Adsorptive Removal of Lead and Chromate Ions from Water by Using Iron-Doped Granular Activated Carbon Obtained from Coconut Shells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fe–GAC Synthesis
2.3. Adsorbate Preparation
2.4. Characterization of Fe–GAC
2.5. Adsorption and Desorption Experiments
2.6. Adsorption Modelling
2.6.1. Adsorption Isotherm
2.6.2. Adsorption Kinetics
2.6.3. Adsorption Thermodynamics
3. Results and Discussion
3.1. Characterizations of the Prepared Activated Carbon
3.2. Effect of Fe2O3 Loading on the Elimination of Pb(II) and Cr(T) Ions
3.3. Effect of Fe–GAC 5 Dose
3.4. Effect of pHi
3.5. Effect of Contact Time and Adsorption Kinetics
3.6. Adsorption Isotherm
3.7. Effect of Temperature
3.8. Thermodynamic Modeling
3.9. Desorption Experiments
3.10. Removal of Pb(II) and Cr(T) from Real Brackish Water
3.11. Spent Adsorbent Characterization and Removal Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ihsanullah; Abbas, A.; Al-Amer, A.M.; Laoui, T.; Al-Marri, M.J.; Nasser, M.S.; Khraisheh, M.; Atieh, M.A. Heavy Metal Removal from Aqueous Solution by Advanced Carbon Nanotubes: Critical Review of Adsorption Applications. Sep. Purif. Technol. 2016, 157, 141–161. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, A.; Cabral-Pinto, M.; Chaturvedi, A.K.; Shabnam, A.A.; Subrahmanyam, G.; Mondal, R.; Gupta, D.K.; Malyan, S.K.; Kumar, S.S.; et al. Lead Toxicity: Health Hazards, Influence on Food Chain, and Sustainable Remediation Approaches. Int. J. Environ. Res. Public Health 2020, 17, 2179. [Google Scholar] [CrossRef] [PubMed]
- Almanassra, I.W.; Khan, M.I.; Atieh, M.A.; Shanableh, A. Adsorption of Lead Ions from an Aqueous Solution onto NaOH-Modified Rice Husk. Desalin. Water Treat. 2022, 254, 104–115. [Google Scholar] [CrossRef]
- Otieno, J.; Kowal, P.; Mąkinia, J. Monitoring Lead Concentration in the Surrounding Environmental Components of a Lead Battery Company: Plants, Air and Effluents—Case Study, Kenya. Int. J. Environ. Res. Public Health 2022, 19, 5195. [Google Scholar] [CrossRef] [PubMed]
- Arslan, H.; Eskikaya, O.; Bilici, Z.; Dizge, N.; Balakrishnan, D. Comparison of Cr(VI) Adsorption and Photocatalytic Reduction Efficiency Using Leonardite Powder. Chemosphere 2022, 300, 134492. [Google Scholar] [CrossRef] [PubMed]
- Prasad, S.; Yadav, K.K.; Kumar, S.; Gupta, N.; Cabral-Pinto, M.M.S.; Rezania, S.; Radwan, N.; Alam, J. Chromium Contamination and Effect on Environmental Health and Its Remediation: A Sustainable Approaches. J. Environ. Manag. 2021, 285, 112174. [Google Scholar] [CrossRef]
- Khalil, A.K.A.; Dweiri, F.; Almanassra, I.W.; Chatla, A.; Atieh, M.A. Mg-Al Layered Double Hydroxide Doped Activated Carbon Composites for Phosphate Removal from Synthetic Water: Adsorption and Thermodynamics Studies. Sustainability 2022, 14, 6991. [Google Scholar] [CrossRef]
- Isik, Z.; Saleh, M.; M’barek, I.; Yabalak, E.; Dizge, N.; Deepanraj, B. Investigation of the Adsorption Performance of Cationic and Anionic Dyes Using Hydrochared Waste Human Hair. Biomass Convers. Biorefinery 2022, 1–14. [Google Scholar] [CrossRef]
- Jung, C.; Heo, J.; Han, J.; Her, N.; Lee, S.J.; Oh, J.; Ryu, J.; Yoon, Y. Hexavalent Chromium Removal by Various Adsorbents: Powdered Activated Carbon, Chitosan, and Single/Multi-Walled Carbon Nanotubes. Sep. Purif. Technol. 2013, 106, 63–71. [Google Scholar] [CrossRef]
- Vaiopoulou, E.; Gikas, P. Effects of Chromium on Activated Sludge and on the Performance of Wastewater Treatment Plants: A Review. Water Res. 2012, 46, 549–570. [Google Scholar] [CrossRef]
- Singh, S.; Basu, H.; Bassan, M.K.T.; Singhal, R.K. Thiol Functionalised Silica Microsphere Loaded Polymeric Hydrogel: Development of a Novel Hybrid Sorbent for Removal of Lead and Cadmium. Chemosphere 2022, 286 Pt 1, 131659. [Google Scholar] [CrossRef] [PubMed]
- Ebadollahzadeh, H.; Zabihi, M. Competitive Adsorption of Methylene Blue and Pb (II) Ions on the Nano-Magnetic Activated Carbon and Alumina. Mater. Chem. Phys. 2020, 248, 122893. [Google Scholar] [CrossRef]
- Waly, S.M.; El-Wakil, A.M.; El-Maaty, W.M.A.; Awad, F.S. Efficient Removal of Pb(II) and Hg(II) Ions from Aqueous Solution by Amine and Thiol Modified Activated Carbon. J. Saudi Chem. Soc. 2021, 25, 101296. [Google Scholar] [CrossRef]
- Ihsanullah; Al-Khaldi, F.A.; Abusharkh, B.; Khaled, M.; Atieh, M.A.; Nasser, M.S.; Laoui, T.; Saleh, T.A.; Agarwal, S.; Tyagi, I.; et al. Adsorptive Removal of Cadmium(II) Ions from Liquid Phase Using Acid Modified Carbon-Based Adsorbents. J. Mol. Liq. 2015, 204, 255–263. [Google Scholar] [CrossRef]
- Wang, X.; Wang, M.; Zou, D.; Wu, C.; Li, T.; Gao, M.; Liu, S.; Wang, Q.; Shimaoka, T. Comparative Study on Inorganic Cl Removal of Municipal Solid Waste Fly Ash Using Different Types and Concentrations of Organic Acids. Chemosphere 2020, 261, 127754. [Google Scholar] [CrossRef]
- Ezeonuegbu, B.A.; Machido, D.A.; Whong, C.M.Z.; Japhet, W.S.; Alexiou, A.; Elazab, S.T.; Qusty, N.; Yaro, C.A.; Batiha, G.E.S. Agricultural Waste of Sugarcane Bagasse as Efficient Adsorbent for Lead and Nickel Removal from Untreated Wastewater: Biosorption, Equilibrium Isotherms, Kinetics and Desorption Studies. Biotechnol. Rep. 2021, 30, e00614. [Google Scholar] [CrossRef]
- Dinh, V.P.; Nguyen, P.T.; Tran, M.C.; Luu, A.T.; Hung, N.Q.; Luu, T.T.; Kiet, H.A.T.; Mai, X.T.; Luong, T.B.; Nguyen, T.L.; et al. HTDMA-Modified Bentonite Clay for Effective Removal of Pb(II) from Aqueous Solution. Chemosphere 2022, 286 Pt 3, 131766. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Ogata, F.; Saenjum, C.; Nakamura, T.; Kawasaki, N. Adsorption/Desorption Capability of Potassium-Type Zeolite Prepared from Coal Fly Ash for Removing of Hg2+. Sustainability 2021, 13, 4269. [Google Scholar] [CrossRef]
- Ihsanullah, I. MXenes (Two-Dimensional Metal Carbides) as Emerging Nanomaterials for Water Purification: Progress, Challenges and Prospects. Chem. Eng. J. 2020, 388, 124340. [Google Scholar] [CrossRef]
- Yu, G.; Wang, X.; Liu, J.; Jiang, P.; You, S.; Ding, N.; Guo, Q.; Lin, F. Applications of Nanomaterials for Heavy Metal Removal from Water and Soil: A Review. Sustainability 2021, 13, 713. [Google Scholar] [CrossRef]
- Yang, J.; Hou, B.; Wang, J.; Tian, B.; Bi, J.; Wang, N.; Li, X.; Huang, X. Nanomaterials for the Removal of Heavy Metals from Wastewater. Nanomaterials 2019, 9, 424. [Google Scholar] [CrossRef]
- Yadav, V.K.; Ali, D.; Khan, S.H.; Gnanamoorthy, G.; Choudhary, N.; Yadav, K.K.; Thai, V.N.; Hussain, S.A.; Manhrdas, S. Synthesis and Characterization of Amorphous Iron Oxide Nanoparticles by the Sonochemical Method and Their Application for the Remediation of Heavy Metals from Wastewater. Nanomaterials 2020, 10, 1551. [Google Scholar] [CrossRef]
- Andrade-Zavaleta, K.; Chacon-Laiza, Y.; Asmat-Campos, D.; Raquel-Checca, N. Green Synthesis of Superparamagnetic Iron Oxide Nanoparticles with Eucalyptus Globulus Extract and Their Application in the Removal of Heavy Metals from Agricultural Soil. Molecules 2022, 27, 1367. [Google Scholar] [CrossRef]
- Chatla, A.; Almanassra, I.W.; Jaber, L.; Kochkodan, V.; Laoui, T.; Alawadhi, H.; Ali, M. Influence of Calcination Atmosphere on Fe Doped Activated Carbon for the Application of Lead Removal from Water. Colloids Surf. A Physicochem. Eng. Asp. 2022, 652, 129928. [Google Scholar] [CrossRef]
- Mariana, M.; Abdul, A.K.; Mistar, E.M.; Yahya, E.B.; Alfatah, T.; Danish, M.; Amayreh, M. Recent Advances in Activated Carbon Modification Techniques for Enhanced Heavy Metal Adsorption. J. Water Process. Eng. 2021, 43, 102221. [Google Scholar] [CrossRef]
- Almasri, D.A.; Saleh, N.B.; Atieh, M.A.; McKay, G.; Ahzi, S. Adsorption of Phosphate on Iron Oxide Doped Halloysite Nanotubes. Sci. Rep. 2019, 9, 3232. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, X.; Dong, W.; Zhang, L.; Kong, Q.; Wang, W. Efficient Adsorption of Sulfamethazine onto Modified Activated Carbon: A Plausible Adsorption Mechanism. Sci. Rep. 2017, 7, 5568. [Google Scholar] [CrossRef] [PubMed]
- Jain, M.; Yadav, M.; Kohout, T.; Lahtinen, M.; Garg, V.K.; Sillanpää, M. Development of Iron Oxide/Activated Carbon Nanoparticle Composite for the Removal of Cr(VI), Cu(II) and Cd(II) Ions from Aqueous Solution. Water Resour. Ind. 2018, 20, 54–74. [Google Scholar] [CrossRef]
- Chabaane, L.; Tahiri, S.; Albizane, A.; El Krati, M.; Cervera, M.L.; de la Guardia, M. Immobilization of Vegetable Tannins on Tannery Chrome Shavings and Their Use for the Removal of Hexavalent Chromium from Contaminated Water. Chem. Eng. J. 2011, 174, 310–317. [Google Scholar] [CrossRef]
- Gorzin, F.; Bahri Rasht Abadi, M.M. Adsorption of Cr(VI) from Aqueous Solution by Adsorbent Prepared from Paper Mill Sludge: Kinetics and Thermodynamics Studies. Adsorpt. Sci. Technol. 2018, 36, 149–169. [Google Scholar] [CrossRef] [Green Version]
- Krishnamoorthy, R.; Govindan, B.; Banat, F.; Sagadevan, V.; Purushothaman, M.; Show, P.L. Date Pits Activated Carbon for Divalent Lead Ions Removal. J. Biosci. Bioeng. 2019, 128, 88–97. [Google Scholar] [CrossRef] [PubMed]
- Boujelben, N.; Bouzid, J.; Elouear, Z. Removal of Lead(II) Ions from Aqueous Solutions Using Manganese Oxide-Coated Adsorbents: Characterization and Kinetic Study. Adsorpt. Sci. Technol. 2009, 27, 177–191. [Google Scholar] [CrossRef]
- Mouni, L.; Merabet, D.; Bouzaza, A.; Belkhiri, L. Adsorption of Pb(II) from Aqueous Solutions Using Activated Carbon Developed from Apricot Stone. Desalination 2011, 276, 148–153. [Google Scholar] [CrossRef]
- Yang, J.; Li, C.; Yang, B.; Kang, S.; Zhang, Z. Study on Adsorption of Chromium (VI) by Activated Carbon from Cassava Sludge. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Banda Aceh, Indonesia, 26–27 September 2018; Volume 128, p. 012017. [Google Scholar]
- Ihsanullah; Al-khaldi, F.A.; Abu-sharkh, B.; Mahmoud, A.; Qureshi, M.I.; Laoui, T.; Atieh, M.A. Effect of Acid Modification on Adsorption of Hexavalent Chromium (Cr(VI)) from Aqueous Solution by Activated Carbon and Carbon Nanotubes. Desalin. Water Treat. 2016, 57, 7232–7244. [Google Scholar] [CrossRef]
- Ramutshatsha-Makhwedzha, D.; Mbaya, R.; Mavhungu, M.L. Application of Activated Carbon Banana Peel Coated with Al2O3-Chitosan for the Adsorptive Removal of Lead and Cadmium from Wastewater. Materials 2022, 15, 860. [Google Scholar] [CrossRef]
- Thabede, P.M.; Shooto, N.D.; Naidoo, E.B. Removal of Methylene Blue Dye and Lead Ions from Aqueous Solution Using Activated Carbon from Black Cumin Seeds. S. Afr. J. Chem. Eng. 2020, 33, 39–50. [Google Scholar] [CrossRef]
- Neolaka, Y.A.B.; Lawa, Y.; Naat, J.; Riwu, A.A.P.; Darmokoesoemo, H.; Widyaningrum, B.A.; Iqbal, M.; Kusuma, H.S. Indonesian Kesambi Wood (Schleichera Oleosa) Activated with Pyrolysis and H2SO4 Combination Methods to Produce Mesoporous Activated Carbon for Pb(II) Adsorption from Aqueous Solution. Environ. Technol. Innov. 2021, 24, 101997. [Google Scholar] [CrossRef]
- Manjuladevi, M.; Anitha, R.; Manonmani, S. Kinetic Study on Adsorption of Cr(VI), Ni(II), Cd(II) and Pb(II) Ions from Aqueous Solutions Using Activated Carbon Prepared from Cucumis Melo Peel. Appl. Water Sci. 2018, 8, 36. [Google Scholar] [CrossRef]
- Di Natale, F.; Lancia, A.; Molino, A.; Musmarra, D. Removal of Chromium Ions Form Aqueous Solutions by Adsorption on Activated Carbon and Char. J. Hazard. Mater. 2007, 145, 381–390. [Google Scholar] [CrossRef]
- Aljerf, L. High-Efficiency Extraction of Bromocresol Purple Dye and Heavy Metals as Chromium from Industrial Effluent by Adsorption onto a Modified Surface of Zeolite: Kinetics and Equilibrium Study. J. Environ. Manag. 2018, 225, 120–132. [Google Scholar] [CrossRef]
- Xu, S.; Liang, M.; Ding, Y.; Wang, D.; Zhu, Y.; Han, L. Synthesis, Optical Characterization, and Adsorption of Novel Hexavalent Chromium and Total Chromium Sorbent: A Fabrication of Mulberry Stem Biochar/Mn-Fe Binary Oxide Composite via Response Surface Methodology. Front. Environ. Chem. 2021, 2, 1–14. [Google Scholar] [CrossRef]
- Nassar, N.N. Rapid Removal and Recovery of Pb(II) from Wastewater by Magnetic Nanoadsorbents. J. Hazard. Mater. 2010, 184, 538–546. [Google Scholar] [CrossRef]
- Mohubedu, R.P.; Diagboya, P.N.E.; Abasi, C.Y.; Dikio, E.D.; Mtunzi, F. Magnetic Valorization of Biomass and Biochar of a Typical Plant Nuisance for Toxic Metals Contaminated Water Treatment. J. Clean. Prod. 2019, 209, 1016–1024. [Google Scholar] [CrossRef]
- Tirtom, V.N.; Dinçer, A.; Becerik, S.; Aydemir, T.; Çelik, A. Removal of Lead (II) Ions from Aqueous Solution by Using Crosslinked Chitosan-Clay Beads. Desalin. Water Treat. 2012, 39, 76–82. [Google Scholar] [CrossRef]
- Hassan, S.S.M.; Awwad, N.S.; Aboterika, A.H.A. Removal of Synthetic Reactive Dyes from Textile Wastewater by Sorel’s Cement. J. Hazard. Mater. 2009, 162, 994–999. [Google Scholar] [CrossRef]
- Cumings, J.N. Biochemical Aspects. Proc. R. Soc. Med. 1962, 55, 1023–1024. [Google Scholar] [CrossRef]
- Gorzin, F.; Ghoreyshi, A.A. Synthesis of a New Low-Cost Activated Carbon from Activated Sludge for the Removal of Cr (VI) from Aqueous Solution: Equilibrium, Kinetics, Thermodynamics and Desorption Studies. Korean J. Chem. Eng. 2013, 30, 1594–1602. [Google Scholar] [CrossRef]
- Lalhruaitluanga, H.; Jayaram, K.; Prasad, M.N.V.; Kumar, K.K. Lead(II) Adsorption from Aqueous Solutions by Raw and Activated Charcoals of Melocanna Baccifera Roxburgh (Bamboo)-A Comparative Study. J. Hazard. Mater. 2010, 175, 311–318. [Google Scholar] [CrossRef]
- Shi, Q.; Sterbinsky, G.E.; Prigiobbe, V.; Meng, X. Mechanistic Study of Lead Adsorption on Activated Carbon. Langmuir 2018, 34, 13565–13573. [Google Scholar] [CrossRef]
- Sharififard, H.; Pepe, F.; Soleimani, M.; Aprea, P.; Caputo, D. Iron-Activated Carbon Nanocomposite: Synthesis, Characterization and Application for Lead Removal from Aqueous Solution. RSC Adv. 2016, 6, 42845–42853. [Google Scholar] [CrossRef]
- Langmuir, I. The Constitution and Fundamental Properties of Solids and Liquids. J. Am. Chem. Soc. 1916, 38, 2221–2295. [Google Scholar] [CrossRef]
- Freundlich, H.M. Freundlich Over the Adsorption in Solution. J. Phys. Chem. 1906, 57, 385–471. [Google Scholar]
- Sips, R. On the Structure of a Catalyst Surface. J. Chem. Phys. 1948, 16, 490–495. [Google Scholar] [CrossRef]
- Redlich, O.; Peterson, D.L. A Useful Adsorption Isotherm. J. Phys. Chem. 1959, 63, 1024. [Google Scholar] [CrossRef]
- Weber, W.J.; Morris, J.C. Kinetics of Adsorption on Carbon from Solution. J. Sanit. Eng. Div. 1963, 89, 31–60. [Google Scholar] [CrossRef]
- Ho, Y.S. Citation Review of Lagergren Kinetic Rate Equation on Adsorption Reactions. Scientometrics 2004, 59, 171–177. [Google Scholar]
- Ho, Y.S.; McKay, G. Pseudo-Second Order Model for Sorption Processes. Process Biochem. 1999, 34, 451–465. [Google Scholar] [CrossRef]
- Chien, S.H.; Clayton, W.R. Application of Elovich Equation to the Kinetics of Phosphate Release and Sorption in Soils. Soil Sci. Soc. Am. J. 1980, 44, 265–268. [Google Scholar] [CrossRef]
Samples | Elemental Content (%) | |||||
---|---|---|---|---|---|---|
C | O | Fe | Si | Al | Total | |
Raw GAC | 92.30 | 3.90 | 0.70 | 2.80 | 0.30 | 100.00 |
Fe–GAC 1 | 86.79 | 8.49 | 1.84 | 2.60 | 0.28 | 100.00 |
Fe–GAC 5 | 81.10 | 9.87 | 6.04 | 2.78 | 0.21 | 100.00 |
Fe–GAC 20 | 61.30 | 13.90 | 21.90 | 2.67 | 0.23 | 100.00 |
Kinetic Model | Adsorbate | |
---|---|---|
Cr(T) | Pb(II) | |
Experimental | ||
qexp (mg g−1) | 12.9 | 15.8 |
Pseudo-first order | ||
qe,calc (mg g−1) | 4.8 | 12.2 |
K1 (min−1) | 0.0023 | 0.0014 |
R2 | 0.94 | 0.79 |
Pseudo-second order | ||
qe,calc (mg g−1) | 13.7 | 47.2 |
K2 (g.mg−1.min−1) | 0.47 | 1.94 |
R2 | 0.99 | 0.99 |
Elovich model | ||
α | 0.51 | 0.51 |
β | 0.63 | 0.63 |
R2 | 1.00 | 1.00 |
Intra-particle diffusion model | ||
Kdiff (mg.g.min−1) | 0.52 | 0.47 |
C | 0.89 | 31.70 |
R2 | 0.86 | 0.77 |
Model | Parameters | Cr(T) | Pb(II) |
---|---|---|---|
Langmuir | Xm (mg g−1) | 22.1 | 11.9 |
h (L mg−1) | 0.06 | 0.02 | |
SSE | 8.67 | 1.54 | |
R2 | 0.95 | 0.99 | |
Freundlich | Kf | 2.73 | 0.72 |
nF | 2.14 | 1.84 | |
SSE | 18.53 | 0.34 | |
R2 | 0.9054 | 0.9990 | |
Sips | Qs (L g−1) | 18.73 | 21.70 |
Ks (L mg−1) | 0.037 | 0.025 | |
ns | 1.33 | 0.71 | |
SSE | 7.10 | 0.36 | |
R2 | 0.96 | 0.99 | |
Redlich-Peterson | KR (L g−1) | 5542 | 0.88 |
a | 2031 | 0.39 | |
β | 0.53 | 0.42 | |
SSE | 18.53 | 0.47 | |
R2 | 0.91 | 0.99 |
Adsorbent | Adsorbent Preparation | Target | Experimental Conditions | Adsorption Capacity (mg g−1) | Ref. | |
---|---|---|---|---|---|---|
pH | Adsorbate Concentration (mg L−1) | |||||
BPAC@Al3O2@chitosan | Co-precipitation | Pb(II) | 6.0 | 20 | 57.1 | [39] |
BCC | Chemical activation by H2SO4 | Pb(II) | 4.8 | 100 | 17.9 | [40] |
ACMA | Pyrolysis and chemical activation | Pb(II) | 5.0 | 25 | 1.6 | [41] |
CMAC | Pyrolysis | Pb(II) | 6.0 | 100 | 6.6 | [42] |
Fe2O3 nanoparticles doped granular activated carbon obtained from coconut shells (Fe–GAC) | Modified sol-gel | Pb(II) | 5.6 | 40 | 11.9 | This work |
Steam activated GAC | Physical activation | Cr(T) | 2.0 | 5-50 | 7.0 | [43] |
Modified clinoptilolite | Simple solid waste mixing | Cr(T) | N/A | N/A | 37 | [44] |
Mn/Fe modified biochar | Pyrolysis | Cr(T) | 3 | N/A | 54.9 | [45] |
Fe2O3 nanoparticles doped granular activated carbon obtained from coconut shells (Fe–GAC) | Modified sol-gel | Cr(T) | 5.6 | 40 | 22.1 | This work |
Thermodynamic Parameters | ||||||
---|---|---|---|---|---|---|
Adsorbate | ||||||
25 °C | 35 °C | 45 °C | 55 °C | |||
Pb(II) | −12.43 | −54.10 | 3.73 | 4.05 | 4.42 | 5.66 |
Cr(T) | 24.93 | 82.93 | −0.61 | 0.80 | 1.60 | 2.07 |
Samples | Elemental Content (%) | |||||||
---|---|---|---|---|---|---|---|---|
C | O | Fe | Si | Al | Pb | Cr(T) | Total | |
Pb(II)-loaded Fe–GAC 5 | 81.10 | 8.77 | 6.04 | 2.67 | 0.220 | 1.20 | - | 100.00 |
Cr(T)-loaded Fe–GAC 5 | 77.50 | 11.24 | 5.88 | 2.40 | 0.180 | - | 2.80 | 100.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaber, L.; Ihsanullah, I.; Almanassra, I.W.; Backer, S.N.; Abushawish, A.; Khalil, A.K.A.; Alawadhi, H.; Shanableh, A.; Atieh, M.A. Adsorptive Removal of Lead and Chromate Ions from Water by Using Iron-Doped Granular Activated Carbon Obtained from Coconut Shells. Sustainability 2022, 14, 10877. https://doi.org/10.3390/su141710877
Jaber L, Ihsanullah I, Almanassra IW, Backer SN, Abushawish A, Khalil AKA, Alawadhi H, Shanableh A, Atieh MA. Adsorptive Removal of Lead and Chromate Ions from Water by Using Iron-Doped Granular Activated Carbon Obtained from Coconut Shells. Sustainability. 2022; 14(17):10877. https://doi.org/10.3390/su141710877
Chicago/Turabian StyleJaber, Lubna, Ihsanullah Ihsanullah, Ismail W. Almanassra, Sumina Namboorimadathil Backer, Alaa Abushawish, Abdelrahman K. A. Khalil, Hussain Alawadhi, Abdallah Shanableh, and Muataz Ali Atieh. 2022. "Adsorptive Removal of Lead and Chromate Ions from Water by Using Iron-Doped Granular Activated Carbon Obtained from Coconut Shells" Sustainability 14, no. 17: 10877. https://doi.org/10.3390/su141710877
APA StyleJaber, L., Ihsanullah, I., Almanassra, I. W., Backer, S. N., Abushawish, A., Khalil, A. K. A., Alawadhi, H., Shanableh, A., & Atieh, M. A. (2022). Adsorptive Removal of Lead and Chromate Ions from Water by Using Iron-Doped Granular Activated Carbon Obtained from Coconut Shells. Sustainability, 14(17), 10877. https://doi.org/10.3390/su141710877