Evolution and Prediction of the Coupling Coordination Degree of Production–Living–Ecological Space Based on Land Use Dynamics in the Daqing River Basin, China
Abstract
:1. Introduction
2. Data Sources and Research Methods
2.1. Study Area
2.2. Data Sources
2.3. Methods
2.3.1. Classification of PLES
2.3.2. Coupling Coordination Degree Analysis
2.3.3. Land Use Simulation
2.3.4. Spatial Distribution Characteristics Analysis of PLES
3. Results
3.1. Outcomes of Land Use Simulation Experiment
3.1.1. Land Use Modeling Accuracy
3.1.2. Land Use in 2030 under Three Different Development Scenarios
3.2. Changes of Production–Living–Ecological Space
3.2.1. Changes in the Amount of PLES from 1992 to 2020
3.2.2. Changes in the Amount of PLES under Different Development Scenarios in 2030
3.2.3. Spatial Distribution Characteristics of PLES
3.3. Coupling Degree and Coupling Coordination Degree of PLES
3.3.1. CD and CCD of PLES from 1992 to 2020
3.3.2. CD and CCD of PLES under Different Development Scenarios in 2030
3.3.3. Spatial Autocorrelation Features for CD and CCD of PLES
- (1)
- Global Spatial Autocorrelation Features
- (2)
- Local spatial autocorrelation features
3.3.4. Features of Changes for CD and CCD
- (1)
- Changes from 1992 to 2020
- (2)
- Changes from 2020 to 2030
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chang, X.; Xing, Y.; Wang, J.; Yang, H.; Gong, W. Effects of Land Use and Cover Change (LUCC) on Terrestrial Carbon Stocks in China between 2000 and 2018. Resour. Conserv. Recycl. 2022, 182, 106333. [Google Scholar] [CrossRef]
- Lai, Z.; Chen, M.; Liu, T. Changes in and Prospects for Cultivated Land Use since the Reform and Opening up in China. Land Use Policy 2020, 97, 104781. [Google Scholar] [CrossRef]
- Liang, L.; Chen, M.; Luo, X.; Xian, Y. Changes Pattern in the Population and Economic Gravity Centers since the Reform and Opening up in China: The Widening Gaps between the South and North. J. Clean. Prod. 2021, 310, 127379. [Google Scholar] [CrossRef]
- Gonzalez-Gonzalez, A.; Clerici, N.; Quesada, B. A 30 m-Resolution Land Use-Land Cover Product for the Colombian Andes and Amazon Using Cloud-Computing. Int. J. Appl. Earth Obs. Geoinf. 2022, 107, 102688. [Google Scholar] [CrossRef]
- Cruz, J.D.S.; Blanco, C.J.C.; de Oliveira, J.F., Jr. Modeling of Land Use and Land Cover Change Dynamics for Future Projection of the Amazon Number Curve. Sci. Total Environ. 2022, 811, 152348. [Google Scholar] [CrossRef] [PubMed]
- Murillo-Sandoval, P.J.; Gjerdseth, E.; Correa-Ayram, C.; Wrathall, D.; Van den Hoek, J.; Davalos, L.M.; Kennedy, R. No Peace for the Forest: Rapid, Widespread Land Changes in the Andes-Amazon Region Following the Colombian Civil War. Glob. Environ. Chang. 2021, 69, 102283. [Google Scholar] [CrossRef]
- Lidzhegu, Z.; Kabanda, T. Declining Land for Subsistence and Small-Scale Farming in South Africa: A Case Study of Thulamela Local Municipality. Land Use Policy 2022, 119, 106170. [Google Scholar] [CrossRef]
- Tulone, A.; Galati, A.; Pecoraro, S.; Carroccio, A.; Siggia, D.; Virzì, M.; Crescimanno, M. Main Intrinsic Factors Driving Land Grabbing in the African Countries’ Agro-Food Industry. Land Use Policy 2022, 120, 106225. [Google Scholar] [CrossRef]
- Chen, Q.; Liu, Y.; Ge, Q.; Pan, T. Impacts of Historic Climate Variability and Land Use Change on Winter Wheat Climatic Productivity in the North China Plain during 1980–2010. Land Use Policy 2018, 76, 1–9. [Google Scholar] [CrossRef]
- Zhong, H.; Liu, Z.; Wang, J. Understanding Impacts of Cropland Pattern Dynamics on Grain Production in China: An Integrated Analysis by Fusing Statistical Data and Satellite-Observed Data. J. Environ. Manag. 2022, 313, 114988. [Google Scholar] [CrossRef]
- Liu, Q.; Yang, D.; Cao, L.; Anderson, B. Assessment and Prediction of Carbon Storage Based on Land Use/Land Cover Dynamics in the Tropics: A Case Study of Hainan Island, China. Land 2022, 11, 244. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, X.; Kang, M.; Han, J. Contrasting Changes in Fine-Scale Land Use Structure and Summertime Thermal Environment in Downtown Shanghai. Sustain. Cities Soc. 2022, 83, 103965. [Google Scholar] [CrossRef]
- Lu, Y.; Zhou, J.; Sun, L.; Gao, J.; Raza, S. Long-Term Land-Use Change from Cropland to Kiwifruit Orchard Increases Nitrogen Load to the Environment: A Substance Flow Analysis. Agric. Ecosyst. Environ. 2022, 335, 108013. [Google Scholar] [CrossRef]
- Chen, Z.; Li, Y.; Liu, Y.; Liu, X. Does Rural Residential Land Expansion Pattern Lead to Different Impacts on Eco-Environment? A Case Study of Loess Hilly and Gully Region, China. Habitat Int. 2021, 117, 102436. [Google Scholar] [CrossRef]
- Wang, Q.; Kang, Q.; Zhao, B.; Li, H.; Lu, H.; Liu, J.; Yan, C. Effect of Land-Use and Land-Cover Change on Mangrove Soil Carbon Fraction and Metal Pollution Risk in Zhangjiang Estuary, China. Sci. Total Environ. 2022, 807, 150973. [Google Scholar] [CrossRef] [PubMed]
- Feng, R.; Wang, F.; Wang, K.; Wang, H.; Li, L. Urban Ecological Land and Natural-Anthropogenic Environment Interactively Drive Surface Urban Heat Island: An Urban Agglomeration-Level Study in China. Environ. Int. 2021, 157, 106857. [Google Scholar] [CrossRef]
- Wang, A.; Liao, X.; Tong, Z.; Du, W.; Zhang, J.; Liu, X.; Liu, M. Spatial-Temporal Dynamic Evaluation of the Ecosystem Service Value from the Perspective of “Production-Living-Ecological” Spaces: A Case Study in Dongliao River Basin, China. J. Clean. Prod. 2022, 333, 130218. [Google Scholar] [CrossRef]
- Duan, Y.; Wang, H.; Huang, A.; Xu, Y.; Lu, L.; Jia, Z. Identification and Spatial-Temporal Evolution of Rural “Production-Living-Ecological” Space from the Perspective of Villagers’ Behavior—A Case Study of Ertai Town, Zhangjiakou City. Land Use Policy 2021, 106, 105457. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, D.; Wang, H.; Li, X. What Is the Future for Production-Living-Ecological Spaces in the Greater Bay Area? A Multi-Scenario Perspective Based on DEE. Ecol. Indic. 2021, 131, 108171. [Google Scholar] [CrossRef]
- Zou, L.; Liu, Y.; Wang, J.; Yang, Y. An Analysis of Land Use Conflict Potentials Based on Ecological-Production-Living Function in the Southeast Coastal Area of China. Ecol. Indic. 2021, 122, 107297. [Google Scholar] [CrossRef]
- Zhang, H.; Duan, Y.; Wang, H.; Han, Z.; Wang, H. An Empirical Analysis of Tourism Eco-Efficiency in Ecological Protection Priority Areas Based on the DPSIR-SBM Model: A Case Study of the Yellow River Basin, China. Ecol. Inform. 2022, 70, 101720. [Google Scholar] [CrossRef]
- Jin, M.; Weijermars, R. Economic Appraisal of an Unconventional Condensate Play Based on Public Pilot Data Prior to Field Development: Jafurah Basin Case Study (Saudi Arabia). J. Nat. Gas Sci. Eng. 2022, 103, 104605. [Google Scholar] [CrossRef]
- Zhou, M.; Deng, J.; Lin, Y.; Zhang, L.; He, S.; Yang, W. Evaluating Combined Effects of Socio-Economic Development and Ecological Conservation Policies on Sediment Retention Service in the Qiantang River Basin, China. J. Clean. Prod. 2021, 286, 124961. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, X.; Mu, Y.; Zhang, W. The Basic Logic and Core Strategies of Ecological Protection and High-Quality Development in the Upper Reaches of the Yellow River. Econ. Geogr. 2020, 40, 9–20. [Google Scholar]
- Han, H.; Guo, L.; Zhang, J.; Zhang, K.; Cui, N. Spatiotemporal Analysis of the Coordination of Economic Development, Resource Utilization, and Environmental Quality in the Beijing-Tianjin-Hebei Urban Agglomeration. Ecol. Indic. 2021, 127, 107724. [Google Scholar] [CrossRef]
- Hong, Y.; Liu, W.; Song, H. Spatial Econometric Analysis of Effect of New Economic Momentum on China’s High-Quality Development. Res. Int. Bus. Financ. 2022, 61, 101621. [Google Scholar] [CrossRef]
- Zhou, J.; Chen, Q.; Qi, P.; Liu, Z. Study on the Supply and Demand Matching for Policies Related to the Coordinated Development of High Haze Industries Such as Thermal Power Industry and Economy in the Beijing–Tianjin–Hebei Region. Energy Rep. 2022, 8, 502–512. [Google Scholar] [CrossRef]
- Wang, Y. Analysis on the Evolution of Spatial Relationship between Population and Economy in the Beijing-Tianjin-Hebei and Shandong Region of China. Sustain. Cities Soc. 2022, 83, 103948. [Google Scholar] [CrossRef]
- Deng, Y.; Yang, R. Influence Mechanism of Production-Living-Ecological Space Changes in the Urbanization Process of Guangdong Province, China. Land 2021, 10, 1357. [Google Scholar] [CrossRef]
- Jiao, G.; Yang, X.; Huang, Z.; Zhang, X.; Lu, L. Evolution Characteristics and Possible Impact Factors for the Changing Pattern and Function of “Production-Living-Ecological” Space in Wuyuan County. J. Nat. Resour. 2021, 36, 1252–1267. [Google Scholar] [CrossRef]
- Li, K.; Zhang, B.; Xiao, W.; Lu, Y. Land Use Transformation Based on Production−Living−Ecological Space and Associated Eco-Environment Effects: A Case Study in the Yangtze River Delta Urban Agglomeration. Land 2022, 11, 1076. [Google Scholar] [CrossRef]
- Zou, Y.; Zhang, S.; Xie, Y.; Du, Y. Spatial Distribution and Evolution Characters of Production-Living-Ecological Spaces in Xuzhou City. Sci. Surv. Mapp. 2020, 45, 154–162. [Google Scholar]
- Li, J.; Sun, W.; Li, M.; Meng, L. Coupling coordination degree of production, living and ecological spaces and its influencing factors in the Yellow River Basin. J. Clean. Prod. 2021, 298, 126803. [Google Scholar] [CrossRef]
- Yang, Y.; Bao, W.; Liu, Y. Coupling Coordination Analysis of Rural Production-Living-Ecological Space in the Beijing-Tianjin-Hebei Region. Ecol. Indic. 2020, 117, 106512. [Google Scholar] [CrossRef]
- Wei, L.; Zhang, Y.; Wang, L.; Mi, X.; Wu, X.; Cheng, Z. Spatiotemporal Evolution Patterns of “Production-Living-Ecological” Spaces and the Coordination Level and Optimization of the Functions in Jilin Province. Sustainability 2021, 13, 13192. [Google Scholar] [CrossRef]
- Wang, C.; Tang, N. Spatio-Temporal Characteristics and Evolution of Rural Production-Living-Ecological Space Function Coupling Coordination in Chongqing Municipality. Geogr. Res. 2018, 37, 1100–1114. [Google Scholar]
- Li, Q.; Su, Y.; Feng, Z.; Zhou, X.; Guo, L.; Ma, X.; Liu, G. Study on Production-Living-Ecological Space Function Coupling Coordination in Fen River Basin. Sci. Soil Water Conserv. 2021, 19, 115–125. [Google Scholar]
- Li, Y.; Ye, C.; Huang, X. Temporal-Spatial Evolution and Scenario Simulation of Production-Living-Ecological Space in Nanchang Based on CLUE-S Model. Res. Soil Water Conserv. 2021, 28, 325–332. [Google Scholar]
- Liu, X.; Liang, X.; Li, X.; Xu, X.; Ou, J.; Chen, Y.; Li, S.; Wang, S.; Pei, F. A Future Land Use Simulation Model (FLUS) for Simulating Multiple Land Use Scenarios by Coupling Human and Natural Effects. Landsc. Urban Plan. 2017, 168, 94–116. [Google Scholar] [CrossRef]
- Liang, X.; Guan, Q.; Clarke, K.; Liu, S.; Wang, B.; Yao, Y. Understanding the Drivers of Sustainable Land Expansion Using a Patch-Generating Land Use Simulation (PLUS) Model: A Case Study in Wuhan, China. Comput. Environ. Urban Syst. 2021, 85, 101569. [Google Scholar] [CrossRef]
- Zhang, S.; Zhong, Q.; Cheng, D.; Xu, C.; Chang, Y.; Lin, Y.; Li, B. Landscape Ecological Risk Projection Based on the PLUS Model under the Localized Shared Socioeconomic Pathways in the Fujian Delta Region. Ecol. Indic. 2022, 136, 108642. [Google Scholar] [CrossRef]
- Wang, Z.; Li, X.; Mao, Y.; Li, L.; Wang, X.; Lin, Q. Dynamic Simulation of Land Use Change and Assessment of Carbon Storage Based on Climate Change Scenarios at the City Level: A Case Study of Bortala, China. Ecol. Indic. 2022, 134, 108499. [Google Scholar] [CrossRef]
- Du, Y.; Li, X.; He, X.; Li, X.; Yang, G.; Li, D.; Xu, W.; Qiao, X.; Li, C.; Sui, L. Multi-Scenario Simulation and Trade-Off Analysis of Ecological Service Value in the Manas River Basin Based on Land Use Optimization in China. Int. J. Environ. Res. Public Health 2022, 19, 6216. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Cheng, W.; Bo, Q.; Meng, X.; Liang, D. Analysis on Historical Flood and Countermeasures in Prevention and Control of Flood in Daqing River Basin. Environ. Res. 2021, 196, 110895. [Google Scholar] [CrossRef]
- Bo, Q.; Cheng, W.; Sun, T. Flow Capacity and Ice Cap Stability of River Channel in the Daqing River Basin of the South-to-North Water Diversion Project during the Ice Period. Alex. Eng. J. 2022, 61, 3657–3663. [Google Scholar] [CrossRef]
- Gou, M.; Liu, C.; Li, L.; Xiao, W.; Wang, N.; Hu, J. Ecosystem Service Value Effects of the Three Gorges Reservoir Area Land Use Transformation under the Perspective of “Production-Living-Ecological” Space. J. Appl. Ecol. 2021, 32, 3933–3941. [Google Scholar]
- Cui, J.; Gu, J.; Sun, J.; Luo, J. The Spatial Pattern and Evolution Characteristics of the Production, Living and Ecological Space in Hubei Provence. China Land Sci. 2018, 32, 67–73. [Google Scholar]
- Zhang, Y.; Luan, Q.; Xiong, C.; Liu, X. Spatial Heterogeneity Evaluation and Zoning of Production-Living-Ecological Space Based on Multi-source Spatial Data. Trans. Chin. Soc. Agric. Eng. 2021, 37, 214–223. [Google Scholar]
- Cui, J.; Guo, G.; Zhang, H. Spatial Characteristics of Production-Living-Ecological Geographical Space of a Typical City in the Lower Yellow River Plain Area. Yellow River 2022, 44, 105–110. [Google Scholar]
- Bai, R.; Jiang, Y.; Jiang, J. Multi-Scale Analysis on Functional Structure of Ecological-Production-Living Spaces of Jianghuai Urban Agglomeration. China Anc. City 2016, 10, 21–28. [Google Scholar]
- Li, Y.; Li, Y.; Zhou, Y.; Shi, Y.; Zhu, X. Investigation of a Coupling Model of Coordination between Urbanization and the Environment. J. Environ. Manag. 2012, 98, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Zeng, W.; Yang, X. Coupling Coordination Evaluation and Sustainable Development Pattern of Geo-Ecological Environment and Urbanization in Chongqing Municipality, China. Sustain. Cities Soc. 2020, 61, 102271. [Google Scholar] [CrossRef]
- Yuan, J.; Bian, Z.; Yan, Q.; Pan, Y. Spatio-Temporal Distributions of the Land Use Efficiency Coupling Coordination Degree in Mining Cities of Western China. Sustainability 2019, 11, 5288. [Google Scholar] [CrossRef]
- Ni, W. The Coupling and Coordination Relationship and Their Spatial Pattern of Urban Land Use Economic, Social and Ecological Benefits of Cities in Three Largest Urban Agglomerations in China. Urban Dev. Stud. 2016, 23, 69–77. [Google Scholar]
- Ma, T.; Li, X.; Bai, J.; Ding, S.; Zhou, F.; Cui, B. Four Decades’ Dynamics of Coastal Blue Carbon Storage Driven by Land Use/Land Cover Transformation under Natural and Anthropogenic Processes in the Yellow River Delta, China. Sci. Total Environ. 2019, 655, 741–750. [Google Scholar] [CrossRef] [PubMed]
- Mansour, S.; Al-Belushi, M.; Al-Awadhi, T. Monitoring Land Use and Land Cover Changes in the Mountainous Cities of Oman Using GIS and CA-Markov Modelling Techniques. Land Use Policy 2020, 91, 104414. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, J. Spatial Suitability and Multi-Scenarios for Land Use: Simulation and Policy Insights from the Production-Living-Ecological Perspective. Land Use Policy 2022, 119, 106219. [Google Scholar] [CrossRef]
- Liang, Y.; Hashimoto, S.; Liu, L. Integrated Assessment of Land-Use/Land-Cover Dynamics on Carbon Storage Services in the Loess Plateau of China from 1995 to 2050. Ecol. Indic. 2021, 120, 106939. [Google Scholar] [CrossRef]
- Estoque, R.; Gomi, K.; Togawa, T. Scenario-Based Land Abandonment Projections: Method, Application and Implications. Sci. Total Environ. 2019, 692, 903–916. [Google Scholar] [CrossRef]
- Dong, N.; You, L.; Cai, W.; Li, G.; Lin, H. Land Use Projections in China under Global Socioeconomic and Emission Scenarios: Utilizing a Scenario-Based Land-Use Change Assessment Framework. Glob. Environ. Chang. 2018, 50, 164–177. [Google Scholar] [CrossRef]
- Sang, L.; Zhang, C.; Yang, J.; Zhu, D.; Yun, W. Simulation of Land Use Spatial Pattern of Towns and Villages Based on CA–Markov Model. Math. Comput. Model. 2011, 54, 938–943. [Google Scholar] [CrossRef]
- Hoque, M.; Cui, S.; Islam, I.; Xu, L.; Ding, S. Dynamics of Plantation Forest Development and Ecosystem Carbon Storage Change in Coastal Bangladesh. Ecol. Indic. 2021, 130, 107954. [Google Scholar] [CrossRef]
- Huang, D.; Dong, W.; Wang, Q. Spatial and Temporal Analysis of Human Infection with the Avian Influenza A (H7N9) Virus in China and Research on a Risk Assessment Agent-Based Model. Int. J. Infect. Dis. 2021, 106, 386–394. [Google Scholar] [CrossRef] [PubMed]
- Ni, Y.; Wang, M. The Characteristics and Influencing Factors of Geographical Agglomeration of Forage Industry in China. Econ. Geogr. 2018, 38, 142–150. [Google Scholar]
- Yang, Q.; Liu, Q.; Yin, S.; Zhang, J.; Yang, X.; Gao, Y. Vulnerability and Influencing Factors of Rural Transportation Environment in Qinling-Daba Mountainous Areas: A Case Study of Luonan County in Shaanxi Province. Acta Geogr. Sin. 2019, 74, 1236–1251. [Google Scholar]
- Bao, W.; Yang, Y.; Zou, L. How to Reconcile Land Use Conflicts in Mega Urban Agglomeration? A Scenario-Based Study in the Beijing-Tianjin-Hebei Region, China. J. Environ. Manag. 2021, 296, 113168. [Google Scholar] [CrossRef]
- Rong, Y.; Du, P.; Sun, F.; Zeng, S. Quantitative Analysis of Economic and Environmental Benefits for Land Fallowing Policy in the Beijing-Tianjin-Hebei Region. J. Environ. Manag. 2021, 286, 112234. [Google Scholar] [CrossRef]
- Luo, Y.; Zhou, D.; Tian, Y.; Jiang, G. Spatial and Temporal Characteristics of Different Types of Pollution-Intensive Industries in the Beijing-Tianjin-Hebei Region in China by Using Land Use Data. J. Clean. Prod. 2021, 329, 129601. [Google Scholar] [CrossRef]
- Jiang, X.; Zhai, S.; Liu, H.; Chen, J.; Zhu, Y.; Wang, Z. Multi-Scenario Simulation of Production-Living-Ecological Space and Ecological Effects Based on Shared Socioeconomic Pathways in Zhengzhou, China. Ecol. Indic. 2022, 137, 108750. [Google Scholar] [CrossRef]
- Zhong, S.; Wang, M.; Zhu, Y.; Chen, Z.; Huang, X. Urban Expansion and the Urban–Rural Income Gap: Empirical Evidence from China. Cities 2022, 129, 103831. [Google Scholar] [CrossRef]
- Min, M.; Duan, X.; Yan, W.; Miao, C. Quantitative Simulation of the Relationships between Cultivated Land-Use Patterns and Non-Point Source Pollutant Loads at a Township Scale in Chaohu Lake Basin, China. CATENA 2022, 208, 105776. [Google Scholar] [CrossRef]
Data | Data Attribute | Years | Format/ Resolution | Sources |
---|---|---|---|---|
LULC | Land use and land cover | 1992–2020 | Raster/300 m | https://www.esa-landcover-cci.org (accessed on 19 July 2022). |
Meteorology | Temperature | 2010–2015 | Raster/1000 m | https://data.cma.cn (accessed on 19 July 2022). |
Precipitation | 2010–2015 | Raster/1000 m | https://data.cma.cn (accessed on 19 July 2022). | |
Geography | DEM | 2000 | Raster/30 m | https://earthexplorer.usgs.gov (accessed on 19 July 2022). |
River network | 2015 | Shapefile | http://www.geodata.cn (accessed on 19 July 2022). | |
Social economy | Population GDP Railway network National road Provincial road Municipality directly under the central government point City point County point Settlement point | 2015 | Shapefile | http://www.geodata.cn (accessed on 19 July 2022). |
Land Use Type | Production Function | Living Function | Ecological Function | Dominant Function |
---|---|---|---|---|
Cropland | 5 | 0 | 2 | Production |
Forest | 0 | 0 | 5 | Ecological |
Shrubland | 0 | 0 | 5 | Ecological |
Grassland | 1 | 0 | 5 | Ecological |
Built-up land | 3 | 5 | 0 | Living |
Bareland | 0 | 0 | 1 | Ecological |
Wetland | 0 | 0 | 5 | Ecological |
Water | 0 | 0 | 5 | Ecological |
Value Range | Meaning | Feature |
---|---|---|
Coordinated coupling period | PLESs are highly coupled and PLES functions are in a highly ordered state. | |
Break-in period | Production space, living space, and ecological space are mutually constrained towards orderliness. | |
Antagonistic period | PLES types with a strong position are produced, while other types are weaker. | |
Low coupling period | Production space, living space, and ecological space develop in a disorderly manner with little interaction. |
Value Range | Meaning | Feature |
---|---|---|
High coordination | The coexistence of production space, living space, and ecological space is highly coordinated and can meet the needs of different levels of interest. | |
Moderate coordination | There is a moderate coordination degree among production space, living space, and ecological space. | |
Basic coordination | The gap between the shares of PLESs has narrowed further and is beginning to produce a positive interaction. | |
Moderate imbalance | One type of PLES is still dominant, but the share of other types has increased. | |
Severe imbalance | The dominance of one type of PLES (e.g., living space or production space) squeezes the other spaces. |
Cropland | Forest | Shrubland | Grassland | Built-Up Land | Bareland | Wetland | Water | |
---|---|---|---|---|---|---|---|---|
RMSE | 0.064056 | 0.054236 | 0.032019 | 0.039796 | 0.040792 | 0.034185 | 0.028695 | 0.017367 |
OOB RMSE | 0.171688 | 0.157187 | 0.079088 | 0.108348 | 0.121637 | 0.085938 | 0.085787 | 0.056324 |
Cropland /km2 | Forest /km2 | Shrubland /km2 | Grassland /km2 | Built-Up Land/km2 | Bareland /km2 | Wetland /km2 | Water /km2 | |
---|---|---|---|---|---|---|---|---|
2030 NT | 24,032.80 | 5976.34 | 1126.83 | 6220.04 | 7079.99 | 11.85 | 364.68 | 449.70 |
2030 CP | 24,541.82 | 5971.33 | 1124.58 | 6169.99 | 6629.53 | 11.85 | 364.68 | 448.45 |
2030 EP | 24,032.80 | 6450.46 | 1127.88 | 6220.04 | 6580.99 | 11.85 | 385.65 | 452.55 |
2030NT-2020 | −983.33 | 61.08 | −47.27 | −300.16 | 1350.45 | 0.28 | −56.18 | −24.90 |
2030CP-2020 | −474.31 | 56.08 | −49.52 | −350.21 | 899.99 | 0.28 | −56.18 | −26.15 |
2030EP-2020 | −983.33 | 535.20 | −46.21 | −300.16 | 851.44 | 0.282 | −35.20 | −22.05 |
Type | Year | Moran’s I | Z-Score | p-Value |
---|---|---|---|---|
CD | 1992 | 1.38 | 18.61 | <0.01 |
2000 | 0.17 | 2.47 | <0.01 | |
2010 | 0.13 | 1.95 | <0.05 | |
2020 | 0.50 | 7.03 | <0.01 | |
2030NT | 0.77 | 10.60 | <0.01 | |
2030CP | 0.70 | 9.43 | <0.01 | |
2030EP | 0.41 | 5.66 | <0.01 | |
CCD | 1992 | 1.48 | 19.94 | <0.01 |
2000 | 1.04 | 14.04 | <0.01 | |
2010 | −0.01 | 2.12 | <0.05 | |
2020 | 0.02 | 2.50 | <0.05 | |
2030NT | 1.03 | 13.84 | <0.01 | |
2030CP | −0.05 | 1.96 | <0.05 | |
2030EP | 0.96 | 13.12 | <0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Q.; Yang, D.; Cao, L. Evolution and Prediction of the Coupling Coordination Degree of Production–Living–Ecological Space Based on Land Use Dynamics in the Daqing River Basin, China. Sustainability 2022, 14, 10864. https://doi.org/10.3390/su141710864
Liu Q, Yang D, Cao L. Evolution and Prediction of the Coupling Coordination Degree of Production–Living–Ecological Space Based on Land Use Dynamics in the Daqing River Basin, China. Sustainability. 2022; 14(17):10864. https://doi.org/10.3390/su141710864
Chicago/Turabian StyleLiu, Qing, Dongdong Yang, and Lei Cao. 2022. "Evolution and Prediction of the Coupling Coordination Degree of Production–Living–Ecological Space Based on Land Use Dynamics in the Daqing River Basin, China" Sustainability 14, no. 17: 10864. https://doi.org/10.3390/su141710864