Meat Quality of Guinea Pig (Cavia porcellus) Fed with Black Soldier Fly Larvae Meal (Hermetia illucens) as a Protein Source
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Experimental Diets
2.3. Fattening of Guinea Pigs
2.4. Water-Holding Capacity, pH, and Color
2.5. Proximate Composition of Meat
2.6. Amino Acids
2.7. Fatty Acids
2.8. Statistical Analyses
2.9. Sustainability Aspects
3. Results
3.1. Water-Holding Capacity, pH and Color
3.2. Proximate Composition
3.3. Amino Acids
3.4. Fatty Acids
3.5. Sustainability Aspects
4. Discussion
4.1. WHC, pH and Colour
4.2. Proximate Composition
4.3. Amino Acid Profile
4.4. Fatty Acid Profile
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Keller, M.; Reidy, B.; Scheurer, A.; Eggerschwiler, L.; Morel, I.; Giller, K. Soybean Meal Can Be Replaced by Faba Beans, Pumpkin Seed Cake, Spirulina or Be Completely Omitted in a Forage-Based Diet for Fattening Bulls to Achieve Comparable Performance, Carcass and Meat Quality. Animals 2021, 11, 1588. [Google Scholar] [CrossRef] [PubMed]
- Mbhele, F.G.T.; Mnisi, C.M.; Mlambo, V. A Nutritional Evaluation of Insect Meal as a Sustainable Protein Source for Jumbo Quails: Physiological and Meat Quality Responses. Sustainability 2019, 11, 6592. [Google Scholar] [CrossRef] [Green Version]
- Patsios, S.I.; Dedousi, A.; Sossidou, E.Ν.; Zdragas, A. Sustainable Animal Feed Protein through the Cultivation of YARROWIA Lipolytica on Agro-Industrial Wastes and by-Products. Sustainability 2020, 12, 1398. [Google Scholar] [CrossRef] [Green Version]
- Hawkey, K.J.; Lopez-Viso, C.; Brameld, J.M.; Parr, T.; Salter, A.M. Insects: A Potential Source of Protein and Other Nutrients for Feed and Food. Annu. Rev. Anim. Biosci. 2021, 9, 333–354. [Google Scholar] [CrossRef]
- Kim, H.W.; Setyabrata, D.; Lee, Y.J.; Jones, O.G.; Kim, Y.H.B. Pre-Treated Mealworm Larvae and Silkworm Pupae as a Novel Protein Ingredient in Emulsion Sausages. Innov. Food Sci. Emerg. Technol. 2016, 38, 116–123. [Google Scholar] [CrossRef]
- Smetana, S.; Leonhardt, L.; Kauppi, S.-M.; Pajic, A.; Heinz, V. Insect Margarine: Processing, Sustainability and Design. J. Clean. Prod. 2020, 264, 121670. [Google Scholar] [CrossRef]
- Smetana, S.; Mathys, A.; Knoch, A.; Heinz, V. Meat Alternatives: Life Cycle Assessment of Most Known Meat Substitutes. Int. J. Life Cycle Assess. 2015, 20, 1254–1267. [Google Scholar] [CrossRef]
- Smetana, S.; Palanisamy, M.; Mathys, A.; Heinz, V. Sustainability of Insect Use for Feed and Food: Life Cycle Assessment Perspective. J. Clean. Prod. 2016, 137, 741–751. [Google Scholar] [CrossRef]
- van Huis, A. Prospects of Insects as Food and Feed. Org. Agric. 2021, 11, 301–308. [Google Scholar] [CrossRef] [Green Version]
- Broeckx, L.; Frooninckx, L.; Slegers, L.; Berrens, S.; Noyens, I.; Goossens, S.; Verheyen, G.; Wuyts, A.; van Miert, S. Growth of Black Soldier Fly Larvae Reared on Organic Side-Streams. Sustainability 2021, 13, 2953. [Google Scholar] [CrossRef]
- Madibana, M.J.; Mwanza, M.; Lewis, B.R.; Fouché, C.H.; Toefy, R.; Mlambo, V. Black Soldier Fly Larvae Meal as a Fishmeal Substitute in Juvenile Dusky Kob Diets: Effect on Feed Utilization, Growth Performance, and Blood Parameters. Sustainability 2020, 12, 9460. [Google Scholar] [CrossRef]
- Oteri, M.; di Rosa, A.R.; lo Presti, V.; Giarratana, F.; Toscano, G.; Chiofalo, B. Black Soldier Fly Larvae Meal as Alternative to Fish Meal for Aquaculture Feed. Sustainability 2021, 13, 5447. [Google Scholar] [CrossRef]
- Sumbule, E.K.; Ambula, M.K.; Osuga, I.M.; Changeh, J.G.; Mwangi, D.M.; Subramanian, S.; Salifu, D.; Alaru, P.A.O.; Githinji, M.; van Loon, J.J.A.; et al. Cost-Effectiveness of Black Soldier Fly Larvae Meal as Substitute of Fishmeal in Diets for Layer Chicks and Growers. Sustainability 2021, 13, 6074. [Google Scholar] [CrossRef]
- Veldkamp, T.; Bosch, G. Insects: A Protein-Rich Feed Ingredient in Pig and Poultry Diets. Anim. Front. 2015, 5, 45–50. [Google Scholar]
- Allegretti, G.; Talamini, E.; Schmidt, V.; Bogorni, P.C.; Ortega, E. Insect as Feed: An Emergy Assessment of Insect Meal as a Sustainable Protein Source for the Brazilian Poultry Industry. J. Clean. Prod. 2018, 171, 403–412. [Google Scholar] [CrossRef]
- Magalhães, R.; Sánchez-López, A.; Leal, R.S.; Martínez-Llorens, S.; Oliva-Teles, A.; Peres, H. Black Soldier Fly (Hermetia Illucens) Pre-Pupae Meal as a Fish Meal Replacement in Diets for European Seabass (Dicentrarchus Labrax). Aquaculture 2017, 476, 79–85. [Google Scholar] [CrossRef]
- Nyakeri, E.M.; Ogola, H.J.; Ayieko, M.A.; Amimo, F.A. An Open System for Farming Black Soldier Fly Larvae as a Source of Proteins for Smallscale Poultry and Fish Production. J. Insects Food Feed 2017, 3, 51–56. [Google Scholar] [CrossRef]
- Renna, M.; Schiavone, A.; Gai, F.; Dabbou, S.; Lussiana, C.; Malfatto, V.; Prearo, M.; Capucchio, M.T.; Biasato, I.; Biasibetti, E.; et al. Evaluation of the Suitability of a Partially Defatted Black Soldier Fly (Hermetia Illucens L.) Larvae Meal as Ingredient for Rainbow Trout (Oncorhynchus Mykiss Walbaum) Diets. J. Anim. Sci. Biotechnol. 2017, 8, 57. [Google Scholar] [CrossRef]
- Liu, X.; Chen, X.; Wang, H.; Yang, Q.; ur Rehman, K.; Li, W.; Cai, M.; Li, Q.; Mazza, L.; Zhang, J.; et al. Dynamic Changes of Nutrient Composition throughout the Entire Life Cycle of Black Soldier Fly. PLoS ONE 2017, 12, e0182601. [Google Scholar] [CrossRef] [Green Version]
- Loponte, R.; Nizza, S.; Bovera, F.; de Riu, N.; Fliegerova, K.; Lombardi, P.; Vassalotti, G.; Mastellone, V.; Nizza, A.; Moniello, G. Growth Performance, Blood Profiles and Carcass Traits of Barbary Partridge (Alectoris Barbara) Fed Two Different Insect Larvae Meals (Tenebrio Molitor and Hermetia Illucens). Res. Vet. Sci. 2017, 115, 183–188. [Google Scholar] [CrossRef]
- Elhag, O.; Zhou, D.; Song, Q.; Soomro, A.A.; Cai, M.; Zheng, L.; Yu, Z.; Zhang, J. Screening, Expression, Purification and Functional Characterization of Novel Antimicrobial Peptide Genes from Hermetia Illucens (L.). PLoS ONE 2017, 12, e0169582. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.; Ge, C.; Yao, H. Antimicrobial Peptides from Black Soldier Fly (Hermetia Illucens) as Potential Antimicrobial Factors Representing an Alternative to Antibiotics in Livestock Farming. Animals 2021, 11, 1937. [Google Scholar] [CrossRef] [PubMed]
- Chia, S.Y.; Tanga, C.M.; Osuga, I.M.; Alaru, A.O.; Mwangi, D.M.; Githinji, M.; Dubois, T.; Ekesi, S.; van Loon, J.J.A.; Dicke, M. Black Soldier Fly Larval Meal in Feed Enhances Growth Performance, Carcass Yield and Meat Quality of Finishing Pigs. J. Insects Food Feed 2021, 7, 433–447. [Google Scholar] [CrossRef]
- Veldkamp, T.; Vernooij, A.G. Use of Insect Products in Pig Diets. J. Insects Food Feed 2021, 7, 781–793. [Google Scholar] [CrossRef]
- Yu, M.; Li, Z.; Chen, W.; Rong, T.; Wang, G.; Li, J.; Ma, X. Use of Hermetia Illucens Larvae as a Dietary Protein Source: Effects on Growth Performance, Carcass Traits, and Meat Quality in Finishing Pigs. Meat Sci. 2019, 158, 107837. [Google Scholar] [CrossRef]
- Pieterse, E.; Erasmus, S.W.; Uushona, T.; Hoffman, L.C. Black Soldier Fly (Hermetia Illucens) Pre-Pupae Meal as a Dietary Protein Source for Broiler Production Ensures a Tasty Chicken with Standard Meat Quality for Every Pot. J. Sci. Food Agric. 2019, 99, 893–903. [Google Scholar] [CrossRef]
- Schiavone, A.; Dabbou, S.; Petracci, M.; Zampiga, M.; Sirri, F.; Biasato, I.; Gai, F.; Gasco, L. Black Soldier Fly Defatted Meal as a Dietary Protein Source for Broiler Chickens: Effects on Carcass Traits, Breast Meat Quality and Safety. Animal 2019, 13, 2397–2405. [Google Scholar] [CrossRef]
- Dalle Zotte, A.; Cullere, M. Carcass Traits and Meat Quality of Rabbit, Hare, Guinea Pig and Capybara. In More than Beef, Pork and Chicken—The Production, Processing, and Quality Traits of Other Sources of Meat for Human Diet; Springer International Publishing: Cham, Switzerland, 2019; pp. 167–210. [Google Scholar]
- Sánchez-Macías, D.; Cevallos-Velastegui, L.; Nuñez-Valle, D.; Morales-delaNuez, A. First Report of Postmortem PH Evolution and Rigor Mortis in Guinea Pigs. Livest. Sci. 2019, 229, 22–27. [Google Scholar] [CrossRef]
- National Research Council (US). Nutrient Requirements of Laboratory Animals; National Academies Press: Washington, DC, USA, 1995. [Google Scholar]
- Chauca, L. Producción de Cuyes (Cavia Porcellus); Food & Agriculture Organization: Rome, Italy, 1997; Volume 138, ISBN 9253040335. [Google Scholar]
- Honikel, K.O. Reference Methods for the Assessment of Physical Characteristics of Meat. Meat Sci. 1998, 49, 447–457. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC International; AOAC International: Rockville, MD, USA, 2016. [Google Scholar]
- Heinrikson, R.L.; Meredith, S.C. Amino Acid Analysis by Reverse-Phase High-Performance Liquid Chromatography: Precolumn Derivatization with Phenylisothiocyanate. Anal. Biochem. 1984, 136, 65–74. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B (Methodol.) 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Jolliet, O.; Margni, M.; Charles, R.; Humbert, S.; Payet, J.; Rebitzer, G.; Rosenbaum, R. IMPACT 2002+: A New Life Cycle Impact Assessment Methodology. Int. J. Life Cycle Assess. 2003, 8, 324. [Google Scholar] [CrossRef] [Green Version]
- Humbert, S.; Schryver, A.; Bengoa, X.; Margni, M.; Jolliet, O. IMPACT 2002+: User Guide; Quantis: Lausanne, Switzerland, 2012. [Google Scholar]
- Tessari, P.; Lante, A.; Mosca, G. Essential Amino Acids: Master Regulators of Nutrition and Environmental Footprint? Sci. Rep. 2016, 6, 26074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.; He, Z.; Hu, Y.; Li, H. Shotgun Proteomic Analysis of Protein Profile Changes in Female Rabbit Meat: The Effect of Breed and Age. Ital. J. Anim. Sci. 2019, 18, 1335–1344. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. Dietary Protein Quality Evaluation in Human Nutrition: Report of an FAO Expert Consultation, 31 March-2 April, 2011, Auckland, New Zealand; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013; ISBN 9789251074176. [Google Scholar]
- Smetana, S.; Schmitt, E.; Mathys, A. Sustainable Use of Hermetia Illucens Insect Biomass for Feed and Food: Attributional and Consequential Life Cycle Assessment. Resour. Conserv. Recycl. 2019, 144, 285–296. [Google Scholar] [CrossRef]
- Salomone, R.; Saija, G.; Mondello, G.; Giannetto, A.; Fasulo, S.; Savastano, D. Environmental Impact of Food Waste Bioconversion by Insects: Application of Life Cycle Assessment to Process Using Hermetia Illucens. J. Clean. Prod. 2017, 140, 890–905. [Google Scholar] [CrossRef]
- Ites, S.; Smetana, S.; Toepfl, S.; Heinz, V. Modularity of Insect Production and Processing as a Path to Efficient and Sustainable Food Waste Treatment. J. Clean. Prod. 2020, 248, 119248. [Google Scholar] [CrossRef]
- Smetana, S.; Spykman, R.; Heinz, V. Environmental Aspects of Insect Mass Production. J. Insects Food Feed 2021, 7, 1–20. [Google Scholar] [CrossRef]
- Spykman, R.; Hossaini, S.M.; Peguero, D.A.; Green, A.; Heinz, V.; Smetana, S. A Modular Environmental and Economic Assessment Applied to the Production of Hermetia Illucens Larvae as a Protein Source for Food and Feed. Int. J. Life Cycle Assess. 2021, 26, 1959–1976. [Google Scholar] [CrossRef]
- Saerens, W.; Smetana, S.; van Campenhout, L.; Lammers, V.; Heinz, V. Life Cycle Assessment of Burger Patties Produced with Extruded Meat Substitutes. J. Clean. Prod. 2021, 306, 127177. [Google Scholar] [CrossRef]
- Dalgaard, R.; Schmidt, J.; Halberg, N.; Christensen, P.; Thrane, M.; Pengue, W.A. LCA of Soybean Meal. Int. J. Life Cycle Assess. 2008, 13, 240–254. [Google Scholar] [CrossRef]
- Durlinger, B.; Koukouna, E.; Broekema, R.; van Paassen, M.; Scholten, J. Agri-Footprint 3.0; Agri-Footprint: Gouda, The Netherlands, 2017. [Google Scholar]
- de Figueiredo, L.B.F.; de Souza Rodrigues, R.T.; Leite, M.F.S.; Gois, G.C.; da Silva Araújo, D.H.; de Alencar, M.G.; Oliveira, T.P.R.; Figueirêdo Neto, A.; Silva Junior, R.G.C.; Queiroz, M.A.Á. Effect of Sex on Carcass Yield and Meat Quality of Guinea Pig. J. Food Sci. Technol. 2020, 57, 3024–3030. [Google Scholar] [CrossRef]
- Barbera, S. WHCtrend, an up-to-Date Method to Measure Water Holding Capacity in Meat. Meat Sci. 2019, 152, 134–140. [Google Scholar] [CrossRef] [PubMed]
- Tomasevic, I.; Djekic, I.; Font-i-Furnols, M.; Terjung, N.; Lorenzo, J.M. Recent Advances in Meat Color Research. Curr. Opin. Food Sci. 2021, 41, 81–87. [Google Scholar] [CrossRef]
- Cullere, M.; Schiavone, A.; Dabbou, S.; Gasco, L.; Dalle Zotte, A. Meat Quality and Sensory Traits of Finisher Broiler Chickens Fed with Black Soldier Fly (Hermetia Illucens L.) Larvae Fat as Alternative Fat Source. Animals 2019, 9, 140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.-S.; Shelomi, M. Review of Black Soldier Fly (Hermetia Illucens) as Animal Feed and Human Food. Foods 2017, 6, 91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walter, A.; Klammsteiner, T.; Gassner, M.; Heussler, C.D.; Kapelari, S.; Schermer, M.; Insam, H. Black Soldier Fly School Workshops as Means to Promote Circular Economy and Environmental Awareness. Sustainability 2020, 12, 9574. [Google Scholar] [CrossRef]
- Flores-Mancheno, C.I.; Duarte, C.; Salgado-Tello, I.P. Caracterización de La Carne de Cuy (Cavia Porcellus) Para Utilizarla En La Elaboración de Un Embutido Fermentado. Cienc. Y Agric. 2017, 14, 39–45. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Macías, D.; Barba-Maggi, L.; Morales-delaNuez, A.; Palmay-Paredes, J. Guinea Pig for Meat Production: A Systematic Review of Factors Affecting the Production, Carcass and Meat Quality. Meat Sci. 2018, 143, 165–176. [Google Scholar] [CrossRef]
- Lozano, M.; Rodríguez-Ulibarri, P.; Echeverría, J.C.; Beruete, M.; Sorolla, M.; Beriain, M.J. Mid-Infrared Spectroscopy (MIR) for Simultaneous Determination of Fat and Protein Content in Meat of Several Animal Species. Food Anal. Methods 2017, 10, 3462–3470. [Google Scholar] [CrossRef] [Green Version]
- Lammers, P.J.; Carlson, S.L.; Zdorkowski, G.A.; Honeyman, M.S. Reducing Food Insecurity in Developing Countries through Meat Production: The Potential of the Guinea Pig ( Cavia Porcellus). Renew. Agric. Food Syst. 2009, 24, 155–162. [Google Scholar] [CrossRef]
- Wilkinson, J.M. Re-Defining Efficiency of Feed Use by Livestock. Animal 2011, 5, 1014–1022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mottet, A.; de Haan, C.; Falcucci, A.; Tempio, G.; Opio, C.; Gerber, P. Livestock: On Our Plates or Eating at Our Table? A New Analysis of the Feed/Food Debate. Glob. Food Secur. 2017, 14, 1–8. [Google Scholar] [CrossRef]
- Lu, R.; Chen, Y.; Yu, W.; Lin, M.; Yang, G.; Qin, C.; Meng, X.; Zhang, Y.; Ji, H.; Nie, G. Defatted Black Soldier Fly (Hermetia Illucens) Larvae Meal Can Replace Soybean Meal in Juvenile Grass Carp (Ctenopharyngodon Idellus) Diets. Aquac. Rep. 2020, 18, 100520. [Google Scholar] [CrossRef]
- Reid, M.E.; Mickelsen, O. Nutritional Studies with the Guinea Pig: VIII. Effect of Different Proteins, with and without Amino Acid Supplements, on Growth. J. Nutr. 1963, 80, 25–32. [Google Scholar]
- Cullere, M.; Tasoniero, G.; Giaccone, V.; Acuti, G.; Marangon, A.; Dalle Zotte, A. Black Soldier Fly as Dietary Protein Source for Broiler Quails: Meat Proximate Composition, Fatty Acid and Amino Acid Profile, Oxidative Status and Sensory Traits. Animal 2018, 12, 640–647. [Google Scholar] [CrossRef]
- Ibrahim, D.; El-Sayed, R.; Khater, S.I.; Said, E.N.; El-Mandrawy, S.A.M. Changing Dietary N-6:N-3 Ratio Using Different Oil Sources Affects Performance, Behavior, Cytokines MRNA Expression and Meat Fatty Acid Profile of Broiler Chickens. Anim. Nutr. 2018, 4, 44–51. [Google Scholar] [CrossRef]
- Jorge Guevara, V.; Sergio Rojas, M.; Fernando Carcelén, C.; Luis Seminario, S. Enrichment of Guinea Pig (Cavia Porcellus) Meat with Omega-3 Fatty Acids by Diets with Fish Oil and Sacha Inchi (Plukenetia Volubilis) Seeds. Rev. De Investig. Vet. Del Peru 2016, 27, 45–50. [Google Scholar] [CrossRef] [Green Version]
- Kamihiro, S.; Stergiadis, S.; Leifert, C.; Eyre, M.D.; Butler, G. Meat Quality and Health Implications of Organic and Conventional Beef Production. Meat Sci. 2015, 100, 306–318. [Google Scholar] [CrossRef] [Green Version]
- Cheng, G.; Fu, C.; Wang, H.; Adoligbe, C.; Wei, S.; Li, S.; Jiang, B.; Wang, H.; Zan, L. Production of Transgenic Beef Cattle Rich in N-3 PUFAs by Somatic Cell Nuclear Transfer. Biotechnol. Lett. 2015, 37, 1565–1571. [Google Scholar] [CrossRef]
- Thomas, E.M.; Roden, J.A.; Haresign, W.; Richardson, R.I.; Lambe, N.R.; Clelland, N.; Gardner, G.E.; Scollan, N.D. Meat Eating and Nutritional Quality of Lambs Sired by High and Low Muscle Density Rams. Animal 2021, 15, 100136. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, F.; Samadi, F.; Jafari, S.M.; Ramezanpour, S.; Shams-Shargh, M. Production of Omega-3 Fatty Acid-Enriched Broiler Chicken Meat by the Application of Nanoencapsultsed Flaxseed Oil Prepared via Ultrasonication. J. Funct. Foods 2019, 57, 373–381. [Google Scholar] [CrossRef]
- Popova, T.; Tejeda, L.; Peñarrieta, J.M.; Smith, M.A.; Bush, R.D.; Hopkins, D.L. Meat of South American Camelids—Sensory Quality and Nutritional Composition. Meat Sci. 2021, 171, 108285. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Chiba, L.I.; Bergen, W.G. Bioavailability and Metabolism of Omega-3 Polyunsaturated Fatty Acids in Pigs and Omega-3 Polyunsaturated Fatty Acid-Enriched Pork: A Review. Livest. Sci. 2021, 243, 104370. [Google Scholar] [CrossRef]
- Wood, J.D.; Richardson, R.I.; Nute, G.R.; Fisher, A.V.; Campo, M.M.; Kasapidou, E.; Sheard, P.R.; Enser, M. Effects of Fatty Acids on Meat Quality: A Review. Meat Sci. 2004, 66, 21–32. [Google Scholar] [CrossRef]
- Kouakou, N.D.V.; Grongnet, J.-F.; Assidjo, N.E.; Thys, E.; Marnet, P.-G.; Catheline, D.; Legrand, P.; Kouba, M. Effect of a Supplementation of Euphorbia Heterophylla on Nutritional Meat Quality of Guinea Pig (Cavia Porcellus L.). Meat Sci. 2013, 93, 821–826. [Google Scholar] [CrossRef]
- Mamani-Linares, L.W.; Gallo, C.B. Meat Quality, Proximate Composition and Muscle Fatty Acid Profile of Young Llamas (Lama Glama) Supplemented with Hay or Concentrate during the Dry Season. Meat Sci. 2014, 96, 394–399. [Google Scholar] [CrossRef]
- Altmann, B.A.; Wigger, R.; Ciulu, M.; Mörlein, D. The Effect of Insect or Microalga Alternative Protein Feeds on Broiler Meat Quality. J. Sci. Food Agric. 2020, 100, 4292–4302. [Google Scholar] [CrossRef]
- de Souza Vilela, J.; Alvarenga, T.I.R.C.; Andrew, N.R.; McPhee, M.; Kolakshyapati, M.; Hopkins, D.L.; Ruhnke, I. Technological Quality, Amino Acid and Fatty Acid Profile of Broiler Meat Enhanced by Dietary Inclusion of Black Soldier Fly Larvae. Foods 2021, 10, 297. [Google Scholar] [CrossRef]
- Gariglio, M.; Dabbou, S.; Gai, F.; Trocino, A.; Xiccato, G.; Holodova, M.; Gresakova, L.; Nery, J.; Bellezza Oddon, S.; Biasato, I.; et al. Black Soldier Fly Larva in Muscovy Duck Diets: Effects on Duck Growth, Carcass Property, and Meat Quality. Poult. Sci. 2021, 100, 101303. [Google Scholar] [CrossRef]
- Barroso, F.G.; Sánchez-Muros, M.-J.; Segura, M.; Morote, E.; Torres, A.; Ramos, R.; Guil, J.-L. Insects as Food: Enrichment of Larvae of Hermetia Illucens with Omega 3 Fatty Acids by Means of Dietary Modifications. J. Food Compos. Anal. 2017, 62, 8–13. [Google Scholar] [CrossRef]
- Hoc, B.; Genva, M.; Fauconnier, M.-L.; Lognay, G.; Francis, F.; Caparros Megido, R. About Lipid Metabolism in Hermetia Illucens (L. 1758): On the Origin of Fatty Acids in Prepupae. Sci. Rep. 2020, 10, 11916. [Google Scholar] [CrossRef] [PubMed]
- Truzzi, C.; Giorgini, E.; Annibaldi, A.; Antonucci, M.; Illuminati, S.; Scarponi, G.; Riolo, P.; Isidoro, N.; Conti, C.; Zarantoniello, M.; et al. Fatty Acids Profile of Black Soldier Fly (Hermetia Illucens): Influence of Feeding Substrate Based on Coffee-Waste Silverskin Enriched with Microalgae. Anim. Feed Sci. Technol. 2020, 259, 114309. [Google Scholar] [CrossRef]
Proximate Composition | T0 | T1 | T2 |
---|---|---|---|
Energy (Kcal in 100 g) | 351.5 | 355.2 | 360.6 |
% Kcal from fat | 15.1 | 17.2 | 19.5 |
% Kcal from protein | 18.4 | 17.1 | 18.3 |
% Kcal of carbohydrates | 66.5 | 65.7 | 62.2 |
Carbohydrates (%) | 58.4 | 58.3 | 56.1 |
Protein (%) | 16.2 | 15.2 | 16.5 |
Fat (%) | 5.9 | 6.8 | 7.8 |
Ash (%) | 5.5 | 5.9 | 5.8 |
Moisture (%) | 14.0 | 13.8 | 13.8 |
Amino acids (g/100 g protein) | |||
Aspartic acid | 9.60 | 9.14 | 8.28 |
Glutamic acid | 18.76 | 16.67 | 15.30 |
Serine | 5.67 | 5.26 | 5.01 |
Glycine | 4.36 | 4.46 | 4.94 |
Histidine | 2.55 | 2.49 | 2.16 |
Threonine | 4.95 | 5.34 | 4.24 |
Alanine | 2.91 | 2.85 | 2.99 |
Arginine | 10.25 | 11.11 | 12.73 |
Proline | 6.91 | 6.80 | 7.02 |
Tyrosine | 3.27 | 3.80 | 4.45 |
Valine | 4.73 | 5.26 | 5.63 |
Methionine + Cysteine | 2.69 | 2.78 | 2.78 |
Leucine | 4.44 | 4.68 | 5.01 |
Lysine | 6.98 | 7.24 | 6.82 |
Isoleucine | 5.09 | 5.12 | 5.15 |
Phenylalanine | 5.67 | 5.70 | 6.26 |
Tryptophan | 1.16 | 1.32 | 1.25 |
Parameter | T0 | T1 | T2 |
---|---|---|---|
Water Holding capacity (WHC) | 74.15 ± 1.02 a | 75.73 ± 1.09 a | 73.59 ± 1.09 a |
pH | 5.91 ± 0.03 a | 5.93 ± 0.04 a | 5.87 ± 0.03 a |
COLOUR | |||
L* (luminosity) | 46.42 ± 0.46 a | 46.07 ± 0.47 a | 46.34 ± 0.40 a |
a* (red- green) | 10.52 ± 0.28 a | 10.99 ± 0.43 a | 10.38 ± 0.40 a |
b* (blue- yellow) | 1.00 ± 0.45 a | 1.62 ± 0.38 a | 0.76 ± 0.40 a |
Proximate Composition | T0 | T1 | T2 |
---|---|---|---|
Protein (%) | 17.80 ± 0.18 a | 18.08 ± 0.23 a | 18.23 ± 0.15 a |
Fat (%) | 7.78 ± 0.09 a | 7.35 ± 0.29 a | 6.43 ± 0.13 a |
Moisture (%) | 72.88 ± 0.20 a | 72.88 ± 0.15 a | 73.35 ± 0.28 a |
Ash (%) | 1.08 ± 0.05 a | 1.33 ± 0.06 a | 1.15 ± 0.05 a |
Amino Acid | T0 (g/100 g Protein) | T1 (g/100 g Protein) | T2 (g/100 g Protein) |
---|---|---|---|
Aspartic acid | 9.76 ± 0.12 a | 9.78 ± 0.01 a | 9.71 ± 0.11 a |
Glutamic acid | 15.20 ± 0.16 a | 15.24 ± 0.09 a | 14.69 ± 0.18 a |
Serine | 4.48 ± 0.02 a | 4.48 ± 0.02 a | 4.36 ± 0.01 a |
Glycine | 6.80 ± 0.25 a | 5.90 ± 0.18 a | 6.60 ± 0.36 a |
Histidine | 2.26 ± 0.03 a | 2.25 ± 0.02 a | 2.73 ± 0.04 a |
Threonine | 5.04 ± 0.34 a | 4.54 ± 0.05 a | 4.51 ± 0.11 a |
Alanine | 3.39 ± 0.10 a | 3.57 ± 0.02 a | 3.64 ± 0.04 a |
Arginine | 12.32 ± 0.01 a | 12.18 ± 0.05 a | 12.53 ± 0.02 a |
Proline | 4.98 ± 0.11 a | 4.60 ± 0.09 a | 4.91 ± 0.19 a |
Tyrosine | 3.45 ± 0.05 a | 3.47 ± 0.00 a | 3.45 ± 0.04 a |
Valine | 4.77 ± 0.02 a | 4.92 ± 0.03 a | 4.75 ± 0.06 a |
Methionine + Cysteine | 2.75 ± 0.05 a | 2.75 ± 0.01 a | 2.66 ± 0.04 a |
Isoleucine | 4.05 ± 0.03 a | 4.40 ± 0.03 a | 4.65 ± 0.04 a |
Leucine | 7.71 ± 0.13 a | 7.97 ± 0.10 a | 8.54 ± 0.10 a |
Phenylalanine | 4.23 ± 0.01 a | 4.83 ± 0.08 a | 4.43 ± 0.02 a |
Lysine | 7.66 ± 0.07 a | 8.18 ± 0.09 a | 6.83 ± 0.13 a |
Tryptophan | 1.16 ± 0.13 a | 0.92 ± 0.03 a | 1.01 ± 0.06 a |
Total protein content (g/100 g of meat) | 16.44 ± 0.68 | 16.99 ± 0.31 | 15.85 ± 0.45 |
Amino Acid | Adults Requirements d | Children <3 Years Requirements d | Beef a | Pork a | Chicken a | Rabbit b | Guinea Pig c |
---|---|---|---|---|---|---|---|
Lysine | 4.8 | 5.7 | 9.1 | 8.4 | 9.6 | 10.4 | 7.6 |
Histidine | 1.6 | 2.0 | 3.9 | 3.1 | 4.0 | 5.5 | 2.4 |
Threonine | 2.5 | 3.1 | 4.1 | 4.4 | 5.0 | 5.4 | 4.7 |
Methionine + Cysteine | 2.3 | 2.7 | 4.0 | 3.8 | 4.2 | 3.6 | 2.7 |
Valine | 4.0 | 4.3 | 4.8 | 6.0 | 5.9 | 5.0 | 4.8 |
Isoleucine | 3.0 | 3.2 | 4.3 | 5.2 | 4.9 | 4.1 | 4.4 |
Leucine | 6.1 | 6.6 | 8.6 | 7.8 | 8.4 | 8.1 | 8.1 |
Phenylalanine. | 4.1 | 5.2 | 7.6 | 5.6 | 7.6 | 7.7 | 8.0 |
Tryptophan | 0.6 | 0.9 | 1.1 | 0.9 | 1.2 | 1.3 | 1.0 |
Fatty Acids | T0 (g/100 g FA) | T1 (g/100 g FA) | T2 (g/100 g FA) | |
---|---|---|---|---|
C12:0 | Lauric acid | 0.00 ± 0.00 a | 2.06 ± 0.04 ab | 4.43 ± 0.04 b |
C14:0 | Myristic acid | 1.04 ± 0.02 a | 3.38 ± 0.03 ab | 4.55 ± 0.02 b |
C15:0 | Pentadecanoic acid | 0.42 ± 0.01 a | 0.45 ± 0.03 ab | 0.62 ± 0.00 b |
C16:0 | Palmitic acid | 18.36 ± 0.49 a | 23.62 ± 0.26 b | 20.64 ± 0.11 b |
C16:1 | Palmitoleic ac. | 0.73 ± 0.06 a | 1.46 ± 0.01 ab | 1.57 ± 0.02 b |
C18:0 | Stearic acid | 4.90 ± 0.06 a | 4.90 ± 0.06 ab | 3.94 ± 0.02 b |
C18:1 n9 | Oleic acid | 22.95 ± 0.36 a | 22.46 ± 0.18 ab | 20.98 ± 0.08 b |
C18:1 n7 | Vaccenic acid | 1.04 ± 0.02 a | 1.15 ± 0.02 a | 0.0 ± 0.00 a |
C18:2 n6 | Linoleic acid | 43.61 ± 0.66 a | 34.65 ± 0.39 ab | 37.13 ± 0.14 b |
C18:3 n3 | Linolenic acid | 6.89 ± 0.26 a | 5.99 ± 0.13 ab | 5.78 ± 0.06 b |
C20:4 n6 | Arachidonic acid | 0.00 ± 0.00 a | 0.03 ± 0.00 a | 0.37 ± 0.03 a |
Omega 3 | 0.33 ± 0.01 a | 0.44 ± 0.01 ab | 0.47 ± 0.00 b | |
Omega 6 | 2.09 ± 0.05 a | 2.51 ± 0.10 ab | 3.05 ± 0.02 b | |
n6/n3 | 6.35 ± 0.14 a | 5.71 ± 0.03 b | 6.48 ± 0.06 a | |
Saturated Fatty Acid (S) | 1.19 ± 0.03 a | 2.43 ± 0.04 b | 2.77 ± 0.01 b | |
Polyunsaturated Fatty Acid (P) | 2.42 ± 0.06 a | 2.95 ± 0.11 ab | 3.52 ± 0.03 b | |
P/S | 2.04 ± 0.08 a | 1.21 ± 0.03 b | 1.27 ± 0.01 b |
Impact Category | ||||
---|---|---|---|---|
LU | GWP | NER | WU | |
Products (feeds and meat) | m2 org.a | kg CO2eq. | MJ | L deprived |
HM1 | 1.89 | 3.00 | 84.18 | 2.77 |
HM2 | 0.0002 | 1.00 | 7.20 | 190.00 |
T0 | 1.20 | 0.48 | 3.55 | 256.00 |
Soymeal * | 1.39 | 0.70 | 4.19 | 254.00 |
GP | 11.04 | 10.43 | 30.97 | 1942.07 |
GPonHM1 | 13.81 | 24.39 | 617.98 | 847.69 |
GPonHM2 | 6.85 | 15.32 | 54.83 | 2578.33 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herrera, E.; Petrusan, J.-I.; Salvá-Ruiz, B.; Novak, A.; Cavalcanti, K.; Aguilar, V.; Heinz, V.; Smetana, S. Meat Quality of Guinea Pig (Cavia porcellus) Fed with Black Soldier Fly Larvae Meal (Hermetia illucens) as a Protein Source. Sustainability 2022, 14, 1292. https://doi.org/10.3390/su14031292
Herrera E, Petrusan J-I, Salvá-Ruiz B, Novak A, Cavalcanti K, Aguilar V, Heinz V, Smetana S. Meat Quality of Guinea Pig (Cavia porcellus) Fed with Black Soldier Fly Larvae Meal (Hermetia illucens) as a Protein Source. Sustainability. 2022; 14(3):1292. https://doi.org/10.3390/su14031292
Chicago/Turabian StyleHerrera, Esteban, Janos-Istvan Petrusan, Bettit Salvá-Ruiz, Alexandra Novak, Kenyi Cavalcanti, Víctor Aguilar, Volker Heinz, and Sergiy Smetana. 2022. "Meat Quality of Guinea Pig (Cavia porcellus) Fed with Black Soldier Fly Larvae Meal (Hermetia illucens) as a Protein Source" Sustainability 14, no. 3: 1292. https://doi.org/10.3390/su14031292