# Optimization of Hydrokinetic Swept Blades

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Blade Element Momentum Theory for Swept Blades

#### 2.1. Axial Momentum Theory with Sweep Effect

#### 2.2. Blade Element Momentum Theory for Turbines with Swept Blades

#### 2.3. Optimization Model for the Turbine Swept Blade

## 3. Results and Discussion

#### 3.1. Validation

#### 3.2. Performance Analysis of the Proposed Optimization

## 4. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## Nomenclature

Latin Symbols | |

a, ${a}^{\prime}$ | Axial and tangential induction factors at the rotor |

${a}_{opt}$ | Optimal axial induction factor |

B | Number of blades |

c | Chord (m) |

${C}_{D}$ | Drag coefficient |

${C}_{L}$ | Lift coefficient |

${C}_{M}$ | Torque coefficient |

${C}_{n}$ | Normal force coefficient |

${C}_{P}$ | Power coefficient |

${C}_{Popt}$ | Optimal power coefficient |

${C}_{t}$ | Tangential force coefficient |

${C}_{T}$ | Thrust coefficient |

$dA$ | Elementary area (m^{2}) |

F | Prandtl tip-loss factor |

${p}_{0}$ | Pressure in the external flow (Pa) |

${p}_{2}$ | Pressure at the turbine upstream (Pa) |

${p}_{3}$ | Pressure at the diffuser outlet (Pa) |

P | Output power (W) |

r | Radial position at the rotor plane (m) |

R | Radius of the rotor (m) |

${V}_{0}$ | Freestream wind velocity (m/s) |

${V}_{3}$ | Axial velocity at the diffuser outlet (m/s) |

w | Total induced velocity (m/s) |

W | Relative velocity (m/s) |

x | Local speed ratio |

Greek Symbols | |

$\alpha $ | Angle of attack (rad) |

$\beta $ | Twist angle (rad) |

$\lambda $ | Tip speed ratio |

$\rho $ | Density of the fluid (kg/m^{3}) |

$\sigma $ | Solidity of the turbine |

$\varphi $ | Flow angle (rad) |

$\Omega $ | Angular speed of the turbine (rad/s) |

## References

- do Rio Vaz, D.A.; Vaz, J.R.; Silva, P.A. An approach for the optimization of diffuser-augmented hydrokinetic blades free of cavitation. Energy Sustain. Dev.
**2018**, 45, 142–149. [Google Scholar] [CrossRef] - Betz, A. Introduction to the Theory of Flow Machines; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar]
- da Silva, P.A.S.F.; Shinomiya, L.D.; de Oliveira, T.F.; Vaz, J.R.P.; Mesquita, A.L.A.; Junior, A.C.P.B. Design of hydrokinetic turbine blades considering cavitation. Energy Procedia
**2015**, 75, 277–282. [Google Scholar] [CrossRef] [Green Version] - Muratoglu, A.; Tekin, R.; Ertuğrul, Ö.F. Hydrodynamic optimization of high-performance blade sections for stall regulated hydrokinetic turbines using Differential Evolution Algorithm. Ocean. Eng.
**2021**, 220, 108389. [Google Scholar] [CrossRef] - Larwood, S.; Van Dam, C.P.; Schow, D. Design studies of swept wind turbine blades. Renew. Energy
**2014**, 71, 563–571. [Google Scholar] [CrossRef] [Green Version] - Sessarego, M.; Ramos-García, N.; Shen, W.Z. Analysis of winglets and sweep on wind turbine blades using a lifting line vortex particle method in complex inflow conditions. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2018; Volume 1037, p. 022021. [Google Scholar]
- Zuo, H.M.; Liu, C.; Yang, H.; Wang, F. Numerical Study on the Effect of Swept Blade on the Aerodynamic Performance of Wind Turbine at High Tip Speed Ratio. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2016; Volume 753, p. 102010. [Google Scholar]
- Bora, B.J.; Dai Tran, T.; Shadangi, K.P.; Sharma, P.; Said, Z.; Kalita, P.; Nguyen, X.P. Improving combustion and emission characteristics of a biogas/biodiesel-powered dual-fuel diesel engine through trade-off analysis of operation parameters using response surface methodology. Sustain. Energy Technol. Assess.
**2022**, 53, 102455. [Google Scholar] [CrossRef] - Zahedi, R.; Zahedi, A.; Ahmadi, A. Strategic study for renewable energy policy, optimizations and sustainability in Iran. Sustainability
**2022**, 14, 2418. [Google Scholar] [CrossRef] - Rajamoorthy, R.; Arunachalam, G.; Kasinathan, P.; Devendiran, R.; Ahmadi, P.; Pandiyan, S.; Sharma, P. A novel intelligent transport system charging scheduling for electric vehicles using Grey Wolf Optimizer and Sail Fish Optimization algorithms. Energy Sources Part A Recover. Util. Environ. Eff.
**2022**, 44, 3555–3575. [Google Scholar] [CrossRef] - Sadollah, A.; Nasir, M.; Geem, Z.W. Sustainability and optimization: From conceptual fundamentals to applications. Sustainability
**2020**, 12, 2027. [Google Scholar] [CrossRef] [Green Version] - Ding, Y.; Zhang, X. An optimal design method of swept blades for HAWTs. J. Renew. Sustain. Energy
**2016**, 8, 043303. [Google Scholar] [CrossRef] - Fei, C.W.; Li, H.; Lu, C.; Han, L.; Keshtegar, B.; Taylan, O. Vectorial surrogate modeling method for multi-objective reliability design. Appl. Math. Model.
**2022**, 109, 1–20. [Google Scholar] [CrossRef] - Fei, C.; Wen, J.; Han, L.; Huang, B.; Yan, C. Optimizable Image Segmentation Method with Superpixels and Feature Migration for Aerospace Structures. Aerospace
**2022**, 9, 465. [Google Scholar] [CrossRef] - Han, L.; Li, P.; Yu, S.; Chen, C.; Fei, C.; Lu, C. Creep/fatigue accelerated failure of Ni-based superalloy turbine blade: Microscopic characteristics and void migration mechanism. Int. J. Fatigue
**2022**, 154, 106558. [Google Scholar] [CrossRef] - Pavese, C.; Kim, T.; Murcia, J.P. Design of a wind turbine swept blade through extensive load analysis. Renew. Energy
**2017**, 102, 21–34. [Google Scholar] [CrossRef] [Green Version] - Kaya, M.N.; Kose, F.; Ingham, D.; Ma, L.; Pourkashanian, M. Aerodynamic performance of a horizontal axis wind turbine with forward and backward swept blades. J. Wind. Eng. Ind. Aerodyn.
**2018**, 176, 166–173. [Google Scholar] [CrossRef] [Green Version] - Ning, A.; Hayman, G.; Damiani, R.; Jonkman, J.M. Development and validation of a new blade element momentum skewed-wake model within AeroDyn. In 33rd Wind Energy Symposium; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2015; p. 0215. [Google Scholar]
- Vaz, J.R.; Wood, D.H. Effect of the diffuser efficiency on wind turbine performance. Renew. Energy
**2018**, 126, 969–977. [Google Scholar] [CrossRef] - Vaz, J.R.P.; Wood, D.H. Aerodynamic optimization of the blades of diffuser-augmented wind turbines. Energy Convers. Manag.
**2016**, 123, 35–45. [Google Scholar] [CrossRef] - Wood, D. Small Wind Turbines: Analysis, Design, and Application; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Hansen, M. Aerodynamics of Wind Turbines, 2nd ed.; Earthscan: London, UK, 2008. [Google Scholar]
- Clifton-Smith, M.J. Wind Turbine Blade Optimisation with Tip Loss Corrections. Wind. Eng.
**2009**, 33, 477496. [Google Scholar] [CrossRef] - Wood, D.H. Maximum wind turbine performance at low tip speed ratio. J. Renew. Sustain. Energy
**2015**, 7, 053126. [Google Scholar] [CrossRef] - John, I.H.; Vaz, J.R.; Wood, D. Aerodynamic performance and blockage investigation of a cambered multi-bladed windmill. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2020; Volume 1618, p. 042003. [Google Scholar]
- Bruining, A. Aerodynamic Characteristics of a Curved Plate Airfoil Section at Reynolds Numbers 60,000 and 100,000 and Angles of Attack From-10 to+ 90 Degrees; Report LR-281; Delft University of Technology, Department of Aerospace Engineering: Delft, The Netherlands, 1979. [Google Scholar]
- Glauert, H. Aerodynamic Theory; Durand, W.F., Ed.; Division L. Airplanes Propellers: NewYork, NY, USA, 1963; Chapter XI; Volume 4, pp. 191–195. [Google Scholar]
- Jenkins, N.; Burton, T.L.; Bossanyi, E.; Sharpe, D.; Graham, M. Wind Energy Handbook; John Wiley & Sons: Hoboken, NJ, USA, 2021. [Google Scholar]
- Picanço, H.P.; Kleber Ferreira de Lima, A.; Dias do Rio Vaz, D.A.T.; Lins, E.F.; Pinheiro Vaz, J.R. Cavitation Inception on Hydrokinetic Turbine Blades Shrouded by Diffuser. Sustainability
**2022**, 14, 7067. [Google Scholar] [CrossRef] - Vaz, J.R.; Okulov, V.L.; Wood, D.H. Finite blade functions and blade element optimization for diffuser-augmented wind turbines. Renew. Energy
**2021**, 165, 812–822. [Google Scholar] [CrossRef] - Wood, D.H.; Okulov, V.L.; Vaz, J.R.P. Calculation of the induced velocities in lifting line analyses of propellers and turbines. Ocean. Eng.
**2021**, 235, 109337. [Google Scholar] [CrossRef]

**Figure 1.**Simplified illustration of the velocities at the rotor plane and in the wake for a swept radius [20].

**Figure 5.**(

**a**) SG6040 airfoil for the section of the rotor blade. (

**b**) ${C}_{l}/{C}_{d}$ ratio for the SG6040 foil (Reynolds number of 150,000).

Parameters | Value |
---|---|

Turbine diameter, m | 0.8 |

Hub diameter, m | 0.08 |

Number of blades | 4 |

Stream velocity, m/s | 1.0 |

water density, kg/m^{3} ^{(1)} | 997 |

Angular velocity, rad/s | 10.5 |

Swept angle, degrees | 30 |

^{(1)}at 25 °C.

Swept Blades | Straight Blades | |
---|---|---|

${C}_{Q}$ | 0.13 | 0.11 |

${C}_{P}$ | 0.529 | 0.46 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Gemaque, M.L.A.; Vaz, J.R.P.; Saavedra, O.R.
Optimization of Hydrokinetic Swept Blades. *Sustainability* **2022**, *14*, 13968.
https://doi.org/10.3390/su142113968

**AMA Style**

Gemaque MLA, Vaz JRP, Saavedra OR.
Optimization of Hydrokinetic Swept Blades. *Sustainability*. 2022; 14(21):13968.
https://doi.org/10.3390/su142113968

**Chicago/Turabian Style**

Gemaque, Miriam L. A., Jerson R. P. Vaz, and Osvaldo R. Saavedra.
2022. "Optimization of Hydrokinetic Swept Blades" *Sustainability* 14, no. 21: 13968.
https://doi.org/10.3390/su142113968