Integrated Plant Nutrient Systems Improve Rice Yields without Affecting Greenhouse Gas Emissions from Lowland Rice Cultivation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Site
2.2. Treatments, Experimental Design, and Crop Management
2.3. Gas Sampling and Analysis
2.4. Estimation of CH4 and N2O Emissions
2.5. Data Analysis
3. Results
3.1. CH4 Emissions
3.2. N2O Emissions
3.3. GWP and GHGI
3.4. Grain and Straw Yield
4. Discussion
4.1. CH4 Emissions
4.2. N2O Emissions
4.3. GWP and GHGI
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mamun, M.A.A.; Nihad, S.A.I.; Sarkar, M.A.R.; Aziz, M.A.; Qayum, M.A.; Ahmed, R.; Rahman, N.M.F.; Hossain, M.I.; Kabir, M.S. Growth and trend analysis of area, production and yield of rice: A scenario of rice security in Bangladesh. PLoS ONE 2021, 16, e0261128. [Google Scholar] [CrossRef]
- IPCC. Climate Change: Synthesis Report. In Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- Islam, S.M.M.; Gaihre, Y.K.; Islam, M.R.; Akter, M.; Mahmud, A.A.; Singh, U.; Sander, B.O. Effects of water management on greenhouse gas emissions from farmers’ rice fields in Bangladesh. Sci. Total Environ. 2020, 734, 139382. [Google Scholar] [CrossRef] [PubMed]
- Shakoor, A.; Shakoor, S.; Rehman, A.; Ashraf, F.; Abdullah, M.; Shahzad, S.M.; Farooq, T.H.; Ashraf, M.; Manzoor, M.A.; Altaf, M.M.; et al. Effect of animal manure, crop type, climate zone, and soil attributes on greenhouse gas emissions from agricultural soils—A global meta-analysis. J. Clean. Prod. 2021, 278, 124019. [Google Scholar] [CrossRef]
- Islam, S.M.M.; Gaihre, Y.K.; Islam, M.R.; Ahmed, M.N.; Akter, M.; Singh, U.; Sander, B.O. Mitigating greenhouse gas emissions from irrigated rice cultivation through improved fertilizer and water management. J. Environ. Manag. 2022, 307, 114520. [Google Scholar] [CrossRef]
- Dong, N.M.; Brandit, K.K.; Sørensen, J.; Hung, N.N.; Hach, C.V.; Tan, P.S.; Dalsgaard, T. Effects of alternating wetting and drying versus continuous flooding on fertilizer nitrogen fate in rice fields in the Mekong Delta, Vietnam. Soil Biol. Biochem. 2012, 47, 166–174. [Google Scholar] [CrossRef]
- Islam, S.M.M.; Gaihre, Y.K.; Biswas, J.C.; Jahan, M.S.; Singh, U.; Adhikary, S.K.; Satter, M.A.; Saleque, M.A. 2018. Different nitrogen rates and methods of application for dry season rice cultivation with alternate wetting and drying irrigation: Fate of nitrogen and grain yield. Agric. Water Manag. 2018, 196, 144–153. [Google Scholar] [CrossRef]
- Islam, S.M.M.; Gaihre, Y.K.; Shah, A.L.; Singh, U.; Sarkar, M.I.U.; Satter, M.A.; Sanabria, J.; Biswas, J.C. Rice yields and nitrogen use efficiency with different fertilizers and water management under intensive lowland rice cropping systems in Bangladesh. Nutr. Cycl. Agroecosyst. 2016, 106, 143–156. [Google Scholar] [CrossRef]
- Yao, Z.; Zheng, X.; Zhang, Y.; Liu, C.; Wang, R.; Lin, S.; Zuo, Q.; Butterbach-Bahl, K. Urea deep placement reduces yield-scaled greenhouse gas (CH4 and N2O) and NO emissions from a ground cover rice production system. Sci. Rep. 2017, 7, 11415. [Google Scholar] [CrossRef]
- Liu, T.Q.; Li, S.H.; Guo, L.G.; Cao, C.G.; Li, C.F.; Zhai, Z.B.; Zhou, J.Y.; Mei, Y.M.; Ke, H.J. Advantages of nitrogen fertilizer deep placement in greenhouse gas emissions and net ecosystem economic benefits from no-tillage paddy fields. J. Clean. Prod. 2020, 263, 121322. [Google Scholar] [CrossRef]
- Thangarajan, R.; Bolan, N.S.; Tian, G.; Naidu, R.; Kunhikrishnan, A. Role of organic amendment application on greenhouse gas emission from soil. Sci. Total Environ. 2013, 465, 72–96. [Google Scholar] [CrossRef]
- Qaswar, M.; Jing, H.; Ahmed, W.; Dongchu, L.; Shujun, L.; Lu, Z.; Cai, A.; Lisheng, L.; Yongmei, X.; Jusheng, G.; et al. Yield sustainability, soil organic carbon sequestration and nutrients balance under long-term combined application of manure and inorganic fertilizers in acidic paddy soil. Soil Tillage Res. 2020, 198, 1–6. [Google Scholar] [CrossRef]
- Lin, Y.; Watts, D.B.; van Santen, E.; Cao, G. Influence of poultry litter on crop productivity under different field conditions: A meta-analysis. Agron. J. 2018, 110, 807. [Google Scholar] [CrossRef]
- Sarkar, M.I.U.; Jahan, A.; Haque, M.M.; Islam, S.M.M.; Ahmed, M.N.; Islam, M.R. Long term effects of integrated plant nutrition system on rice yield, nitrogen dynamics and biochemical properties in soil of rice–rice cropping system. Asian J. Soil Sci. Plant Nutr. 2019, 4, 1–14. [Google Scholar] [CrossRef]
- Rahman, M.M.; Uddin, S.; Jahangir, M.M.R.; Solaiman, Z.M.; Alamri, S.; Siddiqui, M.H.; Islam, M.R. Integrated nutrient management enhances productivity and nitrogen use efficiency of crops in acidic and charland soils. Plants 2021, 10, 2547. [Google Scholar] [CrossRef]
- Abuarab, M.E.; El-Mogy, M.M.; Hasan, A.M.; Abdeldaym, E.A.; Abdelkader, N.H.; El-Sawy, M.B.I. The effects of root aeration and different soil conditioners on the nutritional values, yield, and water productivity of potato in clay loam soil. Agronomy 2019, 9, 418. [Google Scholar] [CrossRef]
- Gross, C.D.; Bork, E.; Carlyle, C.N.; Chang, S.X. Biochar and its manure-based feedstock have divergent effects on soil organic carbon and greenhouse gas emissions in croplands. Sci. Total Environ. 2022, 806, 151337. [Google Scholar] [CrossRef]
- Araújo, A.; Santos, V.; Monteiro, R. Responses of soil microbial biomass and activity for practices of organic and conventional farming systems in Piauí state, Brazil. Eur. J. Soil Boil. 2008, 44, 225–230. [Google Scholar] [CrossRef]
- Bei, S.; Zhang, Y.L.; Li, T.T.; Christie, P.; Li, X.L.; Zhang, J.L. Response of the soil microbial community to different fertilizer inputs in a wheat-maize rotation on a calcareous soil. Agric. Ecosyst. Environ. 2018, 260, 58–69. [Google Scholar] [CrossRef]
- Zhang, G.; Song, K.; Huang, Q.; Zhu, X.; Gong, H.; Ma, J.; Xu, H. Heavy metal pollution and net greenhouse gas emissions in a rice-wheat rotation system as influenced by partial organic substitution. J. Environ. Manag. 2022, 307, 114599. [Google Scholar] [CrossRef]
- Ravindran, B.; Awasthi, M.K.; Karmegam, N.; Chang, S.W.; Chaudhary, D.K.; Selvam, A.; Nguyen, D.D.; Milon, A.R.; Ramanujam, G.M. Co-composting of food waste and swine manure augmenting biochar and salts: Nutrient dynamics, gaseous emissions and microbial activity. Bioresour. Technol. 2022, 344, 126300. [Google Scholar] [CrossRef]
- Romero, C.M.; Redman, A.A.P.H.; Owens, J.; Terry, S.A.; Ribeiro, G.O.; Gorzelak, M.A.; Oldenburg, T.B.P.; Hazendonk, P.; Larney, F.J.; Hao, X.; et al. Effects of feeding a pine-based biochar to beef cattle on subsequent manure nutrients, organic matter composition and greenhouse gas emissions. Sci. Total Environ. 2020, 812, 152267. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Adhya, T.K. Effect of combine application of organic manure and inorganic fertilizer on methane and nitrous oxide emissions from a tropical flooded soil planted to rice. Geoderma 2014, 213, 185–192. [Google Scholar] [CrossRef]
- Yadvinder-Singh; Gupta, R.K.; Thind, H.S.; Bijay-Singh; Varinderpal-Singh; Gurpreet-Singh; Jagmohan-Singh; Ladha, J.K. Poultry litter as a nitrogen and phosphorous source for the rice–wheat cropping system. Biol. Fertil. Soils 2009, 45, 701–710. [Google Scholar] [CrossRef]
- Win, E.P.; Win, K.K.; Bellingrath-Kimura, S.D.; Oo, A.Z. Influence of rice varieties, organic manure and water management on greenhouse gas emissions from paddy rice soils. PLoS ONE 2021, 16, e0253755. [Google Scholar] [CrossRef] [PubMed]
- Islam, S.F.; van Groenjgen, J.W.; Jensen, L.S.; Sander, B.O.; de Neergaard, A. The effective mitigation of greenhouse gas emissions from rice paddies without compromising yield by early-season drainage. Sci. Total Environ. 2018, 612, 1329–1339. [Google Scholar] [CrossRef]
- Gaihre, Y.K.; Singh, U.; Islam, S.M.M.; Huda, A.; Islam, M.R.; Sanabria, J.; Satter, M.A.; Islam, M.R.; Biswas, J.C.; Jahiruddin, M.; et al. Nitrous oxide and nitric oxide emissions and nitrogen use efficiency as affected by nitrogen placement in lowland rice fields. Nutr. Cycl. Agroecosyst. 2018, 110, 277–291. [Google Scholar] [CrossRef]
- Ku, H.H.; Hayashi, K.; Agbisit, R.; Villegas-Pangga, G. Evaluation of fertilizer and water management effect on rice performance and greenhouse gas intensity in different seasonal weather of tropical climate. Sci. Total Environ. 2017, 601–602, 1254–1262. [Google Scholar] [CrossRef]
- Islam, S.M.; Gaihre, Y.K.; Biswas, J.C.; Singh, U.; Ahmed, M.N.; Sanabria, J.; Saleque, M.A. Nitrous oxide and nitric oxide emissions from lowland rice cultivation with urea deep placement and alternate wetting and drying irrigation. Sci. Rep. 2018, 8, 17623. [Google Scholar] [CrossRef]
- Sander, B.O.; Samson, M.; Buresh, R.J. Methane and nitrous oxide emissions from flooded rice fields as affected by water and straw management between rice crops. Geoderma 2014, 235–236, 355–362. [Google Scholar] [CrossRef]
- Janz, B.; Weller, S.; Kraus, D.; Racela, H.R.; Wassmann, R.; Butterbach-Bahl, K.; Kiese, R. Greenhouse gas footprint of diversifying rice cropping systems: Impacts of water regime and organic amendments. Agric. Ecosyst. Environ. 2019, 270–271, 41–54. [Google Scholar] [CrossRef]
- Liu, L.; Chen, T.; Wang, Z.; Zhang, H.; Yang, J.; Zhang, J. Combination of site-specific nitrogen management and alternate wetting and drying irrigation increases grain yield and nitrogen and water use efficiency in super rice. Field Crops Res. 2013, 154, 226–235. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, W.; Beebout, S.S.; Liu, L.; Yang, J.; Zhang, J. Grain yield, water and nitrogen use efficiencies of rice as influenced by irrigation regimes and their interaction with nitrogen rates. Field Crops Res. 2016, 193, 54–69. [Google Scholar] [CrossRef]
- Jackson, M.L. Soil Chemical Analysis; Constable and Co.: London, UK, 1958. [Google Scholar]
- Nelson, D.W.; Sommers, L.E. Total Carbon, Organic Carbon, and Organic Matter in Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties, 2nd ed.; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; SSSA: Madison, WI, USA, 1982; pp. 539–577. [Google Scholar]
- Bremner, J.M. Total Nitrogen. In Methods of Soil Analysis, Part 2; Black, C.A., Ed.; American Society of Agronomy: Madison, WI, USA, 1965; pp. 1149–1178. [Google Scholar]
- Olsen, S.R.; Sommers, L.E. Phosphorus. In Methods of Soil Analysis, Part 2, 2nd ed.; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; Agronomy Monograph 9; ASA and SSSA: Madison, WI, USA, 1982; pp. 403–427. [Google Scholar]
- Page, A.L.; Miller, R.H.; Keeney, D.R. (Eds.) Methods of Soil Analysis Part 2: Chemical and Microbiological Properties, 2nd ed.; SSSA: Madison, WI, USA, 1982. [Google Scholar]
- Bouyoucos, G.J. Hydrometer method improved for making particle size analysis of soils. Agron. J. 1962, 54, 461–465. [Google Scholar] [CrossRef]
- Lampayan, R.M.; Rejesus, R.M.; Singleton, G.R.; Bouman, B.A.M. Adoption and economics of alternate wetting and drying water management for irrigated lowland rice. Field Crop Res. 2015, 170, 95–108. [Google Scholar] [CrossRef]
- Zhan, M.; Cougui, C.; Wang, J.; Jiang, Y.; Cai, M.; Yue, L.; Shahrear, A. Dynamics of methane emission, active soil organic carbon and their relationships in wetland integrated rice–duck systems in southern China. Nutr. Cycl. Agroecosyst. 2011, 89, 1–13. [Google Scholar] [CrossRef]
- Kimani, S.M.; Bimantara, P.O.; Hattori, S.; Tawaraya, K.; Sudo, S.; Xu, X.; Cheng, W. Co-application of poultry-litter biochar with Azolla has synergistic effects on CH4 and N2O emissions from rice paddy soils. Heliyon 2020, 6, e05042. [Google Scholar] [CrossRef]
- Liu, M.; Hu, F.; Chen, X.; Huang, Q.; Jiao, J.; Zhang, B.; Li, H. Organic amendments with reduced chemical fertilizer promote soil microbial development and nutrient availability in a subtropical paddy field: The influence of quantity, type and application time of organic amendments. Appl. Soil Ecol. 2009, 42, 166–175. [Google Scholar] [CrossRef]
- Das, S.; Bhattacharyya, P.; Adhya, T.K. Interaction effect of elevated CO2 and temperature on microbial biomass and enzyme activities in tropical rice soils. Environ. Monit. Assess. 2011, 182, 555–569. [Google Scholar] [CrossRef]
- Pathak, H. Review: Common attributes of hydraulically fractured oil and gas production and CO2 geological sequestration. Greenh. Gases Sci. Technol. 2015, 2, 352e368. [Google Scholar] [CrossRef]
- Gilbert, B.; Frenzel, P. Rice roots and CH4 oxidation: The activity of bacteria, their distribution and the microenvironment. Soil Biol. Biochem. 1998, 30, 1903–1916. [Google Scholar] [CrossRef]
- Bodelier, P.L.; Roslev, P.; Henckel, T.; Frenzel, P. Stimulation by ammonium based fertilizers of methane oxidation in soil around rice roots. Nature 2000, 43, 421–424. [Google Scholar] [CrossRef] [PubMed]
- Liang, K.; Zhong, X.; Huang, N.; Lampayan, R.M.; Pan, J.; Tian, K.; Liu, Y. Grain yield, water productivity and CH4 emission of irrigated rice in response to water management in south China. Agric. Water Manag. 2016, 163, 319–331. [Google Scholar] [CrossRef]
- Xu, Y.; Ge, J.; Tian, S.; Li, S.; Nguy-Robertson, A.L.; Zhan, M.; Cao, C. Effects of water-saving irrigation practices and drought resistant rice variety on greenhouse gas emissions from a no-till paddy in the central lowlands of China. Sci. Total Environ. 2015, 505, 1043–1052. [Google Scholar] [CrossRef]
- Kapoor, V.; Singh, U.; Patil, S.K.; Magre, H.; Shrivastava, L.K.; Mishra, V.N.; Das, R.O.; Samadhiya, V.K.; Sanabria, J.; Diamond, R. Rice growth, grain yield, and floodwater nutrient dynamics as affected by nutrient placement method and rate. Agron. J. 2008, 100, 526–536. [Google Scholar] [CrossRef]
- Rochette, P.; Angers, D.A.; Chantigny, M.H.; Gasser, M.O.; MacDonald, J.D.; Pelster, D.E.; Bertrand, N. Ammonia volatilization and nitrogen retention: How deep to incorporate urea? J. Environ. Qual. 2013, 42, 1635–1642. [Google Scholar] [CrossRef]
- Firestone, M.K.; Davidson, E.A. Microbiological basis of NO and N2O production and consumption in soil. In Exchange of Trace Gases between Terrestrial Ecosystems and the Atmosphere; Andreae, M.O., Schimel, D.S., Eds.; John Wiley and Sons: Chichester, UK, 1989; pp. 7–21. [Google Scholar]
- Zou, J.W.; Huang, Y.; Jiang, J.Y.; Zheng, X.H.; Sass, R.L. A 3-Year field measurement of methane and nitrous oxide emissions from rice paddies in China: Effects of water regime, crop residue, and fertilizer application. Glob. Biogeochem. Cycles 2005, 19, GB2021. [Google Scholar] [CrossRef]
Soil Properties | Value | Analysis Method |
---|---|---|
pH-H2O | 6.13 | 1:2.5 (soil: water) [34] |
Organic carbon (%) | 1.31 | Wet oxidation [35] |
Total N (%) | 0.16 | Kjeldahl [36] |
Available P (mg kg−1) | 12.65 | 0.5 M NaHCO3 extracted [37] |
Available K (cmolc kg−1) | 0.12 | Neutral 1.0 N NH4OAc extraction [38] |
Available S (mg kg−1) | 9.31 | Ca(H2PO4)2 extraction [38] |
Available Fe (mg kg−1) | 565.5 | DTPA extraction [38] |
Available Mn (mg kg−1) | 69.4 | DTPA extraction [38] |
Available Zn (mg kg−1) | 14.3 | DTPA extraction [38] |
Particle size (%) | - [39] | |
Sand | 29.96 | |
Silt | 40.10 | |
Clay | 29.94 |
Fertilizer Management | Year | CH4 Emission (kg ha−1) | EF of CH4 a (kg ha−1 d−1) | N2O Emission (g ha−1) | EF of N2O a (g ha−1 d−1) | GWP b | GHGI c | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Means of 2 Water Regimes | |||||||||||||
Effect of fertilizer treatments | |||||||||||||
Control-N0 | Mean | 98.6 c | 1.22 c | 24.1 b | 0.30 b | 2769.6 c | 1.01 c | ||||||
UDP-N52 | 153.2 b | 1.90 b | 142.7 a | 1.77 a | 4348.0 b | 1.24 b | |||||||
PU-N52 | 167.2 a | 2.07 a | 144.5 a | 1.79 a | 4742.8 a | 1.59 a | |||||||
IPNS-N52 | 175.5 a | 2.18 a | 155.3 a | 1.92 a | 4979.2 a | 1.38 b | |||||||
Effect of year | |||||||||||||
Mean | 2018 | 150.9 a | 1.89 a | 93.33 b | 1.17 b | 4263.3 a | 1.30 a | ||||||
2019 | 152.1 a | 1.88 a | 130.13 a | 1.61 a | 4312.0 a | 1.34 a | |||||||
2020 | 142.9 a | 1.76 a | 126.46 a | 1.56 a | 4054.5 a | 1.26 a | |||||||
Effect of irrigation regimes | |||||||||||||
AWD | CF | AWD | CF | AWD | CF | AWD | CF | AWD | CF | AWD | CF | ||
Mean | Mean | 142.1 B | 155.2 A | 1.76 B | 1.92 A | 126.5 A | 106.8 B | 1.57 A | 1.32 B | 4031.4 B | 4388.5 A | 1.24 B | 1.36 A |
ANOVA (p values) | |||||||||||||
Irrigation (I) | 0.0439 | 0.0463 | 0.0298 | 0.0298 | 0.0468 | 0.0049 | |||||||
Fertilizer (F) | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | |||||||
Year (Y) | 0.0008 | 0.0004 | 0.1290 | 0.1466 | 0.0007 | 0.3452 | |||||||
I × F | 0.2072 | 0.2054 | 0.0562 | 0.0563 | 0.2178 | 0.2418 | |||||||
I × Y | 0.9297 | 0.9298 | 0.9156 | 0.9174 | 0.9267 | 0.9747 | |||||||
F × Y | 0.3487 | 0.3393 | 0.0992 | 0.1114 | 0.3482 | 0.1290 | |||||||
I × F × Y | 0.8950 | 0.9018 | 0.9914 | 0.9907 | 0.8866 | 0.8204 |
Fertilizer Management | Year | CH4 Emission (kg ha−1) | EF of CH4 a (kg ha−1 d−1) | N2O Emission (g ha−1) | EF of N2O a (g ha−1 d−1) | GWP b | GHGI c | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean of 2 Water Regimes | Mean of 2 Water Regimes | AWD | CF | AWD | CF | Mean of 2 Water Regimes | Mean of 2 Water Regimes | ||||||
Fertilizer and irrigation regimes interaction | |||||||||||||
Control-N0 | Mean | 102.6 c | 1.24 c | 66.8 d | 59.2 c | 0.81 d | 0.71 c | 2898.9 c | 0.83 c | ||||
UDP-N52 | 164.1 b | 1.98 b | 261.5 b | 173.1 b | 3.15 b | 2.09 b | 4683.8 b | 1.07 b | |||||
PU-N52 | 175.6 a | 2.12 a | 208.3 c | 227.1 a | 2.51 c | 2.74 a | 5007.9 a | 1.24 a | |||||
IPNS-N52 | 179.2 a | 2.16 a | 322.7 a | 262.7 a | 3.89 a | 3.17 a | 5139.1 a | 1.14 ab | |||||
Effect of year | |||||||||||||
Mean | 2018 | 147.5 b | 1.76 b | 181.6 b | 2.16 b | 4204.7 b | 1.03 b | ||||||
2019 | 155.5 a | 1.87 a | 196.3 a | 2.37 a | 4436.1 a | 1.05 ab | |||||||
2020 | 163.1 a | 1.99 a | 215.1 a | 2.62 a | 4656.5 a | 1.13 a | |||||||
Effect of irrigation regimes | |||||||||||||
AWD | CF | AWD | CF | AWD | CF | AWD | CF | AWD | CF | AWD | CF | ||
Mean | Mean | 148.1 B | 162.6 A | 1.79 B | 1.96 A | 214.8 A | 180.5 B | 2.59 A | 2.18 B | 4236.7 B | 4628.2 A | 1.03 B | 1.12 A |
ANOVA (p values) | |||||||||||||
Irrigation (I) | 0.0027 | 0.0026 | 0.0086 | 0.0086 | 0.0035 | 0.0060 | |||||||
Fertilizer (F) | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | |||||||
Year (Y) | 0.0056 | 0.0021 | 0.0786 | 0.0487 | 0.0042 | 0.0442 | |||||||
I × F | 0.3041 | 0.2994 | 0.0046 | 0.0047 | 0.2919 | 0.6445 | |||||||
I × Y | 0.7861 | 0.7580 | 0.5763 | 0.5925 | 0.7759 | 0.7386 | |||||||
F × Y | 0.9046 | 0.8779 | 0.9734 | 0.9714 | 0.8997 | 0.9414 | |||||||
I × F × Y | 0.9602 | 0.9598 | 0.8258 | 0.8193 | 0.9622 | 0.9629 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Islam, S.M.M.; Gaihre, Y.K.; Islam, M.R.; Khatun, A.; Islam, A. Integrated Plant Nutrient Systems Improve Rice Yields without Affecting Greenhouse Gas Emissions from Lowland Rice Cultivation. Sustainability 2022, 14, 11338. https://doi.org/10.3390/su141811338
Islam SMM, Gaihre YK, Islam MR, Khatun A, Islam A. Integrated Plant Nutrient Systems Improve Rice Yields without Affecting Greenhouse Gas Emissions from Lowland Rice Cultivation. Sustainability. 2022; 14(18):11338. https://doi.org/10.3390/su141811338
Chicago/Turabian StyleIslam, S. M. Mofijul, Yam Kanta Gaihre, Md. Rafiqul Islam, Amina Khatun, and Aminul Islam. 2022. "Integrated Plant Nutrient Systems Improve Rice Yields without Affecting Greenhouse Gas Emissions from Lowland Rice Cultivation" Sustainability 14, no. 18: 11338. https://doi.org/10.3390/su141811338
APA StyleIslam, S. M. M., Gaihre, Y. K., Islam, M. R., Khatun, A., & Islam, A. (2022). Integrated Plant Nutrient Systems Improve Rice Yields without Affecting Greenhouse Gas Emissions from Lowland Rice Cultivation. Sustainability, 14(18), 11338. https://doi.org/10.3390/su141811338