Factors Affecting Crash Severity among Elderly Drivers: A Multilevel Ordinal Logistic Regression Approach
Abstract
:1. Introduction
2. Data Description
3. Methodology
3.1. Ordinal Logistic Regression (OLR)
3.2. Multilevel Ordinal Logistic Regression (M-OLR)
4. Results and Discussion
4.1. Model Comparison
4.2. Results of the Crash-Severity Model
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Global Status Report on Road Safety 2018; License: CC BYNC-SA 3.0 IGOl; WHO: Geneva, Switzerland, 2018.
- Scott, A. The Myth of an “Ageing Society”. Available online: www.weforum.org/agenda/2018/05/the-myth-of-the-aging-society (accessed on 25 June 2022).
- Cox, A.E.; Cicchino, J.B. Continued Trends in Older Driver Crash Involvement Rates in the United States: Data through 2017–2018; Insurance Institute for Highway Safety: Arlington, VA, USA, 2020; pp. 1–22. [Google Scholar]
- 2017 National Population Projections Tables: Main Series. Available online: https://www.census.gov/data/tables/2017/demo/popproj/2017-summary-tables.html (accessed on 25 June 2022).
- Dellinger, A.M.; Kresnow, M.-J.; White, D.D.; Sehgal, M. Risk to Self Versus Risk to Others. Am. J. Prev. Med. 2004, 26, 217–221. [Google Scholar] [CrossRef] [PubMed]
- Langford, J.; Koppel, S. Epidemiology of Older Driver Crashes: Identifying Older Driver Risk Factors and Exposure Patterns. Transp. Res. Part F Traffic Psychol. Behav. 2006, 9, 309–321. [Google Scholar] [CrossRef]
- Braver, E.R. Are Older Drivers Actually at Higher Risk of Involvement in Collisions Resulting in Deaths or Non-Fatal Injuries Among their Passengers and Other Road Users? Inj. Prev. 2004, 10, 27–32. [Google Scholar] [CrossRef]
- Tefft, B.C. Risks Older Drivers Pose to Themselves and to Other Road Users. J. Saf. Res. 2008, 39, 577–582. [Google Scholar] [CrossRef]
- Eberhard, J. Older Drivers ‘High Per-Mile Crash Involvement’: The Implications for Licensing Authorities. Traffic Inj. Prev. 2008, 9, 284–290. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Lym, Y.; Kim, K.-J. Developing Crash Severity Model Handling Class Imbalance and Implementing Ordered Nature: Focusing on Elderly Drivers. Int. J. Environ. Res. Public Health 2021, 18, 1966. [Google Scholar] [CrossRef] [PubMed]
- Insurance Institute for Highway Safety (IIHS). Older Drivers. 2022. Available online: https://www.iihs.org/topics/older-drivers (accessed on 25 June 2022).
- Regev, S.; Rolison, J.J.; Moutari, S. Crash Risk by Driver Age, Gender, and Time of Day Using a New Exposure Methodology. J. Saf. Res. 2018, 66, 131–140. [Google Scholar] [CrossRef]
- Savolainen, P.T.; Mannering, F.L.; Lord, D.; Quddus, M.A. The Statistical Analysis of Highway Crash-Injury Severities: A Review and Assessment of Methodological Alternatives. Accid. Anal. Prev. 2011, 43, 1666–1676. [Google Scholar] [CrossRef]
- Chandraratna, S.; Stamatiadis, N. Problem Driving Maneuvers of Elderly Drivers. Transp. Res. Rec. 2003, 1843, 89–95. [Google Scholar] [CrossRef]
- Burkhardt, J.E.; Mcgavock, A.T. Tomorrow’s Older Drivers: Who? How Many? What Impacts? Transp. Res. Rec. 1999, 1693, 62–70. [Google Scholar] [CrossRef]
- Hu, W.; Donnell, E.T. Median Barrier Crash Severity: Some New Insights. Accid. Anal. Prev. 2010, 42, 1697–1704. [Google Scholar] [CrossRef] [PubMed]
- Javid, M.A.; Ali, N.; Abdullah, M.; Campisi, T.; Shah, S.A.H.; Suparp, S. Analysis of Driver’s Socioeconomic Characteristics Relating to Speeding Behavior and Crash Involvement: A Case Study in Lahore. Infrastructures 2022, 7, 18. [Google Scholar] [CrossRef]
- Amiri, A.; Sadri, A.; Nadimi, N.; Shams, M. A Comparison Between Artificial Neural Network Aand Hybrid Intelligent Genetic Algorithm in Predicting the Severity of Fixed Object Crashes Among Elderly Drivers. Accid. Anal. Prev. 2020, 138, 105468. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, K.K. Injury Severity Analysis with Variable and Correlated Thresholds Ordered Mixed Logit Formulation. Transp. Res. Rec. 2002, 1784, 132–141. [Google Scholar] [CrossRef]
- Kockelman, K.M.; Kweon, Y. Driver Injury Severity: An Application of Ordered Probit Models. Accid. Anal. Prev. 2002, 34, 313–321. [Google Scholar] [CrossRef]
- Lord, D.; Mannering, F.L. The Statistical Analysis of Crash-Frequency Data: A Review and Assessment of Methodological Alternatives. Transp. Res. Part A 2010, 44, 291–305. [Google Scholar] [CrossRef]
- Long, J.S.; Freese, J. Regression Models for Categorical Dependent Variables Using Stata, 3rd ed.; Stata Press: College Station, TX, USA, 2014. [Google Scholar]
- Asare, I.; Mensah, A. Crash Severity Modelling Using Ordinal Logistic Regression Approach. Int. J. Inj. Control Saf. Promot. 2020, 27, 412–419. [Google Scholar] [CrossRef]
- Yoon, S.; Kho, S.; Kim, D. Effect of Regional Characteristics on Injury Severity in Local Bus Crashes: Use of Hierarchical Ordered Model. Transp. Res. Rec. J. Transp. Res. Board. 2017, 2647, 1–8. [Google Scholar] [CrossRef]
- Michalaki, P.; Quddus, M.A.; Pitfield, D.; Huetson, A. Exploring the Factors Affecting Motorway Accident Severity in England Using the Generalised Ordered Logistic Regression Model. J. Saf. Res. 2015, 55, 89–97. [Google Scholar] [CrossRef]
- Tang, J.; Gao, F.; Liu, F.; Han, C.; Lee, J. Spatial Heterogeneity Analysis of Macrolevel Crashes Using Geographically Weighted Poisson Quantile Regression. Accid. Anal. Prev. 2020, 148, 105833. [Google Scholar] [CrossRef]
- Peng, Y.; Zhu, S.; Jiang, Y. Examining the Crash Severity on Divided Rural Multilane Highway Segments Using Multilevel Ordinal Logistic Models. Adv. Mech. Eng. 2019, 11, 1687814019844661. [Google Scholar] [CrossRef]
- National Highway Traffic Safety Administration. Older Drivers. Available online: https://www.nhtsa.gov/road-safety/older-drivers (accessed on 25 June 2022).
- Witten, I.H.; Frank, E.; Hall, M.A. Data Mining: Practical Machine Learning Tools and Techniques, 3rd ed.; Elsevier Morgan Kaufmann: San Francisco, CA, USA, 2011. [Google Scholar]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic Minority Over-Sampling Technique. J. Artif. Intell. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
- Liu, X. Categorical Data Analysis and Multilevel Modeling Using R; Kindle Edition; SAGE Publications: Thousand Oaks, CA, USA, 2022. [Google Scholar]
- Adams, J.; Hillman, M. The Risk Compensation Theory and Bicycle Helmets. Inj. Prev. 2001, 7, 89–91. [Google Scholar] [CrossRef] [PubMed]
- Alsaleh, R.; Sayed, T.; Zaki, M.H. Assessing the Effect of Pedestrians’ Use of Cell Phones on Their Walking Behavior: A Study Based on Automated Video Analysis. Transp. Res. Rec. 2018, 2672, 46–57. [Google Scholar] [CrossRef]
- Yadav, A.K.; Velaga, N.R. Modelling the Relationship Between Different Blood Alcohol Concentrations and Reaction Time of Young and Mature Drivers. Transp. Res. Part F Traffic Psychol. Behav. 2019, 64, 227–245. [Google Scholar] [CrossRef]
- Ibrahim, S.E.B.; Sayed, T. Developing Safety Performance Functions Incorporating Reliability-Based Risk Measures. Accid. Anal. Prev. 2011, 43, 2153–2159. [Google Scholar] [CrossRef]
- Alsaleh, R.; Sayed, T.; Ismail, K.; AlRukaibi, F. System Reliability as a Surrogate Measure of Safety for Horizontal Curves: Methodology and Case Studies. Transp. A Transp. Sci. 2020, 16, 957–986. [Google Scholar] [CrossRef]
- Javid, M.A.; Ali, N.; Abdullah, M.; Shah, S.A.H. Integrating the Norm Activation Model (NAM) Theory in Explaining Factors Affecting Drivers’ Speeding Behaviour in Lahore. KSCE J. Civ. Eng. 2021, 25, 2701–2712. [Google Scholar] [CrossRef]
- Shiran, G.; Imaninasab, R.; Khayamim, R. Crash Severity Analysis of Highways Based on Multinomial Logistic Regression Model, Decision Tree Techniques, and Artificial Neural Network: A Modeling Comparison. Sustainability 2021, 13, 5670. [Google Scholar] [CrossRef]
- Wu, Q.; Chen, F.; Zhang, G.; Liu, X.C.; Wang, H.; Bogus, S.M. Mixed Logit Model-Based Driver Injury Severity Investigations in Single- and Multi-Vehicle Crashes on Rural Two-Lane Highways. Accid. Anal. Prev. 2014, 72, 105–115. [Google Scholar] [CrossRef]
- Garrido, R.; Bastos, A.; de Almeida, A.; Elvas, J.P. Prediction of Road Accident Severity Using the Ordered Probit Model. Transp. Res. Procedia 2014, 3, 214–223. [Google Scholar] [CrossRef]
- Weijermars, W.; Bos, N.; Filtness, A.; Brown, L.; Bauer, R.; Dupont, E.; Martin, J.L.; Perez, K.; Thomas, P. Burden of Injury of Serious Road Injuries in Six EU Countries. Accid. Anal. Prev. 2018, 111, 184–192. [Google Scholar] [CrossRef] [PubMed]
- Champahom, T.; Jomnonkwao, S.; Watthanaklang, D.; Karoonsoontawong, A.; Chatpattananan, V.; Ratanavaraha, V. Applying Hierarchical Logistic Models to Compare Urban and Rural Roadway Modeling of Severity of Rear-End Vehicular Crashes. Accid. Anal. Prev. 2020, 141, 105537. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Li, Y.; Fan, W.; Liu, P. Mixed Logit Approach to Analyzing Pedestrian Injury Severity in Pedestrian-Vehicle Crashes in North Carolina: Considering Time-of-Day and Day-of-Week. Traffic Inj. Prev. 2021, 22, 524–529. [Google Scholar] [CrossRef]
Variable | Category | Count | Percentage/Mean |
---|---|---|---|
Crash severity | PDO | 98,702 | 62.55% |
Minor injury | 49,771 | 31.54% | |
Severe injury | 9327 | 5.91% | |
Crash type | Fixed object | 13,399 | 8.49% |
Head-on | 3813 | 2.42% | |
Overturned | 1156 | 0.73% | |
Other | 10,479 | 6.64% | |
Rear end | 52,953 | 33.56% | |
Sideswipe | 17,471 | 11.07% | |
Angle | 58,529 | 37.09% | |
Traffic signal | Yes | 40,998 | 25.98% |
No | 116,802 | 74.02% | |
Weather condition | No adverse condition | 137,196 | 86.94% |
Adverse condition | 20,604 | 13.06% | |
Roadway alignment | Straight | 142,472 | 90.29% |
Curve | 15,328 | 9.71% | |
Roadway type | Two-way divided | 91,375 | 57.91% |
Two-way undivided | 62,206 | 39.42% | |
One-way | 4219 | 2.67% | |
Work zone | No | 153,567 | 97.32% |
Yes | 4233 | 2.68% | |
Alcohol | Yes | 3483 | 2.21% |
No | 154,317 | 97.79% | |
Belted | No | 4271 | 2.71% |
Yes | 153,529 | 97.29% | |
Bike | Yes | 915 | 0.58% |
No | 156,885 | 99.42% | |
Distracted | Yes | 28,054 | 17.78% |
No | 129,746 | 82.22% | |
Drowsy | Yes | 2733 | 1.73% |
No | 155,067 | 98.27% | |
Drugs | Yes | 716 | 0.45% |
No | 157,084 | 99.55% | |
Pedestrian | Yes | 1605 | 1.02% |
No | 156,195 | 98.98% | |
Speed violation | Yes | 20,211 | 12.81% |
No | 137,589 | 87.19% | |
Area type | Urban | 121,884 | 77.24% |
Rural | 35,916 | 22.76% | |
Animal | Yes | 5060 | 3.21% |
No | 152,740 | 96.79% | |
Posted speed (mph) | - | 157,800 | 41.93 |
Weekend | Yes | 32,622 | 20.67% |
No | 125,178 | 79.33% |
Model | Degree of Freedom | Likelihood Ratio Statistics | AIC | BIC | ||
---|---|---|---|---|---|---|
Ordinal logistic regression (OLR) model | −122,344 | −130,124 | 24 | 15,561 | 244,740 | 244,999 |
Multilevel ordinal logistic regression (M-OLR) model | −120,018 | −127,866 | 24 | 15,696 | 240,091 | 240,360 |
Variable | Category | Estimate | Z-Stat | Odda Ratio | 95% CI (Odds) | |||
---|---|---|---|---|---|---|---|---|
Lower | Upper | |||||||
Crash type | Fixed object Head-on Overturned Rear end Sideswipe Angle * | 0.2837 0.9426 0.8358 −0.1696 −0.8917 | 0.021 0.033 0.060 0.013 0.021 | 13.24 28.16 13.99 −12.82 −42.43 | 1.33 2.57 2.31 0.84 0.41 | 1.27 2.40 2.05 0.82 0.39 | 1.39 2.74 2.59 0.87 0.43 | |
Traffic signal | Yes No * | 0.2248 | 0.013 | 17.34 | 1.25 | 1.22 | 1.28 | |
Weather condition | No adverse condition Adverse condition * | 0.1601 | 0.016 | 9.95 | <0.001 | 1.17 | 1.14 | 1.21 |
Roadway alignment | Straight Curve * | −0.1246 | 0.019 | −6.539 | <0.001 | 0.88 | 0.85 | 0.92 |
Roadway type | Two-way divided Two-way undivided One-way * | 0.2493 0.2438 | 0.036 0.036 | 6.98 6.80 | <0.001 <0.001 | 1.28 1.28 | 1.20 1.19 | 1.38 1.37 |
Work zone | No Yes * | 0.2187 | 0.035 | 6.33 | <0.001 | 1.24 | 1.16 | 1.33 |
Alcohol | Yes No * | 0.4487 | 0.035 | 12.76 | <0.001 | 1.57 | 1.46 | 1.68 |
Belted | No Yes * | 1.8704 | 0.032 | 58.92 | <0.001 | 6.49 | 6.10 | 6.91 |
Bike | Yes No * | 2.4919 | 0.062 | 40.41 | <0.001 | 12.08 | 10.71 | 13.64 |
Distracted | Yes No * | 0.079 | 0.014 | 5.494 | <0.001 | 1.08 | 1.05 | 1.11 |
Drowsy | Yes No * | 0.1313 | 0.041 | 3.208 | 0.0013 | 1.14 | 1.05 | 1.24 |
Drugs | Yes No * | 0.4028 | 0.076 | 5.332 | <0.001 | 1.50 | 1.29 | 1.74 |
Pedestrian | Yes No * | 2.8737 | 0.055 | 52.661 | <0.001 | 17.70 | 15.91 | 19.70 |
Speed violation | Yes No * | 0.2145 | 0.016 | 13.090 | <0.001 | 1.24 | 1.20 | 1.28 |
Area type | Urban Rural * | −0.1809 | 0.023 | −7.880 | <0.001 | 0.83 | 0.80 | 0.87 |
Animal | Yes No * | −1.4831 | 0.052 | −28.610 | <0.001 | 0.23 | 0.21 | 0.25 |
Posted speed | - | 0.0076 | 0.001 | 12.526 | <0.001 | 1.01 | 1.01 | 1.10 |
Weekend | Yes No * | 0.0536 | 0.013 | 4.059 | <0.001 | 1.06 | 1.03 | 1.08 |
Intercept | PDO | | 1.1308 3.5962 | 0.060 0.061 | 18.93 59.16 | <0.001 <0.001 | 3.682 45.679 | 3.23 39.97 | 4.20 52.20 |
Intercept variance | Physical jurisdiction | 0.1798 | 0.424 | |||||
−120,018 | ||||||||
−127,866 | ||||||||
240,091 | ||||||||
Likelihood ratio | 15,696 | |||||||
Number of observations | 157,800 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alrumaidhi, M.; Rakha, H.A. Factors Affecting Crash Severity among Elderly Drivers: A Multilevel Ordinal Logistic Regression Approach. Sustainability 2022, 14, 11543. https://doi.org/10.3390/su141811543
Alrumaidhi M, Rakha HA. Factors Affecting Crash Severity among Elderly Drivers: A Multilevel Ordinal Logistic Regression Approach. Sustainability. 2022; 14(18):11543. https://doi.org/10.3390/su141811543
Chicago/Turabian StyleAlrumaidhi, Mubarak, and Hesham A. Rakha. 2022. "Factors Affecting Crash Severity among Elderly Drivers: A Multilevel Ordinal Logistic Regression Approach" Sustainability 14, no. 18: 11543. https://doi.org/10.3390/su141811543
APA StyleAlrumaidhi, M., & Rakha, H. A. (2022). Factors Affecting Crash Severity among Elderly Drivers: A Multilevel Ordinal Logistic Regression Approach. Sustainability, 14(18), 11543. https://doi.org/10.3390/su141811543