Most Relevant Sustainability Criteria for Urban Infrastructure Projects—AHP Analysis for the Gulf States
Abstract
1. Introduction
2. Materials and Methods
Questionnaire Design and Selection of Indicators
3. Results
Analytical Hierarchy Process Analysis
4. Discussion
Analysis of the Sustainability Dimensions
- WEC Weight of Economic Aspect
- WE Weight of Environmental Aspect
- WS Weight of Social Aspect
- WE + WEC + WS = 100%
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, J.; Cao, S.J.; Yu, C.W. Development trends and challenges of sustainable urban design in the digital age. Indoor Built Environ. 2021, 30, 3–6. [Google Scholar] [CrossRef]
- European Environmental Agency. Urban Sustainability Issues—What Is a Resource-Efficient City? EEA Technical Report No 23/2015; Publications Office of the European Union: Luxembourg, 2015. [CrossRef]
- Habitat, U.N. World Cities Report 2016: Urbanization and Development: Emerging Futures; United Nations Human Settlements Programme: Nairobi, Kenya, 2016. [Google Scholar]
- Ioppolo, G.; Heijungs, R.; Cucurachi, S.; Salomone, R.; Kleijn, R. Urban Metabolism: Many Open questions for future answers. In Pathways to Environmental Sustainability; Springer International Publishing: Cham, Switzerland, 2014; pp. 23–32. [Google Scholar] [CrossRef]
- Chen, S.; Chen, B.; Feng, K.; Liu, Z.; Fromer, N.; Tan, X.; Alsaedi, A.; Hayat, T.; Weisz, H.; Hubacek, K. Physical and virtual carbon metabolism of global cities. Nat. Commun. 2020, 11, 182. [Google Scholar] [CrossRef] [PubMed]
- Brundtland, G.H. World Commission on Environment and Development; Our Common Future: Oxford, UK, 1987. [Google Scholar]
- Kline, E. Sustainable Community Indicators; Draft Summarizing a Project Developing Sustainable Community; Tufts University: Medford, MA, USA, 1993. [Google Scholar]
- Ying, J.; Zhang, X.; Zhang, Y.; Bilan, S. Green infrastructure: Systematic literature review. Econ. Res.-Ekon. Istraživanja 2022, 35, 343–366. [Google Scholar] [CrossRef]
- Vilathgamuwa, M.; Mishra, Y.; Yigitcanlar, T.; Bhaskar, A.; Wilson, C. Mobile-energy-as-a-service (MEaaS): Sustainable electromobility via integrated energy-transport-urban infrastructure. Sustainability 2022, 14, 2796. [Google Scholar] [CrossRef]
- Benites, A.J.; Simoes, A.F. Assessing the urban sustainable development strategy: An application of a smart city services sustainability taxonomy. Ecol. Indic. 2021, 127, 107734. [Google Scholar] [CrossRef]
- Yang, J.; Yuan, M.; Yigitcanlar, T.; Newman, P.; Schultmann, F. Managing knowledge to promote sustainability in Australian transport infrastructure projects. Sustainability 2015, 7, 8132–8150. [Google Scholar] [CrossRef]
- Yigitcanlar, T. Sustainable Urban and REGIONAL Infrastructure Development: Technologies, Applications and Management; IGI Global: Hersey, PA, USA, 2010. [Google Scholar]
- Purvis, B.; Mao, Y.; Robinson, D. Three pillars of sustainability: In search of conceptual origins. Sustain. Sci. 2019, 14, 681–695. [Google Scholar] [CrossRef]
- Hendricks, M.D.; Meyer, M.A.; Gharaibeh, N.G.; Van Zandt, S.; Masterson, J.; Cooper, J.T., Jr.; Horney, J.A.; Berke, P. The development of a participatory assessment technique for infrastructure: Neighborhood-level monitoring towards sustainable infrastructure systems. Sustain. Cities Soc. 2018, 38, 265–274. [Google Scholar] [CrossRef]
- Sharifi, A. Urban sustainability assessment: An overview and bibliometric analysis. Ecol. Indic. 2021, 121, 107102. [Google Scholar] [CrossRef]
- Alqahtany, A.; Aravindakshan, S. Urbanization in Saudi Arabia and sustainability challenges of cities and heritage sites: Heuristical insights. J. Cult. Herit. Manag. Sustain. Dev. 2021. ahead-of-print. [Google Scholar] [CrossRef]
- Samad, W.A.; Azar, E. Smart Cities in the Gulf: An Overview; Samad, W., Azar, E., Eds.; Palgrave Macmillan: London, UK, 2019. [Google Scholar] [CrossRef]
- Anisurrahman, M.; Alshuwaikhat, H.M. Determining sustainability assessment indicators for the Holy City of Makkah, Saudi Arabia. Arab. J. Sci. Eng. 2019, 44, 5165–5178. [Google Scholar] [CrossRef]
- Alyami, S.H.; Rezgui, Y.; Kwan, A. Developing sustainable building assessment scheme for Saudi Arabia: Delphi consultation approach. Renew. Sustain. Energy Rev. 2013, 27, 43–54. [Google Scholar] [CrossRef]
- Dembińska, I. Infrastruktura Logistyczna Gospodarki w Ujęciu Środowiskowych Uwarunkowań Zrównoważonego Rozwoju; Wydawnictwo Naukowe Uniwersytetu Szczecińskiego: Szczecin, Poland, 2018; pp. 367–389. [Google Scholar]
- Wang, J.; Ren, Y.; Shu, T.; Shen, L.; Liao, X.; Yang, N.; He, H. Economic perspective-based analysis on urban infrastructures carrying capacity—A China study. Environ. Impact Assess. Rev. 2020, 83, 106381. [Google Scholar] [CrossRef]
- United Nations. Managing Infrastructure Assets for Sustainable Development; A Handbook for Local and National Governments. 2021. Available online: https://www.un.org/development/desa/financing/sites/www.un.org.development.desa.financing/files/2021-02/IAMH_2021_0.pdf (accessed on 27 September 2022).
- Stanitsas, M.; Kirytopoulos, K.; Leopoulos, V. Integrating sustainability indicators into project management: The case of the construction industry. J. Clean. Prod. 2021, 279, 123774. [Google Scholar] [CrossRef]
- Raiden, A.; King, A. Social value, organizational learning, and sustainable development goals in the built environment. Resour. Conserv. Recycl. 2021, 172, 105663. [Google Scholar] [CrossRef]
- Fatourehchi, D.; Zarghami, E. Social sustainability assessment framework for managing sustainable construction in residential buildings. J. Build. Eng. 2020, 32, 101761. [Google Scholar] [CrossRef]
- Zheng, X.; Easa, S.M.; Ji, T.; Jiang, Z. Incorporating uncertainty into life-cycle sustainability assessment of pavement alternatives. J. Clean. Prod. 2020, 264, 121466. [Google Scholar] [CrossRef]
- Burciaga, U.M. Sustainability assessment in housing building organizations for the design of strategies against climate change. High-Tech Innov. J. 2020, 1, 136–147. [Google Scholar] [CrossRef]
- Akhanova, G.; Nadeem, A.; Kim, J.R.; Azhar, S. A multi-criteria decision-making framework for building sustainability assessment in Kazakhstan. Sustain. Cities Soc. 2020, 52, 101842. [Google Scholar] [CrossRef]
- Coenen, T.B.; Haanstra, W.; Braaksma, A.J.; Santos, J. CEIMA: A framework for identifying critical interfaces between the Circular Economy and stakeholders in the lifecycle of infrastructure assets. Resour. Conserv. Recycl. 2020, 155, 104552. [Google Scholar] [CrossRef]
- Saxena, P.; Stavropoulos, P.; Kechagias, J.; Salonitis, K. Sustainability assessment for manufacturing operations. Energies 2020, 13, 2730. [Google Scholar] [CrossRef]
- Ameen, R.F.M.; Mourshed, M. Urban sustainability assessment framework development: The ranking and weighting of sustainability indicators using analytic hierarchy process. Sustain. Cities Soc. 2019, 44, 356–366. [Google Scholar] [CrossRef]
- Hanumante, N.C.; Shastri, Y.; Hoadley, A. Assessment of circular economy for global sustainability using an integrated model. Resour. Conserv. Recycl. 2019, 151, 104460. [Google Scholar] [CrossRef]
- Haider, H.; Hewage, K.; Umer, A.; Ruparathna, R.; Chhipi-Shrestha, G.; Culver, K.; Holland, M.; Kay, J.; Sadiq, R. Sustainability assessment framework for small-sized urban neighborhoods: An application of fuzzy synthetic evaluation. Sustain. Cities Soc. 2018, 36, 21–32. [Google Scholar] [CrossRef]
- Dong, L.; Wang, Y.; Scipioni, A.; Park, H.S.; Ren, J. Recent progress on innovative urban infrastructures system towards sustainable resource management. Resour. Conserv. Recycl. 2018, 128, 355–359. [Google Scholar] [CrossRef]
- Bryce, J.; Brodie, S.; Parry, T.; Presti, D.L. A systematic assessment of road pavement sustainability through a review of rating tools. Resour. Conserv. Recycl. 2017, 120, 108–118. [Google Scholar] [CrossRef]
- Hossaini, R.; Chipperfield, M.; Montzka, S.; Rap, A.; Dhomse, S.; Feng, W. Efficiency of short-lived halogens at influencing climate through depletion of stratospheric ozone. Nat. Geosci. 2015, 8, 186–190. [Google Scholar] [CrossRef]
- Onat, N.C.; Kucukvar, M.; Tatari, O. Integrating triple bottom line input-output analysis into life cycle sustainability assessment framework: The case for US building. Int. J. Life Cycle Assess. 2014, 19, 1488–1505. [Google Scholar] [CrossRef]
- Aberilla, M.; Gallego-Schmid, A.; Stamford, L.; Azapagic, A. Environmental sustainability of cooking fuels in remote communities: Life cycle and local impacts. Sci. Total Environ. 2020, 713, 136445. [Google Scholar] [CrossRef]
- Taelman, E.; De Meester, S.; Schaubroeck, T.; Sakshaug, E.; Alvarenga, R.A.F.; Dewulf, J. Accounting for the occupation of the marine environment as a natural resource in life cycle assessment: An exergy based approach. Resour. Conserv. Recycl. 2014, 91, 1–10. [Google Scholar] [CrossRef]
- Maurya, S.P.; Singh, P.K.; Ohri, A.; Singh, R. Identification of indicators for sustainable urban water development planning. Ecol. Indic. 2020, 108, 105691. [Google Scholar] [CrossRef]
- Hély, V.; Antoni, J.P. Combining indicators for decision making in planning issues: A theoretical approach to perform sustainability assessment. Sustain. Cities Soc. 2019, 44, 844–854. [Google Scholar] [CrossRef]
- Opher, T.; Friedler, E.; Shapira, A. Comparative life cycle sustainability assessment of urban water reuse at various centralization scales. Int. J. Life Cycle Assess. 2019, 24, 1319–1332. [Google Scholar] [CrossRef]
- An, D.; Xi, B.; Ren, J.; Ren, X.; Zhang, W.; Wang, Y.; Dong, L. Multi-criteria sustainability assessment of urban sludge treatment technologies: Method and case study. Resour. Conserv. Recycl. 2018, 128, 546–554. [Google Scholar] [CrossRef]
- An, D.; Xi, B.; Ren, J.; Wang, Y.; Jia, X.; He, C.; Li, Z. Sustainability assessment of groundwater remediation technologies based on multi-criteria decision-making method. Resour. Conserv. Recycl. 2017, 119, 36–46. [Google Scholar] [CrossRef]
- Venkatesh, G.; Brattebø, H.; Sægrov, S.; Behzadian, K.; Kapelan, Z. Metabolism-modeling approaches to long-term sustainability assessment of urban water services. Urban Water J. 2017, 14, 11–22. [Google Scholar] [CrossRef]
- Phillis, Y.A.; Kouikoglou, V.S.; Verdugo, C. Urban sustainability assessment and ranking of cities. Comput. Environ. Urban Syst. 2017, 64, 254–265. [Google Scholar] [CrossRef]
- Sharifi, F.; Nygaard, A.; Stone, W.M.; Levin, I. Green gentrification or gentrified greening: Metropolitan Melbourne. Land Use Policy 2021, 108, 105577. [Google Scholar] [CrossRef]
- Kivilä, J.; Martinsuo, M.; Vuorinen, L. Sustainable project management through project control in infrastructure projects. Int. J. Proj. Manag. 2017, 35, 1167–1183. [Google Scholar] [CrossRef]
- Tupenaite, L.; Lill, I.; Geipele, I.; Naimaviciene, J. Ranking of sustainability indicators for assessment of the new housing development projects: Case of the Baltic States. Resources 2017, 6, 55. [Google Scholar] [CrossRef]
- Kylili, A.; Fokaides, P.A.; Jimenez, P.A.L. Key Performance Indicators (KPIs) approach in buildings renovation for the sustainability of the built environment: A review. Renew. Sustain. Energy Rev. 2016, 56, 906–915. [Google Scholar] [CrossRef]
- Zeng, S.X.; Ma, H.Y.; Lin, H.; Zeng, R.C.; Tam, V.W. Social responsibility of major infrastructure projects in China. Int. J. Proj. Manag. 2015, 33, 537–548. [Google Scholar] [CrossRef]
- Yuan, H. Key indicators for assessing the effectiveness of waste management in construction projects. Ecol. Indic. 2013, 24, 476–484. [Google Scholar] [CrossRef]
- ISO/TS 21929-1: 2011; Sustainability in Building Construction—Sustainability Indicators—Part 1: Framework for the Development of Indicators for Buildings. ISO: Geneva, Switzerland, 2011; pp. 1–24.
- Shen, L.; Wu, Y.; Zhang, X. Key assessment indicators for the sustainability of infrastructure projects. J. Constr. Eng. Manag. 2011, 137, 441–451. [Google Scholar] [CrossRef]
- Alsulami, B.; Mohamed, S. Key sustainability indicators for infrastructure systems: An Australian perspective. In Proceedings of the Sixth International Conference on Construction in the 21st Century (CITC-VI). Construction Challenges in the New Decade, Kuala Lumpur, Malaysia, 5–7 July 2011; pp. 1133–1140. [Google Scholar]
- Ugwu, O.O.; Haupt, T.C. Key performance indicators and assessment methods for infrastructure sustainability—A South African construction industry perspective. Build. Environ. 2007, 42, 665–680. [Google Scholar] [CrossRef]
- Antucheviciene, J.; Zakarevičius, A.; Zavadskas, E.K. Multiple criteria construction management decisions considering relations between measures. Technol. Econ. Dev. Econ. 2010, 16, 109–125. [Google Scholar] [CrossRef]
- Fernandez-Sánchez, G.; Rodríguez-López, F. A methodology to identify sustainability indicators in construction project management—Application to infrastructure projects in Spain. Ecol. Indic. 2010, 10, 1193–1201. [Google Scholar] [CrossRef]
- Saaty, T.L. Decision making with the analytic hierarchy process. Int. J. Serv. Sci. 2008, 1, 83–98. Available online: https://www.inderscienceonline.com/doi/abs/10.1504/IJSSci.2008.01759 (accessed on 27 September 2022). [CrossRef]
- Ransikarbum, K.; Khamhong, P. Integrated fuzzy analytic hierarchy process and technique for order of preference by similarity to ideal solution for additive manufacturing printer selection. J. Mater. Eng. Perform. 2021, 30, 6481–6492. [Google Scholar] [CrossRef]
- Ransikarbum, K.; Pitakaso, R.; Kim, N.; Ma, J. Multicriteria decision analysis framework for part orientation analysis in additive manufacturing. J. Comput. Des. Eng. 2021, 8, 1141–1157. [Google Scholar] [CrossRef]
- Gan, X.; Fernandez, I.C.; Guo, J.; Wilson, M.; Zhao, Y.; Zhou, B.; Wu, J. When to use what: Methods for weighting and aggregating sustainability indicators. Ecol. Indic. 2017, 81, 491–502. [Google Scholar] [CrossRef]
- Si, J.; Marjanovic-Halburd, L.; Nasiri, F.; Bell, S. Assessment of building-integrated green technologies: A review and case study on applications of Multi-Criteria Decision Making (MCDM) method. Sustain. Cities Soc. 2016, 27, 106–115. [Google Scholar] [CrossRef]
- Chanthakhot, W.; Ransikarbum, K. Integrated IEW-TOPSIS and fire dynamics simulation for agent-based evacuation modeling in industrial safety. Safety 2021, 7, 47. [Google Scholar] [CrossRef]
- Ransikarbum, K.; Pitakaso, R.; Kim, N. A decision-support model for additive manufacturing scheduling using an integrative analytic hierarchy process and multi-objective optimization. Appl. Sci. 2020, 10, 5159. [Google Scholar] [CrossRef]
- Işik, Z.; Aladağ, H. A fuzzy AHP model to assess sustainable performance of the construction industry from urban regeneration perspective. J. Civ. Eng. Manag. 2017, 23, 499–509. [Google Scholar] [CrossRef]
- Abdul-Rahman, H.; Wang, C.; Wood, L.C.; Ebrahimi, M. Integrating and ranking sustainability criteria for housing. Proc. Inst. Civ. Eng.-Eng. Sustain. 2015, 169, 3–30. [Google Scholar] [CrossRef]
- Yu, W.; Li, B.; Yang, X.; Wang, Q. Development of a rating method and weighting system for green store buildings in China. Renew. Energy 2015, 73, 123–129. [Google Scholar] [CrossRef]
- Nilashi, M.; Zakaria, R.; Ibrahim, O.; Majid, M.Z.A.; Zin, R.M.; Chugtai, M.W.; Abidin, N.I.Z.; Sahamir, S.R.; Yakubu, D.A. A knowledge-based expert system for assessing the performance level of green buildings. Knowl. Based Syst. 2015, 86, 194–209. [Google Scholar] [CrossRef]
- McHugh, M.L. Multiple comparison analysis testing in ANOVA. Biochem. Med. 2011, 21, 203–209. [Google Scholar] [CrossRef]
- Rogelj, J.; Den Elzen, M.; Höhne, N.; Fransen, T.; Fekete, H.; Winkler, H.; Meinshausen, M. Paris Agreement climate proposals need a boost to keep warming well below 2 C. Nature 2016, 534, 631–639. [Google Scholar] [CrossRef]
- Saaty, T.L.; Vargas, L.G. Models, Methods, Concepts & Applications of the Analytic Hierarchy Process; Springer Science & Business Media: New York, NY, USA, 2012. [Google Scholar] [CrossRef]
- Salo, A.A.; Hamalainen, R.P. On the measurement of preferences in the analytic hierarchy process. J. Multi-Criteria Decis. Anal. 1997, 6, 309–319. [Google Scholar] [CrossRef]
- Pöyhönen, M.; Hämäläinen, R.P. On the Convergence of Multiattribute Weighting Methods; Helsinki University of Technology: Helsinki, Finland, 1997; pp. 1–16. [Google Scholar]
- Harker, P.T.; Vargas, L.G. The theory of ratio scale estimation: Saaty’s analytic hierarchy process. Manag. Sci. 1987, 33, 1383–1403. [Google Scholar] [CrossRef]
- Saaty, T.L. The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation; McGraw-Hill: New York, NY, USA, 1980. [Google Scholar]
- Sierra, L.A.; Yepes, V.; Pellicer, E. A review of multi-criteria assessment of the social sustainability of infrastructures. J. Clean. Prod. 2018, 187, 496–513. [Google Scholar] [CrossRef]
- Sierra, L.A.; Yepes, V.; Pellicer, E. Assessing the social sustainability contribution of an infrastructure project under conditions of uncertainty. Environ. Impact Assess. Rev. 2017, 67, 61–72. [Google Scholar] [CrossRef]
- Eizenberg, E.; Jabareen, Y. Social sustainability: A new conceptual framework. Sustainability 2017, 9, 68. [Google Scholar] [CrossRef]
- Hofstetter, P.; Braunschweig, A.; Mettier, T.; Müller-Wenk, R.; Tietje, O. The Mixing Triangle: Correlation and Graphical Decision Support for LCA-based Comparisons. J. Ind. Ecol. 1999, 3, 97–115. [Google Scholar] [CrossRef]
- Finkbeiner, M.; Schau, E.M.; Lehmann, A.; Traverso, M. Towards life cycle sustainability assessment. Sustainability 2010, 2, 3309–3322. [Google Scholar] [CrossRef]







| Questionnaire Part 1 | Division/ Range | No. of Respondents (163 Entries) | Respondents % (163 Entries) | No. of Respondents (125 Entries) | Respondents % (125 Entries) |
|---|---|---|---|---|---|
| Gender | Male | 123 | 75% | 97 | 78% |
| Female | 40 | 25% | 28 | 22% | |
| Age (in years) | 25–40 | 86 | 53% | 69 | 55% |
| 41–60 | 59 | 36% | 43 | 34% | |
| >60 | 18 | 11% | 13 | 11% | |
| Work experience (in years) | 0–5 | 40 | 25% | 28 | 22% |
| 6–10 | 58 | 36% | 45 | 36% | |
| >10 | 65 | 39% | 52 | 42% | |
| Qualification | Ph.D. | 17 | 10% | 08 | 7% |
| Master’s | 114 | 70% | 98 | 78% | |
| Bachelor’s | 23 | 14% | 14 | 11% | |
| Other | 9 | 6% | 5 | 4% |
| Respondents | Participation in Sustainability-Led Projects | Understanding of Sustainability Initiative | Exp. in Employing Sustainability Evaluation Tools | ||||
|---|---|---|---|---|---|---|---|
| Project Director | 26% | Yes: Participated in the Projects | (56%) | GRI (Global Reporting Initiative) | (72%) | Yes: Employed | (46%) |
| Senior Project Managers | 28% | No: Not Participated in the Project | (44%) | UNCSD (United Nations Commission for Sustainability Development) | (66%) | No: Not Employed | (54%) |
| Project Managers | 24% | ||||||
| Planning Engineers | 22% |
| Economic Indicators | Environmental Indicators | Social Indicators | |
|---|---|---|---|
| Indicators with Significant Differences | Initial Cost Importance ˃ Reliability | Ozone Layer Depletion Relevant ˃ Reliability | Social Capital Relevant/Importance ˃ Practicality Relevant/Importance ˃ Reliability |
| Cost of Employment Importance ˃ Reliability | Renewable Resource Consumption Importance/Relevant ˃ Reliability | Employees Health and Safety Relevant ˃ Practicality Relevant/Importance ˃ Reliability | |
| Financial Return Importance ˃ Reliability | Waste Generation Importance ˃ Reliability Importance ˃ Practicality | Stakeholders Participation Relevant/Practical/Importance ˃ Reliability | |
| Water Use Relevant ˃ Practicality Relevant ˃ Reliability | Cultural Heritage Importance ˃ Reliability Importance ˃ Practicality | ||
| Indicators without Significant Differences | Life Cycle Cost | Global Warming Potential | Public Health and Safety |
| Ecosystem’s Rehabilitation Cost | Acidification | Compliance with Law | |
| Regional economy Improvement | Eutrophication | Social Responsibility | |
| Residence Resettling Cost | Land Use | Serviceability | |
| Indoor Air Quality | |||
| Noise Level |
| Initial Cost | Life Cycle Cost | Cost of Employment | Financial Return | Rehabilitating Cost of the Ecosystem | Improvement of the Regional Economy | Resettling Cost of Residents | ||||
|---|---|---|---|---|---|---|---|---|---|---|
| Initial Cost | 1.0 | 1.69 | 1.69 | 1.46 | 1.46 | 1 | 2.08 | |||
| Life Cycle Cost | 0.59 | 1.0 | 1 | 0.81 | 0.81 | 0.59 | 1.38 | |||
| Cost of Employment | 0.59 | 1 | 1.0 | 0.81 | 0.81 | 0.59 | 1.38 | |||
| Financial Return | 0.68 | 1.23 | 1.23 | 1.0 | 1 | 0.68 | 1.62 | |||
| Rehabilitating Cost of Ecosystem | 0.68 | 1.23 | 1.23 | 1 | 1.0 | 0.68 | 1.61 | |||
| Improvement in Regional Economy | 1 | 1.69 | 1.69 | 1.46 | 1.46 | 1.0 | 2.07 | |||
| Resettling Cost of Residents | 0.48 | 0.72 | 0.72 | 0.62 | 0.62 | 0.48 | 1.0 | |||
| Total | 5.03 | 8.57 | 8.57 | 7.17 | 7.17 | 5.03 | 11.15 | |||
| Initial Cost | Life Cycle Cost | Cost of Employment | Financial Return | Rehabilitating Cost of Ecosystem | Improvement of the Regional Economy | Resettling Cost of Residents | Total | Average | Consistency Measure | |
| Initial Cost | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | 0.19 | 1.39 | 0.20 | 7.00 |
| Life Cycle Cost | 0.12 | 0.12 | 0.12 | 0.11 | 0.11 | 0.12 | 0.12 | 0.82 | 0.12 | 7.00 |
| Cost of Employment | 0.12 | 0.12 | 0.12 | 0.11 | 0.11 | 0.12 | 0.12 | 0.82 | 0.12 | 7.00 |
| Financial Return | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 | 0.98 | 0.14 | 7.00 |
| Rehabilitating Cost of Ecosystem | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 | 0.98 | 0.14 | 7.00 |
| Improvement in Regional Economy | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | 0.19 | 1.39 | 0.20 | 7.00 |
| Resettling Cost of Residents | 0.10 | 0.08 | 0.08 | 0.09 | 0.09 | 0.10 | 0.09 | 0.62 | 0.09 | 7.00 |
| CI | 0.00 | |||||||||
| RI | 1.32 | |||||||||
| CR | 0.00 | |||||||||
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, K.; Depczyńska, K.S.; Dembińska, I.; Ioppolo, G. Most Relevant Sustainability Criteria for Urban Infrastructure Projects—AHP Analysis for the Gulf States. Sustainability 2022, 14, 14717. https://doi.org/10.3390/su142214717
Khan K, Depczyńska KS, Dembińska I, Ioppolo G. Most Relevant Sustainability Criteria for Urban Infrastructure Projects—AHP Analysis for the Gulf States. Sustainability. 2022; 14(22):14717. https://doi.org/10.3390/su142214717
Chicago/Turabian StyleKhan, Kamran, Katarzyna Szopik Depczyńska, Izabela Dembińska, and Giuseppe Ioppolo. 2022. "Most Relevant Sustainability Criteria for Urban Infrastructure Projects—AHP Analysis for the Gulf States" Sustainability 14, no. 22: 14717. https://doi.org/10.3390/su142214717
APA StyleKhan, K., Depczyńska, K. S., Dembińska, I., & Ioppolo, G. (2022). Most Relevant Sustainability Criteria for Urban Infrastructure Projects—AHP Analysis for the Gulf States. Sustainability, 14(22), 14717. https://doi.org/10.3390/su142214717

