High-Pressure Processing and Natural Antimicrobials Combined Treatments on Bacterial Inactivation in Cured Meat
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Search
2.2. Focus Questions
2.3. Screening, Eligibility Criteria, and Inclusion
- Search component 1 (SC1): cured OR ham
- Search component 2 (SC2): “high hydrostatic pressure” OR “high pressure processing” OR “high pressure”
- Search component 3 (SC3): natural OR antimicrobial OR antioxidant OR extract OR bacteriocin
- Search component 4 (SC4): combined OR combination
2.4. Data Extraction
2.5. Statistical Analysis
2.6. Risk of Bias Assessment
3. Results and Discussion
3.1. Characteristics of Data
3.2. Listeria
3.3. Salmonella
3.4. E. coli O157:H7
3.5. Total Viable Count
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stratakos, A.C.; Linton, M.; Patterson, M.F.; Koidis, A. Effect of High-Pressure Processing on the Shelf Life, Safety and Organoleptic Characteristics of Lasagne Ready Meals during Storage at Refrigeration and Abuse Temperature. Innov. Food Sci. Emerg. Technol. 2015, 30, 1–7. [Google Scholar] [CrossRef]
- Rosario, D.K.A.; Furtado, M.R.; Mutz, Y.S.; Rodrigues, B.L.; Bernardo, Y.A.A.; Baltar, J.D.; Bernardes, P.C.; Estevez, M.; Conte-Junior, C.A. A Chemometric Approach to Establish Underlying Connections between Lipid and Protein Oxidation and Instrumental Color and Texture Characteristics in Brazilian Dry-Cured Loin. Foods 2020, 9, 536. [Google Scholar] [CrossRef] [PubMed]
- Cobos, Á.; Díaz, O. Chemical Composition of Meat and Meat Products. In Handbook of Food Chemistry; Cheung, P.C.K., Mehta, B.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 471–510. ISBN 978-3-642-36605-5. [Google Scholar]
- Zhou, C.; Xia, Q.; Du, L.; He, J.; Sun, Y.; Dang, Y.; Geng, F.; Pan, D.; Cao, J.; Zhou, G. Recent Developments in Off-Odor Formation Mechanism and the Potential Regulation by Starter Cultures in Dry-Cured Ham. Crit. Rev. Food Sci. Nutr. 2022, 2020, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Mutz, Y.S.; Kaic Alves Rosario, D.; Alves de Aguiar Bernardo, Y.; Paulo Vieira, C.; Vilela Pinto Moreira, R.; Bernardes, P.C.; Conte-Junior, C.A. Unravelling the Relation between Natural Microbiota and Biogenic Amines in Brazilian Dry-Cured Loin: A Chemometric Approach. Int. J. Food Sci. Technol. 2022, 57, 1621–1629. [Google Scholar] [CrossRef]
- Flores, M.; Toldrá, F. Chemistry, Safety, and Regulatory Considerations in the Use of Nitrite and Nitrate from Natural Origin in Meat Products—Invited Review. Meat Sci. 2021, 171, 108272. [Google Scholar] [CrossRef] [PubMed]
- Mutz, Y.S.; Rosario, D.K.A.; Paschoalin, V.M.F.; Conte-Junior, C.A. Salmonella enterica: A Hidden Risk for Dry-Cured Meat Consumption? Crit. Rev. Food Sci. Nutr. 2020, 60, 976–990. [Google Scholar] [CrossRef]
- Possas, A.; Pérez-Rodríguez, F.; Valero, A.; García-Gimeno, R.M. Modelling the Inactivation of Listeria monocytogenes by High Hydrostatic Pressure Processing in Foods: A Review. Trends Food Sci. Technol. 2017, 70, 45–55. [Google Scholar] [CrossRef]
- Rosario, D.K.A.; Rodrigues, B.L.; Bernardes, P.C.; Conte-Junior, C.A. Principles and Applications of Non-Thermal Technologies and Alternative Chemical Compounds in Meat and Fish. Crit. Rev. Food Sci. Nutr. 2021, 61, 1163–1183. [Google Scholar] [CrossRef]
- Campus, M. High Pressure Processing of Meat, Meat Products and Seafood. Food Eng. Rev. 2010, 2, 256–273. [Google Scholar] [CrossRef]
- Adamcová, M.; van Andel, V.; Strohalm, J.; Houška, M.; Ševčík, R. Effect of High-Pressure Processing and Natural Antimicrobials on the Shelf-Life of Cooked Ham. Czech J. Food Sci. 2019, 37, 57–61. [Google Scholar] [CrossRef] [Green Version]
- de Alba, M.; Bravo, D.; Medina, M. Inactivation of Listeria monocytogenes and Salmonella enteritidis in Dry-Cured Ham by Combined Treatments of High Pressure and the Lactoperoxidase System or Lactoferrin. Innov. Food Sci. Emerg. Technol. 2015, 31, 54–59. [Google Scholar] [CrossRef]
- Pérez-Baltar, A.; Serrano, A.; Bravo, D.; Montiel, R.; Medina, M. Combined Effect of High Pressure Processing with Enterocins or Thymol on the Inactivation of Listeria monocytogenes and the Characteristics of Sliced Dry-Cured Ham. Food Bioprocess. Technol. 2019, 12, 288–297. [Google Scholar] [CrossRef]
- Teixeira, J.S.; Repková, L.; Gänzle, M.G.; McMullen, L.M. Effect of Pressure, Reconstituted RTE Meat Microbiota, and Antimicrobials on Survival and Post-Pressure Growth of Listeria monocytogenes on Ham. Front. Microbiol. 2018, 9, 1979. [Google Scholar] [CrossRef]
- Dallagnol, A.M.; Barrio, Y.; Cap, M.; Szerman, N.; Castellano, P.; Vaudagna, S.R.; Vignolo, G. Listeria Inactivation by the Combination of High Hydrostatic Pressure and Lactocin AL705 on Cured-Cooked Pork Loin Slices. Food Bioprocess. Technol. 2017, 10, 1824–1833. [Google Scholar] [CrossRef]
- Yamamoto, K. Food Processing by High Hydrostatic Pressure. Biosci. Biotechnol. Biochem. 2017, 81, 672–679. [Google Scholar] [CrossRef] [Green Version]
- Yuste, J.; Capellas, M.; Pla, R.; Fung, D.Y.; Mor-Mur, M. High Pressure Processing for Food Safety and Preservation: A Review. J. Rapid Methods Autom. Microbiol. 2001, 9, 1–10. [Google Scholar] [CrossRef]
- Knorr, D. Advantages, Opportunities and Challenges of High Hydrostatic Pressure Application to Food Systems. In Progress in Biotechnology; Hayashi, R., Balny, C., Eds.; High Pressure Bioscience and Biotechnology; Elsevier: Amsterdam, The Netherlands, 1996; Volume 13, pp. 279–287. [Google Scholar]
- Grant, A.; Parveen, S. All Natural and Clean-Label Preservatives and Antimicrobial Agents Used during Poultry Processing and Packaging. J. Food Prot. 2017, 80, 540–544. [Google Scholar] [CrossRef]
- Tiwari, B.K.; Valdramidis, V.P.; O’ Donnell, C.P.; Muthukumarappan, K.; Bourke, P.; Cullen, P.J. Application of Natural Antimicrobials for Food Preservation. J. Agric. Food Chem. 2009, 57, 5987–6000. [Google Scholar] [CrossRef] [Green Version]
- Raybaudi-Massilia, R.M.; Mosqueda-Melgar, J.; Soliva-Fortuny, R.; Martín-Belloso, O. Control of Pathogenic and Spoilage Microorganisms in Fresh-Cut Fruits and Fruit Juices by Traditional and Alternative Natural Antimicrobials. Compr. Rev. Food Sci. Food Saf. 2009, 8, 157–180. [Google Scholar] [CrossRef]
- Saeed, F.; Afzaal, M.; Tufail, T.; Ahmad, A. Use of Natural Antimicrobial Agents: A Safe Preservation Approach. Active Antimicrobial Food Packaging; IntechOpen: London, UK, 2019; Chapter 2; p. 18. [Google Scholar]
- Pisoschi, A.M.; Pop, A.; Georgescu, C.; Turcuş, V.; Olah, N.K.; Mathe, E. An Overview of Natural Antimicrobials Role in Food. Eur. J. Med. Chem. 2018, 143, 922–935. [Google Scholar] [CrossRef]
- Jofré, A.; Aymerich, T.; Garriga, M. Assessment of the Effectiveness of Antimicrobial Packaging Combined with High Pressure to Control Salmonella Sp. in Cooked Ham. Food Control 2008, 19, 634–638. [Google Scholar] [CrossRef]
- Simons, A.; Alhanout, K.; Duval, R.E. Bacteriocins, Antimicrobial Peptides from Bacterial Origin: Overview of Their Biology and Their Impact against Multidrug-Resistant Bacteria. Microorganisms 2020, 8, 639. [Google Scholar] [CrossRef] [PubMed]
- Beya, M.M.; Netzel, M.E.; Sultanbawa, Y.; Smyth, H.; Hoffman, L.C. Plant-based Phenolic Molecules as Natural Preservatives in Comminuted Meats: A Review. Antioxidants 2021, 10, 263. [Google Scholar] [CrossRef] [PubMed]
- da Silva, B.D.; do Rosário, D.K.A.; Weitz, D.A.; Conte-Junior, C.A. Essential Oil Nanoemulsions: Properties, Development, and Application in Meat and Meat Products. Trends Food Sci. Technol. 2022, 121, 1–13. [Google Scholar] [CrossRef]
- Oliveira, T.L.C.; Ramos, A.L.S.; Ramos, E.M.; Piccoli, R.H.; Cristianini, M. Natural Antimicrobials as Additional Hurdles to Preservation of Foods by High Pressure Processing. Trends Food Sci. Technol. 2015, 45, 60–85. [Google Scholar] [CrossRef]
- Khan, I.; Tango, C.N.; Miskeen, S.; Lee, B.H.; Oh, D.-H. Hurdle Technology: A Novel Approach for Enhanced Food Quality and Safety—A Review. Food Control 2017, 73, 1426–1444. [Google Scholar] [CrossRef]
- Singla, M.; Sit, N. Application of Ultrasound in Combination with Other Technologies in Food Processing: A Review. Ultrason. Sonochemistry 2021, 73, 105506. [Google Scholar] [CrossRef]
- Mikš-Krajnik, M.; James Feng, L.X.; Bang, W.S.; Yuk, H.-G. Inactivation of Listeria monocytogenes and Natural Microbiota on Raw Salmon Fillets Using Acidic Electrolyzed Water, Ultraviolet Light or/and Ultrasounds. Food Control 2017, 74, 54–60. [Google Scholar] [CrossRef]
- Rosario, D.K.A.; Bernardo, Y.A.A.; Mutz, Y.S.; Tiwari, B.; Rajkovic, A.; Bernardes, P.C.; Conte-Junior, C.A. Modelling Inactivation of Staphylococcus Spp. on Sliced Brazilian Dry-Cured Loin with Thermosonication and Peracetic Acid Combined Treatment. Int. J. Food Microbiol. 2019, 309, 108328. [Google Scholar] [CrossRef]
- Moher, D.; Shamseer, L.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A.; PRISMA-P Group. Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols (PRISMA-P) 2015 Statement. Syst. Rev. 2015, 4, 1. [Google Scholar] [CrossRef] [Green Version]
- Fabbri, S.; Camargo, P.F.; Hernandes, E.M.; Thommazo, A.D.; Belgamo, A.; Zamboni, A.; Silva, C. Managing Literature Reviews Information through Visualization. In Proceedings of the Proceedings of the 14th Inter-national Conference on Enterprise Information Systems, Online Streaming, 25–27 April 2022; SciTePress—Science and and Technology Publications; Springer: Berlin/Heidelberg, Germany, 2012; pp. 36–45. [Google Scholar]
- Carvalho, A.P.A.; Conte Junior, C.A. Green Strategies for Active Food Packagings: A Systematic Review on Active Properties of Graphene-Based Nanomaterials and Biodegradable Polymers. Trends Food Sci. Technol. 2020, 103, 130–143. [Google Scholar] [CrossRef]
- de Alba, M.; Bravo, D.; Medina, M. Inactivation of Escherichia coli O157:H7 in Dry-Cured Ham by High-Pressure Treatments Combined with Biopreservatives. Food Control 2013, 31, 508–513. [Google Scholar] [CrossRef]
- Amaro-Blanco, G.; Delgado-Adámez, J.; Martín, M.J.; Ramírez, R. Active Packaging Using an Olive Leaf Extract and High Pressure Processing for the Preservation of Sliced Dry-Cured Shoulders from Iberian Pigs. Innov. Food Sci. Emerg. Technol. 2018, 45, 1–9. [Google Scholar] [CrossRef]
- Aymerich, T.; Jofré, A.; Garriga, M.; Hugas, M. Inhibition of Listeria monocytogenes and Salmonella by Natural Antimicrobials and High Hydrostatic Pressure in Sliced Cooked Ham. J. Food Prot. 2005, 68, 173–177. [Google Scholar] [CrossRef]
- Bravo, D.; de Alba, M.; Medina, M. Combined Treatments of High-Pressure with the Lactoperoxidase System or Lactoferrin on the Inactivation of Listeria monocytogenes, Salmonella enteritidis and Escherichia coli O157:H7 in Beef Carpaccio. Food Microbiol. 2014, 41, 27–32. [Google Scholar] [CrossRef]
- Hereu, A.; Bover-Cid, S.; Garriga, M.; Aymerich, T. High Hydrostatic Pressure and Biopreservation of Dry-Cured Ham to Meet the Food Safety Objectives for Listeria monocytogenes. Int. J. Food Microbiol. 2012, 154, 107–112. [Google Scholar] [CrossRef]
- Jofré, A.; Garriga, M.; Aymerich, T. Inhibition of Listeria monocytogenes in Cooked Ham through Active Packaging with Natural Antimicrobials and High-Pressure Processing. J. Food Prot. 2007, 70, 2498–2502. [Google Scholar] [CrossRef]
- Jofré, A.; Garriga, M.; Aymerich, T. Inhibition of Salmonella Sp. Listeria monocytogenes and Staphylococcus aureus in Cooked Ham by Combining Antimicrobials, High Hydrostatic Pressure and Refrigeration. Meat Sci. 2008, 78, 53–59. [Google Scholar] [CrossRef]
- Marcos, B.; Aymerich, T.; Monfort, J.M.; Garriga, M. High-Pressure Processing and Antimicrobial Biodegradable Packaging to Control Listeria monocytogenes during Storage of Cooked Ham. Food Microbiol. 2008, 25, 177–182. [Google Scholar] [CrossRef] [Green Version]
- Marcos, B.; Jofré, A.; Aymerich, T.; Monfort, J.M.; Garriga, M. Combined Effect of Natural Antimicrobials and High Pressure Processing to Prevent Listeria monocytogenes Growth after a Cold Chain Break during Storage of Cooked Ham. Food Control 2008, 19, 76–81. [Google Scholar] [CrossRef] [Green Version]
- Martillanes, S.; Rocha-Pimienta, J.; Ramírez, R.; García-Parra, J.; Delgado-Adámez, J. Effect of an Active Packaging with Rice Bran Extract and High-Pressure Processing on the Preservation of Sliced Dry-Cured Ham from Iberian Pigs. LWT 2021, 151, 112128. [Google Scholar] [CrossRef]
- Montiel, R.; Martín-Cabrejas, I.; Medina, M. Reuterin, Lactoperoxidase, Lactoferrin and High Hydrostatic Pressure on the Inactivation of Food-Borne Pathogens in Cooked Ham. Food Control 2015, 51, 122–128. [Google Scholar] [CrossRef]
- Montiel, R.; Martín-Cabrejas, I.; Peirotén, Á.; Medina, M. Reuterin, Lactoperoxidase, Lactoferrin and High Hydrostatic Pressure Treatments on the Characteristics of Cooked Ham. Innov. Food Sci. Emerg. Technol. 2016, 35, 111–118. [Google Scholar] [CrossRef]
- de Oliveira, T.L.C.; Junior, B.R.d.C.L.; Ramos, A.L.S.; Ramos, E.M.; Piccoli, R.H.; Cristianini, M. Phenolic Carvacrol as a Natural Additive to Improve the Preservative Effects of High Pressure Processing of Low-Sodium Sliced Vacuum-Packed Turkey Breast Ham. LWT Food Sci. Technol. 2015, 64, 1297–1308. [Google Scholar] [CrossRef]
- Pavli, F.; Argyri, A.A.; Skandamis, P.; Nychas, G.-J.; Tassou, C.; Chorianopoulos, N. Antimicrobial Activity of Oregano Essential Oil Incorporated in Sodium Alginate Edible Films: Control of Listeria monocytogenes and Spoilage in Ham Slices Treated with High Pressure Processing. Materials 2019, 12, 3726. [Google Scholar] [CrossRef] [Green Version]
- Vercammen, A.; Vanoirbeek, K.G.A.; Lurquin, I.; Steen, L.; Goemaere, O.; Szczepaniak, S.; Paelinck, H.; Hendrickx, M.E.G.; Michiels, C.W. Shelf-Life Extension of Cooked Ham Model Product by High Hydrostatic Pressure and Natural Preservatives. Innov. Food Sci. Emerg. Technol. 2011, 12, 407–415. [Google Scholar] [CrossRef]
- Modugno, C.; Loupiac, C.; Bernard, A.; Jossier, A.; Neiers, F.; Perrier-Cornet, J.-M.; Simonin, H. Effect of High Pressure on the Antimicrobial Activity and Secondary Structure of the Bacteriocin Nisin. Innov. Food Sci. Emerg. Technol. 2018, 47, 9–15. [Google Scholar] [CrossRef]
- Serra-Castelló, C.; Jofré, A.; Belletti, N.; Garriga, M.; Bover-Cid, S. Modelling the Piezo-Protection Effect Exerted by Lactate on the High Pressure Resistance of Listeria monocytogenes in Cooked Ham. Food Res. Int. 2021, 140, 110003. [Google Scholar] [CrossRef]
- Wemekamp-Kamphuis, H.H.; Karatzas, A.K.; Wouters, J.A.; Abee, T. Enhanced Levels of Cold Shock Proteins in Listeria monocytogenes LO28 upon Exposure to Low Temperature and High Hydrostatic Pressure. Appl. Environ. Microbiol. 2002, 68, 456–463. [Google Scholar] [CrossRef] [Green Version]
- da Silva, B.D.; Bernardes, P.C.; Pinheiro, P.F.; Fantuzzi, E.; Roberto, C.D. Chemical Composition, Extraction Sources and Action Mechanisms of Essential Oils: Natural Preservative and Limitations of Use in Meat Products. Meat Sci. 2021, 176, 108463. [Google Scholar] [CrossRef]
- Levy, R.; Okun, Z.; Shpigelman, A. High-Pressure Homogenization: Principles and Applications Beyond Microbial Inactivation. Food Eng Rev 2021, 13, 490–508. [Google Scholar] [CrossRef]
- Chakraborty, S.; Kaushik, N.; Rao, P.S.; Mishra, H.N. High-Pressure Inactivation of Enzymes: A Review on Its Recent Applications on Fruit Purees and Juices. Compr. Rev. Food Sci. Food Saf. 2014, 13, 578–596. [Google Scholar] [CrossRef] [PubMed]
- Malhotra, B.; Keshwani, A.; Kharkwal, H. Antimicrobial Food Packaging: Potential and Pitfalls. Front. Microbiol. 2015, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Syed, Q.-A.; Buffa, M.; Guamis, B.; Saldo, J. Factors Affecting Bacterial Inactivation during High Hydrostatic Pressure Processing of Foods: A Review. Crit. Rev. Food Sci. Nutr. 2016, 56, 474–483. [Google Scholar] [CrossRef] [PubMed]
- Serra-Castelló, C.; Ferrocino, I.; Jofré, A.; Cocolin, L.; Bover-Cid, S.; Rantsiou, K. Unravelling the Molecular Mechanisms Underlying the Protective Effect of Lactate on the High-Pressure Resistance of Listeria monocytogenes. Biomolecules 2021, 11, 677. [Google Scholar] [CrossRef]
Step in Prisma | Inclusion Criteria | Exclusion Criteria | In the Basis |
---|---|---|---|
Screening |
|
| Title, abstract and keywords |
Eligibility |
| - | Full-text reading |
Paper (Number of Studies) | Meat Product | Pressure (MPa) | Antimicrobial | Application Method | Antimicrobial Origin | Microorganism |
---|---|---|---|---|---|---|
Alba et al. [36] (4) | Dry-cured ham | 400 MPa for 10 min and 500 Mpa for 10 min | Nisin 100 IU/g and Pediocin 6 mg/g | Spread onto the surface | Bacterial | E. coli O157:H7 (CECT 4972) |
Alba et al. [12] (6) | Dry-cured ham | 450 MPa for 10 min | Lactoperoxidase 2.8 ABTS U/g and Lactoferrin 1 mg/g | Spread onto the surface | Animal | Listeria monocytogenes (H66a), Salmonella Enteritidis (CECT 4155, CECT 4300, and CECT 4396) and total viable counts |
Amaro-Blanco et al. [37] (3) | Iberian pigs dry-cured shoulder | 600 MPa for 7 min | Olive leaf extract 0.5 mL | Active packaging | Plant | Total viable counts |
Aymerich et al. [38] (4) | Cooked ham | 400 MPa for 10 min | Nisin 800 AU/g and Potassium lactate 0.18 mg/g | Incorporated into the product | Bacterial | Listeria monocytogenes (CTC1010, CTC1011, and CTC1034) |
Bravo et al. [39] (12) | Cured beef carpaccio | 450 MPa for 5 min | Lactoperoxidase 2.8 ABTS U/g and Lactoferrin 1 mg/g | Spread onto the surface | Animal | Listeria monocytogenes (H66a), Salmonella Enteritidis (CECT 4155, CECT 4300, and CECT 4396,) and E. coli O157:H7 (CECT 4972) |
Dallagnol et al. [15] (6) | Cured-cooked pork loin | 400 MPa for 5 min and 600 MPa for 5 min | Lactocin AL705 105 AU/mL | Spread onto the surface | Bacterial | Listeria innocua (7) and Total viable counts |
Hereu et al. [40] (4) | Dry-cured ham (Aw 0.92 and 0.88) | 600 MPa for 5 min | Nisin 200 AU/cm2 | Spread onto the surface and active packaging | Bacterial | Listeria monocytogenes (CTC1034) |
Jofré et al. [41] (7) | Cooked ham | 400 MPa for 10 min | Enterocins 200 AU/cm2, Enterocins 2000 AU/cm2, Nisin 200 AU/cm2, Potassium Lactate 18 mg/g, Sakacin 200 AU/cm2, Sakacin 2000 AU/cm2, Nisin + Potassium Lactate 200 AU/cm2 + 18 mg/g. | Active packaging | Bacterial | Listeria monocytogenes (CTC1010, CTC1011, and CTC1034) |
Jofré et al. [24] (7) | Cooked ham | 400 MPa for 10 min | Enterocins 200 AU/cm2, Enterocins 2000 AU/cm2, Nisin 200 AU/cm2, Potassium Lactate 18 mg/g, Sakacin 200 AU/cm2, Sakacin 2000 AU/cm2, Nisin + Potassium Lactate 200 AU/cm2 + 18 mg/g | Active packaging | Bacterial | Salmonella London (CTC1003), Schwarzengrund (CTC1015) and Derby (CTC1022) |
Jofré et al. [42] (9) | Cooked ham | 600 MPa for 5 min | Nisin 200 AU/g, Potassium Lactate 18 mg/g, Nisin + Potassium Lactate 200 AU/g + 18 mg/g | Incorporated into the product | Bacterial | Salmonella London (CTC1003), Salmonella Schwarzengrund (CTC1015), Salmonella Derby (CTC1022), Listeria monocytogenes (CTC1010, CTC1011 and CTC1034) |
Marcos et al. [43] (2) | Cooked ham | 400 MPa for 10 min | Enterocins 2000 AU/cm2 | Active packaging | Bacterial | Listeria monocytogenes (CTC1010, CTC1011, and CTC1034) |
Marcos et al. [44] (4) | Cooked ham | 400 MPa for 10 min | Enterocins 2400 AU/g, Potassium Lactate + Sodium diacetate 14 mg/g + 1 mg/g | Incorporated into the product | Bacterial | Listeria monocytogenes (CTC1010, CTC1011, and CTC1034) |
Martillanes et al. [45] (4) | Dry-cured ham | 600 MPa for 7 min | Rice bran extract/0.3 g | Active packaging | Plant | Total viable counts |
Montiel et al. [46] (18) | Cooked ham | 450 MPa for 5 min | Lactoperoxidase 2.8 ABTS U/g, Lactoferrin 1 mg/g, Reuterin 16 mM | Spread onto the surface | Animal and bacterial | Salmonella Enteritidis (CECT 4155, CECT 4300 and CECT 4396), Listeria monocytogenes (2530), E. coli O157:H7 (CECT 4972) |
Montiel et al. [47] (6) | Cooked ham | 450 MPa for 5 min | Lactoperoxidase 2.8 ABTS U/g, Lactoferrin 1 mg/g, Reuterin 16 mM | Spread onto the surface | Animal and bacterial | Total viable counts |
Oliveira et al. [48] (3) | Salt-reduced turkey breast ham | 600 MPa for 3 min | Phenolic carvacrol 0.2 mg/g | Incorporated into the product | Plant | Listeria innocua 6a (ATCC 33090) |
Pavli et al. [49] (4) | Cooked ham | 500 MPa for 2 min | Oregano essencial oil 20 g/L | Active packaging | Plant | Listeria monocytogenes (FMCC-B-129, FMCC-B-131 and FMCC-B-133,) Total viable counts |
Pérez-Baltar et al. [13] (8) | Dry-cured ham | 450 MPa for 10 min | Enterocins 1054 AU/g and Thymol/1.25 mg/g | Spread onto the surface | Bacterial and plant | Listeria monocytogenes 1/2a (S2), 1/2b (S4-2), 1/2c (S12-1), 4b (S7-2) and total viable counts |
Teixeira et al. [14] (8) | Cooked ham | 500 MPa for 3 min and 500 MPa for 1 min | Nisin 0.05 μg/cm2 and Rosemary extract 325 μg/cm2 | Spread onto the surface | Bacterial and plant | Listeria monocytogenes (FSL J1-177, FSL C1-056, FSL N3-013, FSL R2-499, and FSL N1-227) |
Vercammen et al. [50] (4) | Cooked ham | 600 MPa for 10 min | Caprylic acid 1.5 mg/g and Sodium lactate (Purasal) 25 mg/g | Incorporated into the product | Plant and Bacterial | Total viable counts |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melhem, L.C.d.M.; Do Rosario, D.K.A.; Monteiro, M.L.G.; Conte-Junior, C.A. High-Pressure Processing and Natural Antimicrobials Combined Treatments on Bacterial Inactivation in Cured Meat. Sustainability 2022, 14, 10503. https://doi.org/10.3390/su141710503
Melhem LCdM, Do Rosario DKA, Monteiro MLG, Conte-Junior CA. High-Pressure Processing and Natural Antimicrobials Combined Treatments on Bacterial Inactivation in Cured Meat. Sustainability. 2022; 14(17):10503. https://doi.org/10.3390/su141710503
Chicago/Turabian StyleMelhem, Luiza Cecilia de Moraes, Denes Kaic Alves Do Rosario, Maria Lúcia Guerra Monteiro, and Carlos Adam Conte-Junior. 2022. "High-Pressure Processing and Natural Antimicrobials Combined Treatments on Bacterial Inactivation in Cured Meat" Sustainability 14, no. 17: 10503. https://doi.org/10.3390/su141710503
APA StyleMelhem, L. C. d. M., Do Rosario, D. K. A., Monteiro, M. L. G., & Conte-Junior, C. A. (2022). High-Pressure Processing and Natural Antimicrobials Combined Treatments on Bacterial Inactivation in Cured Meat. Sustainability, 14(17), 10503. https://doi.org/10.3390/su141710503