Democracy, Economic Development and Low-Carbon Energy: When and Why Does Democratization Promote Energy Transition?
Abstract
1. Introduction
2. Theoretical Foundations
2.1. Existing Explanations
2.2. Democracy and Energy Transition
2.3. Economic Development and Energy Transition
3. Materials and Methods
3.1. Temporal-Spatial Domain
3.2. Data Sources
3.3. Approach
4. Results
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Gans, J. Al Gore: America Must Address ‘Democracy Crisis’ to Solve Climate Crisis; The Hill: Washington, DC, USA, 2022. [Google Scholar]
- Congleton, R.D. Political Institutions and Pollution Control. Rev. Econ. Stat. 1992, 74, 412–421. [Google Scholar] [CrossRef]
- Güngör, H.; Olanipekun, I.O.; Usman, O. Testing the Environmental Kuznets Curve Hypothesis: The Role of Energy Consumption and Democratic Accountability. Environ. Sci. Pollut. Res. 2020, 28, 1464–1478. [Google Scholar] [CrossRef] [PubMed]
- Farzin, Y.H.; Bond, C.A. Democracy and Environmental Quality. J. Dev. Econ. 2006, 81, 213–235. [Google Scholar] [CrossRef]
- Li, Q.; Reuveny, R. Democracy and Environmental Degradation. Int. Stud. Q. 2006, 50, 935–956. [Google Scholar] [CrossRef]
- Clulow, Z. Democracy, Electoral Systems and Emissions: Explaining When and Why Democratization Promotes Mitigation. Clim. Policy 2019, 19, 244–257. [Google Scholar] [CrossRef]
- Böhmelt, T.; Böker, M.; Ward, H. Democratic Inclusiveness, Climate Policy Outputs, and Climate Policy Outcomes. Democratization 2015, 23, 1272–1291. [Google Scholar] [CrossRef]
- Bttig, M.B.; Bernauer, T. National Institutions and Global Public Goods: Are Democracies More Cooperative in Climate Change Policy? Int. Organ. 2009, 63, 281–308. [Google Scholar] [CrossRef]
- Povitkina, M. The Limits of Democracy in Tackling Climate Change. Env. Polit. 2018, 27, 411–432. [Google Scholar] [CrossRef]
- Fredriksson, P.G.; Neumayer, E. Democracy and Climate Change Policies: Is History Important? Ecol. Econ. 2013, 95, 11–19. [Google Scholar] [CrossRef]
- Burnell, P. International Support for Action on Climate Change and Democracy: Exploring Complementarities. Third World Q. 2014, 35, 1216–1238. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change IPCC Special Report on Global Warming of 1.5’C; IPCC: Geneva, Switzerland, 2018.
- Stephens, J.C. Energy Democracy: Redistributing Power to the People through Renewable Transformation. Environment 2019, 61, 4–13. [Google Scholar] [CrossRef]
- Brooks, S.M.; Kurtz, M.J. Oil and Democracy: Endogenous Natural Resources and the Political “Resource Curse”. Int. Organ. 2016, 70, 279–311. [Google Scholar] [CrossRef]
- Vanegas Cantarero, M.M. Of Renewable Energy, Energy Democracy, and Sustainable Development: A Roadmap to Accelerate the Energy Transition in Developing Countries. Energy Res. Soc. Sci. 2020, 70, 101716. [Google Scholar] [CrossRef]
- Welton, S. Decarbonization in Democracy. UCLA Law Rev. 2020, 67, 56. [Google Scholar]
- Bayulgen, O.; Ladewig, J.W. Vetoing the Future: Political Constraints and Renewable Energy. Environ. Politics 2016, 26, 49–70. [Google Scholar] [CrossRef]
- Cadoret, I.; Padovano, F. The Political Drivers of Renewable Energies Policies. Energy Econ. 2016, 56, 261–269. [Google Scholar] [CrossRef]
- Droubi, S.; Heffron, R.J.; McCauley, D. A Critical Review of Energy Democracy: A Failure to Deliver Justice? Energy Res. Soc. Sci. 2022, 86, 102444. [Google Scholar] [CrossRef]
- Szulecki, K. Conceptualizing Energy Democracy. Environ. Politics 2017, 27, 21–41. [Google Scholar] [CrossRef]
- Ramirez, J.; Angelino Velázquez, D.; Vélez-Zapata, C. The Potential Role of Peace, Justice, and Strong Institutions in Colombia’s Areas of Limited Statehood for Energy Diversification towards Governance in Energy Democracy. Energy Policy 2022, 168, 113135. [Google Scholar] [CrossRef]
- Dowd, A.M.; James, M. A Social Licence for Carbon Dioxide Capture and Storage: How Engineers and Managers Describe Community Relations. Soc. Epistemol. 2014, 28, 364–384. [Google Scholar] [CrossRef]
- Hall, N.L. Can the “Social Licence to Operate” Concept Enhance Engagement and Increase Acceptance of Renewable Energy? A Case Study of Wind Farms in Australia. Soc. Epistemol. 2014, 28, 219–238. [Google Scholar] [CrossRef]
- Gudde, P.; Oakes, J.; Cochrane, P.; Caldwell, N.; Bury, N. The Role of UK Local Government in Delivering on Net Zero Carbon Commitments: You’ve Declared a Climate Emergency, so What’s the Plan? Energy Policy 2021, 154, 112245. [Google Scholar] [CrossRef]
- Ahmed, Z.; Ahmad, M.; Rjoub, H.; Kalugina, O.A.; Hussain, N. Economic Growth, Renewable Energy Consumption, and Ecological Footprint: Exploring the Role of Environmental Regulations and Democracy in Sustainable Development. Sustain. Dev. 2021, 30, 595–605. [Google Scholar] [CrossRef]
- Jordan, A.; Lorenzoni, I.; Tosun, J.; i Saus, J.E.; Geese, L.; Kenny, J.; Saad, E.L.; Moore, B.; Schaub, S.G. The Political Challenges of Deep Decarbonisation: Towards a More Integrated Agenda. Clim. Action 2022, 1, 6. [Google Scholar] [CrossRef]
- Stephens, J.C.; Burke, M.J.; Gibian, B.; Jordi, E.; Watts, R. Operationalizing Energy Democracy: Challenges and Opportunities in Vermont’s Renewable Energy Transformation. Front. Commun. 2018, 3, 43. [Google Scholar] [CrossRef]
- Adams, S.; Acheampong, A.O. Reducing Carbon Emissions: The Role of Renewable Energy and Democracy. J. Clean. Prod. 2019, 240, 118245. [Google Scholar] [CrossRef]
- Bayulgen, O. Localizing the Energy Transition: Town-Level Political and Socio-Economic Drivers of Clean Energy in the United States. Energy Res. Soc. Sci. 2020, 62, 101376. [Google Scholar] [CrossRef]
- Chen, C.; Pinar, M.; Stengos, T. Determinants of Renewable Energy Consumption: Importance of Democratic Institutions. Renew. Energy 2021, 179, 75–83. [Google Scholar] [CrossRef]
- Graham, N.; Graham, N.; Carroll, W.K.; Chen, D. Carbon Capital’s Political Reach: A Network Analysis Of Federal Lobbying By The Fossil Fuel Industry From Harper To Trudeau. Can. Political Sci. Rev. 2020, 14, 1–31. [Google Scholar]
- Clulow, Z.; Ferguson, M.; Ashworth, P.; Reiner, D. Comparing Public Attitudes towards Energy Technologies in Australia and the UK: The Role of Political Ideology. Glob. Environ. Chang. 2021, 70, 102327. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, S.; Baek, J.; Heo, E. The Linkages between Democracy and the Environment: Evidence from Developed and Developing Countries. Energy Environ. 2018, 30, 821–832. [Google Scholar] [CrossRef]
- Lin, B.; Omoju, O.E.; Okonkwo, J.U. Factors Influencing Renewable Electricity Consumption in China. Renew. Sustain. Energy Rev. 2016, 55, 687–696. [Google Scholar] [CrossRef]
- Hox, J. Multilevel Modeling: When and Why. In Classification, Data Analysis, and Data Highways; Springer: Berlin/Heidelberg, Germany, 1998; pp. 147–154. [Google Scholar] [CrossRef]
- Steele, F. Module 5: Introduction to Multilevel Modelling Concepts; University of Bristol: Bristol, UK, 2010. [Google Scholar]
- Grubb, M.; Newbery, D. UK Electricity Market Reform and the Energy Transition: Emerging Lessons. Energy J. 2018, 39, 1–25. [Google Scholar] [CrossRef]
- Yang, X.; He, L.; Xia, Y.; Chen, Y. Effect of Government Subsidies on Renewable Energy Investments: The Threshold Effect. Energy Policy 2019, 132, 156–166. [Google Scholar] [CrossRef]
- Kalkuhl, M.; Edenhofer, O.; Lessmann, K. Renewable Energy Subsidies: Second-Best Policy or Fatal Aberration for Mitigation? Resour. Energy Econ. 2013, 35, 217–234. [Google Scholar] [CrossRef]
- Nicolini, M.; Tavoni, M. Are Renewable Energy Subsidies Effective? Evidence from Europe. Renew. Sustain. Energy Rev. 2017, 74, 412–423. [Google Scholar] [CrossRef]
- Solomon, B.D.; Krishna, K. The Coming Sustainable Energy Transition: History, Strategies, and Outlook. Energy Policy 2011, 39, 7422–7431. [Google Scholar] [CrossRef]
- Kittner, N.; Lill, F.; Kammen, D.M. Energy Storage Deployment and Innovation for the Clean Energy Transition. Nat. Energy 2017, 2, 161. [Google Scholar] [CrossRef]
- Boulogiorgou, D.; Ktenidis, P. TILOS Local Scale Technology Innovation Enabling Low Carbon Energy Transition. Renew. Energy 2020, 146, 397–403. [Google Scholar] [CrossRef]
- Kalair, A.; Abas, N.; Saleem, M.S.; Kalair, A.R.; Khan, N. Role of Energy Storage Systems in Energy Transition from Fossil Fuels to Renewables. Energy Storage 2021, 3, e135. [Google Scholar] [CrossRef]
- Valero, A.; Valero, A.; Calvo, G.; Ortego, A.; Ascaso, S.; Palacios, J.L. Global Material Requirements for the Energy Transition. An Exergy Flow Analysis of Decarbonisation Pathways. Energy 2018, 159, 1175–1184. [Google Scholar] [CrossRef]
- Carley, S.; Evans, T.P.; Graff, M.; Konisky, D.M. A Framework for Evaluating Geographic Disparities in Energy Transition Vulnerability. Nat. Energy 2018, 3, 621–627. [Google Scholar] [CrossRef]
- Edenhofer, O.; Pichs Madruga, R.; Sokona, Y. Renewable Energy Sources and Climate Change Mitigation. Special Report of the Intergovernmental Panel on Climate Change (IPCC); Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Burke, M.J.; Stephens, J.C. Political Power and Renewable Energy Futures: A Critical Review. Energy Res. Soc. Sci. 2018, 35, 78–93. [Google Scholar] [CrossRef]
- Hoppe, T.; de Vries, G. Social Innovation and the Energy Transition. Sustainability 2018, 11, 141. [Google Scholar] [CrossRef]
- Su, Z.W.; Umar, M.; Kirikkaleli, D.; Adebayo, T.S. Role of Political Risk to Achieve Carbon Neutrality: Evidence from Brazil. J. Environ. Manag. 2021, 298, 113463. [Google Scholar] [CrossRef]
- Khan, Y.; Oubaih, H.; Elgourrami, F.Z. The Role of Private Investment in ICT on Carbon Dioxide Emissions (CO2) Mitigation: Do Renewable Energy and Political Risk Matter in Morocco? Environ. Sci. Pollut. Res. 2022, 29, 52885–52899. [Google Scholar] [CrossRef]
- Syed, Q.R.; Bhowmik, R.; Adedoyin, F.F.; Alola, A.A.; Khalid, N. Do Economic Policy Uncertainty and Geopolitical Risk Surge CO2 Emissions? New Insights from Panel Quantile Regression Approach. Environ. Sci. Pollut. Res. 2022, 29, 27845–27861. [Google Scholar] [CrossRef]
- Kartal, M.T.; Depren, S.K.; Kirikkaleli, D.; Depren, Ö.; Khan, U. Asymmetric and Long-Run Impact of Political Stability on Consumption-Based Carbon Dioxide Emissions in Finland: Evidence from Nonlinear and Fourier-Based Approaches. J. Environ. Manag. 2022, 321, 116043. [Google Scholar] [CrossRef]
- Kirikkaleli, D.; Shah, M.I.; Adebayo, T.S.; Altuntaş, M. Does Political Risk Spur Environmental Issues in China? Environ. Sci. Pollut. Res. 2022, 29, 62637–62647. [Google Scholar] [CrossRef]
- Lægreid, O.M.; Povitkina, M. Do Political Institutions Moderate the GDP-CO2 Relationship? Ecol. Econ. 2018, 145, 441–450. [Google Scholar] [CrossRef]
- Ross, M.L. Will Oil Drown the Arab Spring: Democracy and the Resource Curse. Foreign Aff. 2011, 90, 2. [Google Scholar]
- Månsson, A. A Resource Curse for Renewables? Conflict and Cooperation in the Renewable Energy Sector. Energy Res. Soc. Sci. 2015, 10, 1–9. [Google Scholar] [CrossRef]
- Sovacool, B.K. The Political Economy of Oil and Gas in Southeast Asia: Heading towards the Natural Resource Curse? Pac. Rev. 2010, 23, 225–259. [Google Scholar] [CrossRef]
- Aguirre, M.; Ibikunle, G. Determinants of Renewable Energy Growth: A Global Sample Analysis. Energy Policy 2014, 69, 374–384. [Google Scholar] [CrossRef]
- Yahya, F.; Rafiq, M. Unraveling the Contemporary Drivers of Renewable Energy Consumption: Evidence from Regime Types. Environ. Prog. Sustain. Energy 2019, 38, 13178. [Google Scholar] [CrossRef]
- Rabe, B.G.; Borick, C.P. Carbon Taxation and Policy Labeling: Experience from American States and Canadian Provinces. Rev. Policy Res. 2012, 29, 358–382. [Google Scholar] [CrossRef]
- Kammerlander, A.; Schulze, G.G. Political-Economic Correlates of Environmental Policy. Environ. Res. Lett. 2021, 16, 024047. [Google Scholar] [CrossRef]
- Mao, Y. Does Democratic Transition Reduce Carbon Intensity? Evidence from Indonesia Using the Synthetic Control Method. Environ. Sci. Pollut. Res. 2018, 25, 19908–19917. [Google Scholar] [CrossRef]
- Cerdeira Bento, J.P. Reducing Carbon Emissions: The Role of Democratic Institutions in Developed and Developing Countries. SSRN Electron. J. 2022, 4118517. [Google Scholar] [CrossRef]
- Selseng, T.; Linnerud, K.; Holden, E. Unpacking Democracy: The Effects of Different Democratic Qualities on Climate Change Performance over Time. Environ. Sci. Policy 2022, 128, 326–335. [Google Scholar] [CrossRef]
- Wahlund, M.; Palm, J. The Role of Energy Democracy and Energy Citizenship for Participatory Energy Transitions: A Comprehensive Review. Energy Res. Soc. Sci. 2022, 87, 102482. [Google Scholar] [CrossRef]
- Bernauer, T.; Koubi, V. Effects of Political Institutions on Air Quality. Ecol. Econ. 2009, 68, 1355–1365. [Google Scholar] [CrossRef]
- Bhattarai, M.; Hammig, M. Institutions and the Environmental Kuznets Curve for Deforestation: A Crosscountry Analysis for Latin America, Africa and Asia. World Dev. 2001, 29, 995–1010. [Google Scholar] [CrossRef]
- Poloni-Staudinger, L.M. Are Consensus Democracies More Environmentally Effective? Environ. Politics 2008, 17, 410–430. [Google Scholar] [CrossRef]
- Huttunen, S.; Ojanen, M.; Ott, A.; Saarikoski, H. What about Citizens? A Literature Review of Citizen Engagement in Sustainability Transitions Research. Energy Res. Soc. Sci. 2022, 91, 102714. [Google Scholar] [CrossRef]
- Olivadese, R.; Alpagut, B.; Revilla, B.P.; Brouwer, J.; Georgiadou, V.; Woestenburg, A.; van Wees, M. Towards Energy Citizenship for a Just and Inclusive Transition: Lessons Learned on Collaborative Approach of Positive Energy Districts from the EU Horizon2020 Smart Cities and Communities Projects. Proceedings 2020, 65, 20. [Google Scholar] [CrossRef]
- Höfer, T.; Madlener, R. A Participatory Stakeholder Process for Evaluating Sustainable Energy Transition Scenarios. Energy Policy 2020, 139, 111277. [Google Scholar] [CrossRef]
- Tsoeu-Ntokoane, S.; Kali, M.; Lemaire, X. Energy Democracy in Lesotho: Prioritising the Participation of Rural Citizens. Cogent Soc. Sci. 2022, 8, 2012973. [Google Scholar] [CrossRef]
- Schulze, K. Policy Characteristics, Electoral Cycles, and the Partisan Politics of Climate Change. Glob. Environ. Polit. 2021, 21, 44–72. [Google Scholar] [CrossRef]
- Svobodova, K.; Owen, J.R.; Harris, J.; Worden, S. Complexities and Contradictions in the Global Energy Transition: A Re-Evaluation of Country-Level Factors and Dependencies. Appl. Energy 2020, 265, 114778. [Google Scholar] [CrossRef]
- Henriques, S.T.; Borowiecki, K.J. The Drivers of Long-Run CO2 Emissions in Europe, North America and Japan since 1800. Energy Policy 2017, 101, 537–549. [Google Scholar] [CrossRef]
- Overland, I. Subsidies for Fossil Fuels and Climate Change: A Comparative Perspective. Int. J. Environ. Stud. 2010, 67, 303–317. [Google Scholar] [CrossRef]
- Dansie, G.; Lanteigne, M.; Overland, I. Reducing Energy Subsidies in China, India and Russia: Dilemmas for Decision Makers. Sustainability 2010, 2, 475–493. [Google Scholar] [CrossRef]
- Bhutto, A.W.; Bazmi, A.A.; Zahedi, G.; Klemeš, J.J. A Review of Progress in Renewable Energy Implementation in the Gulf Cooperation Council Countries. J. Clean. Prod. 2014, 71, 168–180. [Google Scholar] [CrossRef]
- Krane, J. Climate Action versus Inaction: Balancing the Costs for Gulf Energy Exporters. Br. J. Middle East. Stud. 2020, 47, 117–135. [Google Scholar] [CrossRef]
- Mansouri, N.Y.; Crookes, R.J.; Korakianitis, T. A Projection of Energy Consumption and Carbon Dioxide Emissions in the Electricity Sector for Saudi Arabia: The Case for Carbon Capture and Storage and Solar Photovoltaics. Energy Policy 2013, 63, 681–695. [Google Scholar] [CrossRef]
- Middle East Business Intelligence. Saudi Arabia Begins Renewables Journey. 24 January 2016. Available online: https://www.meed.com/saudi-arabia-begins-renewables-journey/ (accessed on 8 May 2022).
- Lo, K. Can Authoritarian Regimes Achieve Just Energy Transition? Evidence from China’s Solar Photovoltaic Poverty Alleviation Initiative. Energy Res. Soc. Sci. 2021, 82, 102315. [Google Scholar] [CrossRef]
- Huang, P.; Liu, Y. Toward Just Energy Transitions in Authoritarian Regimes: Indirect Participation and Adaptive Governance. J. Environ. Plan. Manag. 2020, 64, 1–21. [Google Scholar] [CrossRef]
- Huda, M.S. Autocratic Power? Energy Megaprojects in the Age of Democratic Backsliding. Energy Res. Soc. Sci. 2022, 90, 102605. [Google Scholar] [CrossRef]
- Van Veelen, B. Negotiating Energy Democracy in Practice: Governance Processes in Community Energy Projects. Environ. Politics 2018, 27, 644–665. [Google Scholar] [CrossRef]
- Galende-Sánchez, E.; Sorman, A.H. From Consultation toward Co-Production in Science and Policy: A Critical Systematic Review of Participatory Climate and Energy Initiatives. Energy Res. Soc. Sci. 2021, 73, 101907. [Google Scholar] [CrossRef]
- Parks, B.C.; Roberts, J.T. Inequality and the Global Climate Regime: Breaking the North-South Impasse. Camb. Rev. Int. Aff. 2009, 21, 621–648. [Google Scholar] [CrossRef]
- Eicke, L.; Goldthau, A. Are We at Risk of an Uneven Low-Carbon Transition? Assessing Evidence from a Mixed-Method Elite Study. Environ. Sci. Policy 2021, 124, 370–379. [Google Scholar] [CrossRef]
- Goldthau, A.; Eicke, L.; Weko, S. The Global Energy Transition and the Global South. Lect. Notes Energy 2020, 73, 319–339. [Google Scholar] [CrossRef]
- Friedrichs, J.; Inderwildi, O.R. The Carbon Curse: Are Fuel Rich Countries Doomed to High CO2 Intensities? Energy Policy 2013, 62, 1356–1365. [Google Scholar] [CrossRef]
- Fremstad, A.; Paul, M. Neoliberalism and Climate Change: How the Free-Market Myth Has Prevented Climate Action. Ecol. Econ. 2022, 197, 107353. [Google Scholar] [CrossRef]
- Abraham, B.M. A Subnational Carbon Curse? Fossil Fuel Richness and Carbon Intensity among US States. Extr. Ind. Soc. 2021, 8, 100859. [Google Scholar] [CrossRef]
- Lucas, A. Investigating Networks of Corporate Influence on Government Decision-Making: The Case of Australia’s Climate Change and Energy Policies. Energy Res. Soc. Sci. 2021, 81, 102271. [Google Scholar] [CrossRef]
- Lockwood, M. Fossil Fuel Subsidy Reform, Rent Management and Political Fragmentation in Developing Countries. New Political Econ. 2014, 20, 475–494. [Google Scholar] [CrossRef]
- Roberts, J.T.; Parks, B.C.; Vásquez, A.A. Who Ratifies Environmental Treaties and Why? Institutionalism, Structuralism and Participation by 192 Nations in 22 Treaties. Glob. Environ. Polit. 2004, 4, 22–64. [Google Scholar] [CrossRef]
- Stone, C.D. Common But Differentiated Responsibilities in International Law. Am. J. Int. Law 2004, 98, 276–301. [Google Scholar] [CrossRef]
- Gordon, A.; Brooks, J.C.W.; Quadflieg, S.; Ecker, U.K.H.; Lewandowsky, S. Exploring the Neural Substrates of Misinformation Processing. Neuropsychologia 2017, 106, 216–224. [Google Scholar] [CrossRef]
- Fischer, A.M. Redistribution as Social Justice for Decarbonising the Global Economy. Econ. Labour Relat. Rev. 2014, 25, 574–586. [Google Scholar] [CrossRef]
- Doğan, B.; Driha, O.M.; Balsalobre Lorente, D.; Shahzad, U. The Mitigating Effects of Economic Complexity and Renewable Energy on Carbon Emissions in Developed Countries. Sustain. Dev. 2021, 29, 1–12. [Google Scholar] [CrossRef]
- Kibria, A.; Akhundjanov, S.B.; Oladi, R. Fossil Fuel Share in the Energy Mix and Economic Growth. Int. Rev. Econ. Financ. 2019, 59, 253–264. [Google Scholar] [CrossRef]
- Pozo, C.; Galán-Martín, Á.; Reiner, D.M.; Mac Dowell, N.; Guillén-Gosálbez, G. Equity in Allocating Carbon Dioxide Removal Quotas. Nat. Clim. Chang. 2020, 10, 640–646. [Google Scholar] [CrossRef]
- Honegger, M.; Reiner, D. The Political Economy of Negative Emissions Technologies: Consequences for International Policy Design. Clim. Policy 2017, 18, 306–321. [Google Scholar] [CrossRef]
- Chang, T.H.; Huang, C.M.; Lee, M.C. Threshold Effect of the Economic Growth Rate on the Renewable Energy Development from a Change in Energy Price: Evidence from OECD Countries. Energy Policy 2009, 37, 5796–5802. [Google Scholar] [CrossRef]
- Grossman, G.M.; Krueger, A.B. Economic Growth and the Environment. Q. J. Econ. 1995, 110, 353–377. [Google Scholar] [CrossRef]
- Coppedge, M.; Gerring, J.; Knutsen, C.H. V-Dem Codebook v11.1. Varieties of Democracy (V-Dem) Project. 2021. Available online: https://www.v-dem.net/static/website/img/refs/codebookv111.pdf (accessed on 20 January 2021).
- Menegaki, A.N.; Tsagarakis, K.P. Rich Enough to Go Renewable, but Too Early to Leave Fossil Energy? Renew. Sustain. Energy Rev. 2015, 41, 1465–1477. [Google Scholar] [CrossRef]
- Bugaje, A.A.B.; Dioha, M.O.; Abraham-Dukuma, M.C.; Wakil, M. Rethinking the Position of Natural Gas in a Low-Carbon Energy Transition. Energy Res. Soc. Sci. 2022, 90, 102604. [Google Scholar] [CrossRef]
- Johnsson, F.; Kjärstad, J.; Rootzén, J. The Threat to Climate Change Mitigation Posed by the Abundance of Fossil Fuels. Clim. Policy 2018, 19, 258–274. [Google Scholar] [CrossRef]
- Henisz, W.J.; Zelner, B.A. Interest Groups, Veto Points, and Electricity Infrastructure Deployment. Int. Organ. 2006, 60, 263–286. [Google Scholar] [CrossRef]
- Trout, K.; Muttitt, G.; Lafleur, D.; van de Graaf, T.; Mendelevitch, R.; Mei, L.; Meinshausen, M. Existing Fossil Fuel Extraction Would Warm the World beyond 1.5 °C. Environ. Res. Lett. 2022, 17, 064010. [Google Scholar] [CrossRef]
- BELAÏD, F.; Elsayed, A.H.; Omri, A. Key Drivers of Renewable Energy Deployment in the MENA Region: Empirical Evidence Using Panel Quantile Regression. Struct. Chang. Econ. Dyn. 2021, 57, 225–238. [Google Scholar] [CrossRef]
- Ramalho, E.A.; Sequeira, T.N.; Santos, M.S. The Effect of Income on the Energy Mix: Are Democracies More Sustainable? Glob. Environ. Chang. 2018, 51, 10–21. [Google Scholar] [CrossRef]
- Clulow, Z. When Does Economic Development Promote Mitigation and Why? Clim. Policy 2016, 18, 221–234. [Google Scholar] [CrossRef]
- Chaikumbung, M. Institutions and Consumer Preferences for Renewable Energy: A Meta-Regression Analysis. Renew. Sustain. Energy Rev. 2021, 146, 111143. [Google Scholar] [CrossRef]
- De Vries, C.E.; van der Brug, W.; van Egmond, M.H.; van der Eijk, C. Individual and Contextual Variation in EU Issue Voting: The Role of Political Information. Elect. Stud. 2011, 30, 16–28. [Google Scholar] [CrossRef]
Variable | Definition | Source |
---|---|---|
SHARE(x)ij | Percentage share of low-carbon energy source X (solar, wind, hydro or nuclear) of total energy used for electricity generation in a given country-year. | International Energy Agency World Extended Energy Balances and Summary |
DEMij | Level of democracy in a country-year. | V-Dem polyarchy index. Scores range from 0 (very undemocratic) to 100 (very democratic). Additional democracy proxies (P2 and FH) used for robustness tests are described in the appendix. |
FRENTij | Percentage share of rents from fossil fuels of total GDP in a given country-year | International Energy Agency World Extended Energy Balances and Summary |
GDPij | Per capita GDP (in USD) in a given country-year | World Bank Development Indicators |
GDPGROWTHij | Percentage growth in GDP since the previous year | World Bank Development Indicators |
lnLAGXij,(i−1) | One-year lagged percentage share of low-carbon energy source (X) of the total energy used for electricity generation | International Energy Agency World Extended Energy Balances and Summary |
TOTALij | Growth in total energy generation as a percentage change from the previous year. | International Energy Agency World Extended Energy Balances and Summary |
POPij | Population growth as a percentage change from the previous year. | World Bank Development Indicators |
MANUij | Percentage share of manufacturing sector of total GDP | World Bank Development Indicators |
SERVICESij | Percentage share of services of total GDP | World Bank Development Indicators |
Parameter | Solar | Wind | Hydro | Nuclear |
---|---|---|---|---|
Country variance | 0.10 *** (11.23) | 2.98 *** (27.09) | 1013.83 *** (91.50) | 174.67 *** (90.00) |
Country-year variance | 0.79 *** (88.77) | 8.02 *** (72.91) | 93.72 *** (8.50) | 18.92 *** (10.00) |
LR test | 382.27 *** | 1322.07 *** | 12,139.14 *** | 11,401.31 *** |
Parameter | Solar | Wind | ||||||
---|---|---|---|---|---|---|---|---|
Model | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 |
Fixed effects | ||||||||
Democracy | −3.81 × 10−4 | −0.01T | −0.02 * | −0.04 ** | 0.01T | −0.01 ** | −0.01 ** | −0.03 *** |
Lagged depl. | 8.28 × 10−4 *** | 7.75 × 10−6 *** | 7.05 × 10−5 *** | 7.58 × 10−5 *** | 9.20 × 10−5 *** | 6.78 × 10−5 *** | 6.62 × 10−5 *** | 5.90 × 10−5 *** |
Pop growth | −0.02T | −0.03 | −0.04 * | −0.03T | −0.35 *** | −0.26 *** | −0.27 *** | −0.24 *** |
GDP per cap | 1.39 × 10−6 *** | 2.32 × 10−5 *** | 2.38 × 10−4 *** | 7.06 × 10−7 | 6.97 × 10−6 *** | 1.37 × 10−4 *** | 1.37 × 10−4 *** | −1.10 × 10−4 *** |
GDP growth | −0.01 | 0.01 | 8.68 × 10−4 | −7.50 × 10−5 | 0.01 | 0.01 | 0.03 | −4.19 × 10−4 |
Resource rent | 0.03 | 0.02 | 2.03 × 10−3 | −0.01 | 0.01T | 3.11 × 10−4 | −0.02 | −0.03 * |
Manuf. share | −0.01 *** | −0.02 *** | −0.01 *** | −0.01 ** | −0.03 *** | −0.02 | −0.03 * | 0.01 |
Services | 0.01 *** | 0.01 *** | 0.01 *** | 0.01 *** | 0.01 | 0.03 *** | 0.03 ** | 0.03 *** |
Total elec. gen. | −4.31 × 10−7 *** | −5.97 × 10−7 *** | −5.64 × 10−7 *** | −5.13 × 10−7 *** | −2.15 × 10−6 *** | −2.02 × 10−6 *** | −1.90 × 10−6 *** | −1.37 × 10−6 *** |
Random effects | ||||||||
Country dem. var. | - | - | 2.56 × 10−4 *** | 3.20 × 10−5 *** | - | - | 9.64 × 10−3 *** | 0.01 *** |
Country variance | - | 0.17 *** | 0.07 *** | 0.03 *** | - | 6.26 *** | 2.43 *** | 0.58 |
Country-year var. | - | 0.78 *** | 0.78 *** | 0.78 *** | - | 7.37 *** | 7.27 *** | 6.94 *** |
LR test | - | 355.24 *** | 379.24 *** | 373.17 *** | - | 1286.78 *** | 1332.78 *** | 1436.57 *** |
R2 (or equiv.) | 0.22 | 0.23 | 0.24 | 0.25 | 0.23 | 0.24 | 0.26 | 0.25 |
N | 3759 | 3759 | 3759 | 3759 | 3759 | 3759 | 3759 | 3759 |
Parameter | Hydro | Nuclear | ||||||
---|---|---|---|---|---|---|---|---|
Model | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 |
Fixed effects | ||||||||
Democracy | 0.13 *** | −0.16 *** | −0.19 *** | −0.18 *** | 0.04 *** | 0.01 * | 0.01 | 0.02T |
Lagged depl. | 2.29 × 10−4 *** | 2.79 × 10−5 * | 1.77 × 10−5 | 1.56 × 10−5 | 6.91 × 10−5 *** | 9.69 × 10−5 *** | 9.61 × 10−5 *** | 9.60 × 10−5 *** |
Pop growth | 2.79 *** | 1.22 *** | 1.19 *** | 1.26 *** | −2.12 *** | −0.07 | −0.06 | −0.05 |
GDP per cap | −9.18 × 10−5 * | −1.77 × 10−4 *** | −1.72 × 10−4 *** | −2.80 × 10−4 * | 1.19 × 10−4 *** | −2.61 × 10−6 *** | −2.78 × 10−6 *** | 6.06 × 10−6T |
GDP growth | −0.09 | 0.01 | 002 | 0.02 | −0.09 ** | 0.01 | 0.04 | 0.01 |
Resource rent | 0.04 | 0.01 | 0.04 | 0.07 | −0.12 *** | −0.01 | −0.01 | 0.01 |
Manuf. share | −1.02 *** | −0.27 *** | −0.23 *** | −0.22 *** | 0.12 *** | −0.02 | 0.02T | 0.02 |
Services | −1.05 *** | −0.24 *** | −0.24 *** | −0.24 *** | −0.08 *** | 0.02 | 0.01 | 0.01 |
Total elec. gen. | −3.03 × 10−5 *** | −4.83 × 10−6 * | −3.24 × 10−6 | −2.68 × 10−6 | −5.70 × 10−6 *** | −2.56 × 10−6 *** | −2.51 × 10−6 *** | −2.62 × 10−6 *** |
Random effects | ||||||||
Country dem. var. | - | - | 0.17 *** | 0.01 *** | - | - | 0.01 *** | 0.01 *** |
Country variance | - | 974.46 *** | 1286.87 *** | 0.58 | - | 131.04 *** | 115.78 *** | 115.25 *** |
Country-year var. | - | 78.64 *** | 67.20 *** | 6.94 *** | - | 7.45 *** | 7.10 *** | 7.07 *** |
LR test | - | 8418.53 *** | 8744.97 *** | 1436.57 *** | - | 8672.92 *** | 8765.88 *** | 8625.44 *** |
R2 (or equiv.) | 0.23 | 0.25 | 0.28 | 0.25 | 0.27 | 0.28 | 0.30 | 0.56 |
N | 3759 | 3759 | 3759 | 3759 | 3759 | 3759 | 3759 | 3759 |
Parameter | Solar | Wind | Hydro | Nuclear |
---|---|---|---|---|
Mean per capita GDP | −1.43 × 10−7 *** | −1.01 × 10−6 *** | 3.60 × 10−6 | 5.83 × 10−7 ** |
Mean fossil rents | 2.50 × 10−5 | 1.61 × 10−4 | 0.01 | −1.44 × 10−4 |
Mean democracy | 2.64 × 10−5 | 2.40 × 10−4 ** | 5.06 × 10−5 | −6.20 × 10−6 |
Adj. R2 | 0.15 | 0.24 | 0.00 | 0.06 |
n | 108 | 106 | 106 | 105 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Clulow, Z.; Reiner, D.M. Democracy, Economic Development and Low-Carbon Energy: When and Why Does Democratization Promote Energy Transition? Sustainability 2022, 14, 13213. https://doi.org/10.3390/su142013213
Clulow Z, Reiner DM. Democracy, Economic Development and Low-Carbon Energy: When and Why Does Democratization Promote Energy Transition? Sustainability. 2022; 14(20):13213. https://doi.org/10.3390/su142013213
Chicago/Turabian StyleClulow, Zeynep, and David M. Reiner. 2022. "Democracy, Economic Development and Low-Carbon Energy: When and Why Does Democratization Promote Energy Transition?" Sustainability 14, no. 20: 13213. https://doi.org/10.3390/su142013213
APA StyleClulow, Z., & Reiner, D. M. (2022). Democracy, Economic Development and Low-Carbon Energy: When and Why Does Democratization Promote Energy Transition? Sustainability, 14(20), 13213. https://doi.org/10.3390/su142013213