 | 7.4 | 14.1 | 226 | 0.5 |
St. dev | 0.4 | 1.7 | 8.3 | 638 | 54.1 | 945 | 6119 | 3.1 | 135 | 180 | 410 | 14.5 | 7.4 | 2.2 | 4.7 | 9.0 | 144 | 1.3 |
CV (%) | 6 | 41 | 23 | 20 | 55 | 73 | 77 | 36 | 227 | 116 | 48 | 76 | 116 | 99 | 63 | 64 | 64 | 247 |
Background [52] and soil quality guideline value of Korea [61]. | ||||||||||||||||||
Background | 8.2 | 3.9 | 21 | 3840 | 97 | 92 | 774 | 17.3 | 47 | 28 | 67 | 4.8 | 1.1 | 0.09 | 2.1 | 0.4 | 17 | 0.05 |
Contamination Guide value | 40 | 500 | 2000 | 2000 | 200 | 700 | 20 | |||||||||||
Contamination Clean-up value | 120 | 1500 | 6000 | 5000 | 600 | 2100 | 60 |
3.2. Pollution and Ecological Risk Assessments
3.3. Metal Loading in Magnetic and Non-Magnetic Road Dust from Steel Industrial Regions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, W.; Dong, C.; Ye, L.; Ma, H.; Yu, L. Magnetic properties of coastal loess on the Midao islands, northern China: Implications for provenance and weathering intensity. Palaeogeogr. Palaeoclim. Palaeoecol. 2012, 333–334, 160–167. [Google Scholar] [CrossRef]
- Hällberg, L.P.; Stevens, T.; Almqvist, B.; Snowball, I.; Wiers, S.; Költringer, C.; Lu, H.; Zhang, H.; Lin, Z. Magnetic susceptibility parameters as proxies for desert sediment provenance. Aeolian Res. 2020, 46, 100615. [Google Scholar] [CrossRef]
- Ahn, H.; Lim, J.; Kim, S.W. Magnetic Properties of a Holocene Sediment Core from the Yeongsan Estuary, Southwest Korea: Implications for Diagenetic Effects and Availability as Paleoenvironmental Proxies. Front. Earth Sci. 2021, 9, 593332. [Google Scholar] [CrossRef]
- Botsou, F.; Karageorgis, A.; Dassenakis, E.; Scoullos, M. Assessment of heavy metal contamination and mineral magnetic characterization of the Asopos River sediments (Central Greece). Mar. Pollut. Bull. 2011, 62, 547–563. [Google Scholar] [CrossRef] [PubMed]
- Sierra, C.; Martínez-Blanco, D.; Blanco, J.A.; Gallego, J.; Rodríguez-Gallego, J.L. Optimisation of magnetic separation: A case study for soil washing at a heavy metals polluted site. Chemosphere 2014, 107, 290–296. [Google Scholar] [CrossRef] [PubMed]
- Xia, D.; Wang, B.; Yu, Y.; Jia, J.; Nie, Y.; Wang, X.; Xu, S. Combination of magnetic parameters and heavy metals to discriminate soil-contamination sources in Yinchuan—A typical oasis city of Northwestern China. Sci. Total Environ. 2014, 485–486, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Yukumatsu, K.; Nomura, N.; Mishima, F.; Akiyama, Y.; Nishijima, S. Development of volume reduction method of cesium contaminated soil with magnetic separation. Prog. Supercond. Cryog. 2016, 18, 10–13. [Google Scholar] [CrossRef] [Green Version]
- Hong, H.P.; Kwon, H.W.; Kim, J.J.; Ha, D.W.; Kim, Y.H. Evaluation of contaminated for the Andong-dam sediments and a magnetic separation for reducing the contamination level. Prog. Supercond. Cryog. 2019, 21, 31–35. [Google Scholar] [CrossRef]
- Pan, H.; Lu, X.; Lei, K.; Shi, D.; Ren, C.; Yang, L.; Wang, L. Using magnetic susceptibility to evaluate pollution status of the sediment for a typical reservoir in northwestern China. Environ. Sci. Pollut. Res. 2018, 26, 3019–3032. [Google Scholar] [CrossRef]
- Ma, N.; Houser, J.B.; Wood, L.A.; Lewis, R.W.; Hill, D.G. Enhancement of Iron Recovery from Steelmaking Slag Fines by Process Optimization of Upgrading the Slag Fines with Dry Magnetic Separation. J. Sustain. Met. 2016, 3, 280–288. [Google Scholar] [CrossRef]
- Iranmanesh, M.; Hulliger, J. Magnetic separation: Its application in mining, waste purification, medicine, biochemistry and chemistry. Chem. Soc. Rev. 2017, 46, 5925–5934. [Google Scholar] [CrossRef] [PubMed]
- Lan, Y.-P.; Liu, Q.-C.; Meng, F.; Niu, D.-L.; Zhao, H. Optimization of magnetic separation process for iron recovery from steel slag. J. Iron Steel Res. Int. 2017, 24, 165–170. [Google Scholar] [CrossRef]
- Chen, Y.; Cao, M.; Ma, C. Review of Coal-Fired Electrification and Magnetic Separation Desulfurization Technology. Appl. Sci. 2019, 9, 1158. [Google Scholar] [CrossRef] [Green Version]
- Shibaeva, D.N.; Kompanchenko, A.A.; Tereschenko, S.V. Analysis of the Effect of Dry Magnetic Separation on the Process of Ferruginous Quartzites Disintegration. Minerals 2021, 11, 797. [Google Scholar] [CrossRef]
- Ma, L.; Abuduwaili, J.; Liu, W. Spatial Distribution and Health Risk Assessment of Potentially Toxic Elements in Surface Soils of Bosten Lake Basin, Central Asia. Int. J. Environ. Res. Public Health 2019, 16, 3741. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.; Rad, S.; Xu, L.; Gui, L.; Song, X.; Li, Y.; Wu, Z.; Chen, Z. Heavy metals distribution, sources, and ecological risk assessment in Huixian wetland, South China. Water 2020, 12, 431. [Google Scholar] [CrossRef] [Green Version]
- Jeong, H.; Choi, J.Y.; Lee, J.; Lim, J.; Ra, K. Heavy metal pollution by road-deposited sediments and its contribution to total suspended solids in rainfall runoff from intensive industrial areas. Environ. Pollut. 2020, 265, 115028. [Google Scholar] [CrossRef]
- Jeong, H.; Choi, J.Y.; Lim, J.; Shim, W.J.; Kim, Y.O.; Ra, K. Characterization of the contribution of road deposited sediments to the contamination of the close marine environment with trace metals: Case of the port city of Busan (South Korea). Mar. Pollut. Bull. 2020, 161, 111717. [Google Scholar] [CrossRef]
- Tong, S.; Li, H.; Wang, L.; Tudi, M.; Yang, L. Concentration, Spatial Distribution, Contamination Degree and Human Health Risk Assessment of Heavy Metals in Urban Soils across China between 2003 and 2019—A Systematic Review. Int. J. Environ. Res. Public Health 2020, 17, 3099. [Google Scholar] [CrossRef]
- Goddu, S.R.; Appel, E.; Jordanova, D.; Wehland, F. Magnetic properties of road dust from Visakhapatnam (India)––relationship to industrial pollution and road traffic. Phys. Chem. Earth 2004, 29, 985–995. [Google Scholar] [CrossRef]
- Gautam, P.; Blaha, U.; Appel, E. Magnetic susceptibility of dust-loaded leaves as a proxy of traffic-related heavy metal pollution in Kathmandu city, Nepal. Atmos. Environ. 2005, 39, 2201–2211. [Google Scholar] [CrossRef] [Green Version]
- Larrasoaña, J.C.; Pey, J.; Zhao, X.; Heslop, D.; Mochales, T.; Mata, P.; Beamud, E.; Reyes, J.; Cerro, J.C.; Pérez, N.; et al. Environmental magnetic fingerprinting of anthropogenic and natural atmospheric deposition over southwestern Europe. Atmos. Environ. 2021, 261, 118568. [Google Scholar] [CrossRef]
- Bućko, M.S.; Magiera, T.; Johanson, B.; Petrovsky, E.; Pesonen, L.J. Identification of magnetic particulates in road dust accumulated on roadside snow using magnetic, geochemical and micro-morphological analyses. Environ. Pollut. 2011, 159, 1266–1276. [Google Scholar] [CrossRef]
- Bourliva, A.; Papadopoulou, L.; Aidona, E. Study of road dust magnetic phases as the main carrier of potentially harmful trace elements. Sci. Total Environ. 2016, 553, 380–391. [Google Scholar] [CrossRef]
- Tan, Z.; Lu, S.; Zhao, H.; Kai, X.; Jiaxian, P.; Win, M.S.; Yu, S.; Yonemochi, S.; Wang, Q. Magnetic, geochemical characterization and health risk assessment of road dust in Xuanwei and Fuyuan, China. Environ. Geochem. Health 2018, 40, 1541–1555. [Google Scholar] [CrossRef] [PubMed]
- Jeong, H.; Lee, J.; Kim, K.-T.; Kim, E.-S.; Ra, K. Identification on Metal Pollution Sources in Road Dust of Industrial Complex Using Magnetic Property Around Shihwa Lake Basin. J. Korean Soc. Mar. Environ. Energy 2019, 22, 18–33. [Google Scholar] [CrossRef]
- Jeong, H.; Choi, J.Y.; Ra, K. Potentially toxic elements pollution in road deposited sediments around the active smelting industry of Korea. Sci. Rep. 2021, 11, 7238. [Google Scholar] [CrossRef]
- Jordanova, D.; Jordanova, N.; Lanos, P.; Petrov, P.; Tsacheva, T. Magnetism of outdoor and indoor settled dust and its utilization as a tool for revealing the effect of elevated particulate air pollution on cardiovascular mortality. Geochem. Geophys. Geosystems 2012, 13, Q08Z49. [Google Scholar] [CrossRef] [Green Version]
- Liu, E.; Yan, T.; Birch, G.; Zhu, Y. Pollution and health risk of potentially toxic metals in urban road dust in Nanjing, a mega-city of China. Sci. Total Environ. 2014, 476–477, 522–531. [Google Scholar] [CrossRef]
- Liu, H.; Yan, Y.; Chang, H.; Chen, H.; Liang, L.; Liu, X.; Qiang, X.; Sun, Y. Magnetic signatures of natural and anthropogenic sources of urban dust aerosol. Atmos. Chem. Phys. Discuss. 2019, 19, 731–745. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Li, S.-W.; Li, H.; Qian, X.; Li, X.; Liu, X.; Lu, H.; Wang, C.; Sun, Y. Trace metals and magnetic particles in PM2.5: Magnetic identification and its implications. Sci. Rep. 2017, 7, 9865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, R.K.; Strand, M.A. Road dust and its effect on human health: A literature review. Epidemiol. Health 2018, 40, e2018013. [Google Scholar] [CrossRef]
- Jordanova, D.; Jordanova, N.; Petrov, P. Magnetic susceptibility of road deposited sediments at a national scale—Relation to population size and urban pollution. Environ. Pollut. 2014, 189, 239–251. [Google Scholar] [CrossRef]
- Aguilera, A.; Morales, J.J.; Goguitchaichvili, A.; García-Oliva, F.; Armendariz-Arnez, C.; Quintana, P.; Bautista, F. Spatial distribution of magnetic material in urban road dust classified by land use and type of road in San Luis Potosí, Mexico. Air Qual. Atmos. Health 2020, 13, 951–963. [Google Scholar] [CrossRef]
- Górka-Kostrubiec, B.; Magiera, T.; Dudzisz, K.; Dytłow, S.; Wawer, M.; Winkler, A. Integrated Magnetic Analyses for the Discrimination of Urban and Industrial Dusts. Minerals 2020, 10, 1056. [Google Scholar] [CrossRef]
- Rutkowski, R.; Bihałowicz, J.S.; Rachwał, M.; Rogula-Kozłowska, W.; Rybak, J. Magnetic Susceptibility of Spider Webs and Dust: Preliminary Study in Wrocław, Poland. Minerals 2020, 10, 1018. [Google Scholar] [CrossRef]
- Skorbiłowicz, M.; Skorbiłowicz, E.; Łapiński, W. Assessment of Metallic Content, Pollution, and Sources of Road Dust in the City of Białystok (Poland). Aerosol Air Qual. Res. 2020, 20, 2507–2518. [Google Scholar] [CrossRef]
- Yang, D.; Wang, M.; Liu, J.; Deng, T.; Yan, C.; Ding, Z.; Lu, H. Occurrence and characteristics of iron-bearing minerals in surface road dusts: A case study in the coastal areas of southern Fujian, China. J. Soils Sediments 2020, 20, 3406–3416. [Google Scholar] [CrossRef]
- Yang, D.; Wu, J.; Hong, H.; Liu, J. Traffic-related magnetic pollution in urban dust from the Xiamen Island, China. Environ. Chem. Lett. 2021, 19, 1–7. [Google Scholar] [CrossRef]
- Tobin, G.A.; Brinkmann, R. The effectiveness of street sweepers in removing pollutants from road surfaces in Florida. J. Environ. Sci. Health Part A 2002, 37, 1687–1700. [Google Scholar] [CrossRef]
- Tobin, G.A.; Brinkmann, R. Clean Streets—Clean Waterways: Street Sweeping, Storm-Water Runoff, and Pollution Reduction. In World Minds: Geographical Perspectives on 100 Problems; Janelle, D.G., Warf, B., Hansen, K., Eds.; Springer: Dordrecht, The Netherlands, 2004. [Google Scholar] [CrossRef]
- Rochfort, Q.; Exall, K.; P’Ng, J.; Shi, V.; Stevanovic-Briatico, V.; Kok, S.; Marsalek, J. Street Sweeping as a Method of Source Control for Urban Stormwater Pollution. Water Qual. Res. J. 2009, 44, 48–58. [Google Scholar] [CrossRef] [Green Version]
- Amato, F.; Querol, X.; Johansson, C.; Nagl, C.; Alastuey, A. A review on the effectiveness of street sweeping, washing and dust suppressants as urban PM control methods. Sci. Total Environ. 2010, 408, 3070–3084. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.-G.; Jeong, K.; Ko, S.-O. Removal of road deposited sediments by sweeping and its contribution to highway runoff quality in Korea. Environ. Technol. 2014, 35, 2546–2555. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.-G.; Kim, H.-S.; Kang, H.-M.; Ko, S.-O. Pollutant characteristics of road deposited sediments collected by road sweeping. Water Sci. Technol. 2016, 74, 194–202. [Google Scholar] [CrossRef]
- Calvillo, S.J.; Williams, E.S.; Brooks, B.W. Street Dust: Implications for Stormwater and Air Quality, and Environmental Management through Street Sweeping; Whitacre, D.M., Ed.; Reviews of Environmental Contamination and Toxicology; Springer International Publishing: Cham, Germany, 2015; Volume 233. [Google Scholar]
- Vanegas-Useche, L.V.; Abdel-Wahab, M.M.; Parker, G.A. Effectiveness of oscillatory gutter brushes in removing street sweeping waste. Waste Manag. 2015, 43, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, L.N.; Fitch, G.M.; Singh, T.S.; Smith, J.A. Characterization of Environmental Pollutants in Sediment Collected during Street Sweeping Operations to Evaluate its Potential for Reuse. J. Environ. Eng. 2018, 145, 04018141. [Google Scholar] [CrossRef]
- Polukarova, M.; Markiewicz, A.; Björklund, K.; Strömvall, A.-M.; Galfi, H.; Sköld, Y.A.; Gustafsson, M.; Järlskog, I.; Aronsson, M. Organic pollutants, nano- and microparticles in street sweeping road dust and washwater. Environ. Int. 2019, 135, 105337. [Google Scholar] [CrossRef]
- Muller, G. Index of geo-accumulation in sediments of the Rhine River. Geol. J. 1969, 2, 108–118. [Google Scholar]
- Forstner, U. Inorganic sediment chemistry and elemental speciation. In Sediments: Chemistry and Toxicity on In-Place Pollutants; Baudo, P., Giesvand, J.P., Mantau, H., Eds.; CRC Press: Boca Raton, FL, USA, 1990; pp. 61–105. [Google Scholar]
- Rudnick, R.L.; Gao, S. Composition of the continental crust. In Treatise on Geochemistry; Heinrich, D.H., Karl, K.T., Eds.; Pergamon: Oxford, UK, 2004; pp. 1–64. [Google Scholar]
- Håkanson, L. An ecological risk index for aquatic pollution control: A sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Xu, Z.Q.; Ni, S.; Tuo, X.G.; Zhang, C.J. Calculation of heavy metal’s toxicity coefficient in the evaluation of potential ecological risk index. Environ. Sci. Technol. 2008, 31, 112–115. [Google Scholar]
- Wang, N.; Wang, A.; Kong, L.; He, M. Calculation and application of Sb toxicity coefficient for potential ecological risk assessment. Sci. Total Environ. 2018, 610–611, 167–174. [Google Scholar] [CrossRef]
- Bućko, M.S.; Magiera, T.; Pesonen, L.J.; Janus, B. Magnetic, Geochemical, and Microstructural Characteristics of Road Dust on Roadsides with Different Traffic Volumes—Case Study from Finland. Water Air Soil Pollut. 2010, 209, 295–306. [Google Scholar] [CrossRef]
- Kolakkandi, V.; Sharma, B.; Rana, A.; Dey, S.; Rawat, P.; Sarkar, S. Spatially resolved distribution, sources and health risks of heavy metals in size-fractionated road dust from 57 sites across megacity Kolkata, India. Sci. Total Environ. 2020, 705, 135805. [Google Scholar] [CrossRef]
- Rahman, M.S.; Kumar, P.; Ullah, M.; Jolly, Y.N.; Akhter, S.; Kabir, J.; Begum, B.A.; Salam, A. Elemental analysis in surface soil and dust of roadside academic institutions in Dhaka city, Bangladesh and their impact on human health. Environ. Chem. Ecotoxicol. 2021, 3, 197–208. [Google Scholar] [CrossRef]
- Mutuku, K.J.; Lee, Y.-Y.; Chang-Chien, G.-P.; Lin, S.-L.; Chen, W.-H.; Hou, W.-C. Chemical fingerprint for PM2.5 in the ambient air near a raw materials storage site for iron ore, coal, limestone, and sinter. Aerosol Air Qual. Res. 2021, 21, 200624. [Google Scholar] [CrossRef]
- Jeong, H.; Ryu, J.-S.; Ra, K. Characteristics of potentially toxic elements and multi-isotope signatures (Cu, Zn, Pb) in non-exhaust traffic emission sources. Environ. Pollut. 2021, 292, 118339. [Google Scholar] [CrossRef]
- Ministry of Government Legislation. Korea Soil Quality Standard of Heavy Metals in Soil Environment Conservation Act (Law No16613). 2019. Available online: https://www.law.go.kr/ (accessed on 11 January 2022).
- Jordanova, N.; Jordanova, D.; Tcherkezova, E.; Georgieva, B.; Ishlyamski, D. Advanced mineral magnetic and geochemical investigations of road dusts for assessment of pollution in urban areas near the largest copper smelter in SE Europe. Sci. Total Environ. 2021, 792, 148402. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Tian, H.; Hua, S.; Zhu, C.; Gao, J.; Xue, Y.; Hao, J.; Wang, Y.; Zhou, J. A comprehensive emission inventory of multiple air pollutants from iron and steel industry in China: Temporal trends and spatial variation characteristics. Sci. Total Environ. 2016, 559, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Sotoodeh, K. Chapter Twelve—Material selection and corrosion. Subsea Valves Actuators Oil Gas Ind. 2021, 421–457. [Google Scholar] [CrossRef]
- Iijima, A.; Sato, K.; Yano, K.; Tago, H.; Kato, M.; Kimura, H.; Furuta, N. Particle size and composition distribution analysis of automotive brake abrasion dusts for the evaluation of antimony sources of airborne particulate matter. Atmos. Environ. 2007, 41, 4908–4919. [Google Scholar] [CrossRef]
- Iijima, A.; Sato, K.; Yano, K.; Kato, M.; Kozawa, K.; Furuta, N. Emission Factor for Antimony in Brake Abrasion Dusts as One of the Major Atmospheric Antimony Sources. Environ. Sci. Technol. 2008, 42, 2937–2942. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Wang, X.; Wu, F.; Fu, Z. Antimony pollution in China. Sci. Total Environ. 2012, 421-422, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zheng, B.; He, Y.; Zhou, Y.; Chen, X.; Ruan, S.; Yang, Y.; Dai, C.; Tang, L. Antimony contamination, consequences and removal techniques: A review. Ecotoxicol. Environ. Saf. 2018, 156, 125–134. [Google Scholar] [CrossRef]
- Fiala, M.; Hwang, H.-M. Development of a Static Model to Identify Best Management Practices for Trace Metals from Non-Exhaust Traffic Emissions. Environ. Process. 2019, 6, 377–389. [Google Scholar] [CrossRef]
- Kong, S.; Lu, B.; Ji, Y.; Zhao, X.; Bai, Z.; Xu, Y.; Liu, Y.; Jiang, H. Risk assessment of heavy metals in road and soil dusts within PM2.5, PM10 and PM100 fractions in Dongying city, Shandong Province, China. J. Environ. Monit. 2012, 14, 791–803. [Google Scholar] [CrossRef]
- Amato, F.; Alastuey, A.; de la Rosa, J.; Castanedo, Y.G.; de la Campa, A.M.S.; Pandolfi, M.; Lozano, A.; González, J.C.; Querol, X. Trends of road dust emissions contributions on ambient air particulate levels at rural, urban and industrial sites in southern Spain. Atmospheric Chem. Phys. 2014, 14, 3533–3544. [Google Scholar] [CrossRef] [Green Version]
- Ali, M.U.; Liu, G.; Yousaf, B.; Abbas, Q.; Ullah, H.; Munir, M.A.M.; Fu, B. Pollution characteristics and human health risks of potentially (eco)toxic elements (PTEs) in road dust from metropolitan area of Hefei, China. Chemosphere 2017, 181, 111–121. [Google Scholar] [CrossRef]
- Cai, K.; Li, C. Street Dust Heavy Metal Pollution Source Apportionment and Sustainable Management in A Typical City-Shijiazhuang, China. Int. J. Environ. Res. Public Health 2019, 16, 2625. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Ma, J.; Ruan, X.; Chen, X. Compound health risk assessment of cumulative heavy metal exposure: A case study of a village near a battery factory in Henan Province, China. Environ. Sci. Process. Impacts 2020, 22, 1408–1422. [Google Scholar] [CrossRef]
- Donati, L.; Fontanini, T.; Tagliaferri, F.; Prati, A. An Energy Saving Road Sweeper Using Deep Vision for Garbage Detection. Appl. Sci. 2020, 10, 8146. [Google Scholar] [CrossRef]
- Khan, J.; Bhapkar, U.; Bhat, J.; Chougule, A.; Sangale, S. Design and development of smart solar powered street sweeping machine. Mater. Today Proc. 2021, 46, 8663–8667. [Google Scholar] [CrossRef]
- Peng, W.; Li, X.; Xiao, S.; Fan, W. Review of remediation technologies for sediments contaminated by heavy metals. J. Soils Sediments 2018, 18, 1701–1719. [Google Scholar] [CrossRef]
- Selvi, A.; Rajasekar, A.; Theerthagiri, J.; Ananthaselvam, A.; Sathishkumar, K.; Madhavan, J.; Rahman, P.K.S. Integrated Remediation Processes Toward Heavy Metal Removal/Recovery From Various Environments—A Review. Front. Environ. Sci. 2019, 7, 66. [Google Scholar] [CrossRef] [Green Version]
Types | Igeo < 0 | 0 < Igeo < 1 | 1 < Igeo < 2 | 2 < Igeo < 3 | 3 < Igeo < 4 | 4 < Igeo < 5 |
---|---|---|---|---|---|---|
Class | Unpolluted | Unpolluted to moderately polluted | Moderately polluted | Moderately to strongly polluted | Strongly polluted | Strongly to extremely polluted |
Magnetic road dust | Al, Li, Ti, As | V, Co, Sn | Fe, Ni, Mo, Hg | Mn, Cu, Pb | Cr, Zn, Cd, Sb | |
Non-magnetic road dust | Al, Fe, Ti, V, Co, Ni | Li | Cu, As, Mo, Sn, Hg | Cr, Mn, Zn, Pb | Cd | Sb |
Types | |||||
---|---|---|---|---|---|
Class | Low risk | Moderate risk | Considerable risk | High risk | Extreme risk |
Magnetic road dust | Ti, V, Mn, Co, Ni, As | Cu, As | Cr, Pb | Sb | Cd, Hg |
Non-magneticroad dust | Ti, V, Cr, Mn, Co, Ni, Cu, Zn, As | Pb | Sb | Cd, Hg |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, H.; Ra, K. Investigations of Metal Pollution in Road Dust of Steel Industrial Area and Application of Magnetic Separation. Sustainability 2022, 14, 919. https://doi.org/10.3390/su14020919
Jeong H, Ra K. Investigations of Metal Pollution in Road Dust of Steel Industrial Area and Application of Magnetic Separation. Sustainability. 2022; 14(2):919. https://doi.org/10.3390/su14020919
Chicago/Turabian StyleJeong, Hyeryeong, and Kongtae Ra. 2022. "Investigations of Metal Pollution in Road Dust of Steel Industrial Area and Application of Magnetic Separation" Sustainability 14, no. 2: 919. https://doi.org/10.3390/su14020919