Barriers to the Sustainable Implementation of Environmentally Conscious Manufacturing: A Contextual-Based Interpretive Structural Model
Abstract
:1. Introduction
2. Literature Review
2.1. Environmentally Conscious Manufacturing and Product Recovery (ECMPRO)
2.2. Interpretive Structural Modeling (ISM) and Barriers to Environmentally Conscious Manufacturing (ECM)
3. Materials and Methods
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Expert Number | Qualification | Occupation | Years of Experience | Country |
---|---|---|---|---|
1 | Ph.D. | Academic | 28 | USA |
2 | Ph.D. | Academic | 24 | UK |
3 | Ph.D. | Academic | 22 | Denmark |
4 | Ph.D. | Academic | 20 | Sweden |
5 | Ph.D. | Environment Expert | 19 | USA |
6 | Ph.D. | Environment Expert | 18 | USA |
7 | Ph.D. | Manufacturing Expert | 16 | USA |
8 | Ph.D. | Environment Expert | 15 | USA |
9 | Ph.D. | Manufacturing Expert | 15 | USA |
10 | Ph.D. | Environment Expert | 15 | USA |
11 | Ph.D. | Environment Expert | 15 | Japan |
12 | Ph.D. | Manufacturing Expert | 15 | China |
13 | M.Sc. | Manufacturing Expert | 14 | China |
14 | M.Sc. | Manufacturing Expert | 14 | China |
15 | M.Sc. | Environment Expert | 14 | Korea |
16 | M.Sc. | Academic | 14 | Japan |
17 | M.Sc. | Academic | 14 | Korea |
18 | M.Sc. | Academic | 14 | UK |
19 | M.Sc. | Academic | 14 | Japan |
20 | M.Sc. | Manufacturing Expert | 13 | UK |
21 | M.Sc. | Environment Expert | 13 | China |
22 | M.Sc. | Academic | 13 | Australia |
23 | B.Sc. | Academic | 13 | India |
24 | B.Sc. | Environment Expert | 9 | India |
25 | B.Sc. | Environment Expert | 8 | India |
References
- Güngör, A.; Gupta, S.M. Disassembly line in product recovery. Int. J. Prod. Res. 2002, 40, 2569–2589. [Google Scholar] [CrossRef]
- Laili, Y.; Wang, Y.; Fang, Y.; Pham, D.T. Robotic Disassembly for Remanufacturing. In Optimisation of Robotic Disassembly for Remanufacturing; Springer: Cham, Switzerland, 2022; pp. 7–25. [Google Scholar]
- Gungor, A.; Gupta, S.M. Issues in environmentally conscious manufacturing and product recovery: A survey. Comput. Ind. Eng. 1999, 36, 811–853. [Google Scholar] [CrossRef]
- Gupta, S.M.; Lambert, A.F. Environment Conscious Manufacturing; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Ilgin, M.A.; Gupta, S.M. Environmentally conscious manufacturing and product recovery (ECMPRO): A review of the state of the art. J. Environ. Manag. 2010, 91, 563–591. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Zhao, Q.; Zhao, X.; Tang, L. On the introduction of green product to a market with environmentally conscious consumers. Comput. Ind. Eng. 2020, 139, 106190. [Google Scholar] [CrossRef]
- Ilgin, M.A.; Gupta, S.M. Remanufacturing Modeling and Analysis; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Wang, Z.; Wang, Y.; Liu, Z.; Cheng, J.; Chen, X. Strategic management of product recovery and its environmental impact. Int. J. Prod. Res. 2021, 59, 6104–6124. [Google Scholar] [CrossRef]
- Alvial-Hein, G.; Mahandra, H.; Ghahreman, A. Separation and recovery of cobalt and nickel from end of life products via solvent extraction technique: A review. J. Clean. Prod. 2021, 297, 126592. [Google Scholar] [CrossRef]
- Moyer, L.K.; Gupta, S.M. Environmental concerns and recycling/disassembly efforts in the electronics industry. J. Electron. Manuf. 1997, 7, 1–22. [Google Scholar] [CrossRef]
- Gupta, S.M. Reverse Supply Chains: Issues and Analysis; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Ilgin, M.A.; Gupta, S.M.; Battaïa, O. Use of MCDM techniques in environmentally conscious manufacturing and product recovery: State of the art. J. Manuf. Syst. 2015, 37, 746–758. [Google Scholar] [CrossRef]
- Santos, A.G.; de Albuquerque, T.L.; Ribeiro, B.D.; Coelho, M.A.Z. In situ product recovery techniques aiming to obtain biotechnological products: A glance to current knowledge. Biotechnol. Appl. Biochem. 2021, 68, 1044–1057. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, N.N.R.; Ang, W.L.; Teow, Y.H.; Mohammad, A.W.; Hilal, N. Nanofiltration membrane processes for water recycling, reuse and product recovery within various industries: A review. J. Water Process Eng. 2022, 45, 102478. [Google Scholar] [CrossRef]
- Lambert, A.F.; Gupta, S.M. Disassembly Modeling for Assembly, Maintenance, Reuse and Recycling; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Okorie, O.; Obi, M.; Russell, J.; Charnley, F.; Salonitis, K. A triple bottom line examination of product cannibalisation and remanufacturing: A review and research agenda. Sustain. Prod. Consum. 2021, 27, 958–974. [Google Scholar] [CrossRef]
- Nwankpa, C.; Eze, S.; Ijomah, W.; Gachagan, A.; Marshall, S. Achieving remanufacturing inspection using deep learning. J. Remanuf. 2021, 11, 89–105. [Google Scholar] [CrossRef]
- Akbar, K.; Jin, Y.; Salam, S. Barriers to environmentally-conscious manufacturing innovation. Hum. Syst. Manag. 2018, 37, 453–462. [Google Scholar] [CrossRef]
- Karuppiah, K.; Sankaranarayanan, B.; Ali, S.M.; Chowdhury, P.; Paul, S.K. An integrated approach to modeling the barriers in implementing green manufacturing practices in SMEs. J. Clean. Prod. 2020, 265, 121737. [Google Scholar] [CrossRef]
- Luken, R.; Van Rompaey, F. Drivers for and barriers to environmentally sound technology adoption by manufacturing plants in nine developing countries. J. Clean. Prod. 2008, 16, S67–S77. [Google Scholar] [CrossRef]
- Ma, L.; Song, W.; Zhou, Y. Modeling enablers of environmentally conscious manufacturing strategy: An integrated method. Sustainability 2018, 10, 2284. [Google Scholar] [CrossRef]
- Yang, M.; Movahedipour, M.; Zeng, J.; Xiaoguang, Z.; Wang, L. Analysis of success factors to implement sustainable supply chain management using interpretive structural modeling technique: A real case perspective. Math. Probl. Eng. 2017, 2017, 7274565. [Google Scholar] [CrossRef]
- Raut, R.D.; Narkhede, B.; Gardas, B.B. To identify the critical success factors of sustainable supply chain management practices in the context of oil and gas industries: ISM approach. Renew. Sustain. Energy Rev. 2017, 68, 33–47. [Google Scholar] [CrossRef]
- Malek, J.; Desai, T.N. Prioritization of sustainable manufacturing barriers using Best Worst Method. J. Clean. Prod. 2019, 226, 589–600. [Google Scholar] [CrossRef]
- Mittal, V.K.; Sangwan, K.S.; Herrmann, C.; Egede, P.; Wulbusch, C. Drivers and barriers of environmentally conscious manufacturing: A comparative study of Indian and German organizations. In Leveraging Technology for A Sustainable World; Springer: Berlin/Heidelberg, Germany, 2012; pp. 97–102. [Google Scholar]
- Mittal, V.K.; Sangwan, K.S. Development of a model of barriers to environmentally conscious manufacturing implementation. Int. J. Prod. Res. 2014, 52, 584–594. [Google Scholar] [CrossRef]
- Mittal, V.K.; Sangwan, K.S. Fuzzy TOPSIS method for ranking barriers to environmentally conscious manufacturing implementation: Government, industry and expert perspectives. Int. J. Environ. Technol. Manag. 2014, 17, 57–82. [Google Scholar] [CrossRef]
- Sushil, S. Interpreting the interpretive structural model. Glob. J. Flex. Syst. Manag. 2012, 13, 87–106. [Google Scholar] [CrossRef]
- Sarkis, J.; Hasan, M.A.; Shankar, R. Evaluating environmentally conscious manufacturing barriers with interpretive structural modeling. In Proceedings of the Environmentally Conscious Manufacturing VI, Boston, MA, USA, 11 October 2006; pp. 68–76. [Google Scholar]
- Luthra, S.; Kumar, V.; Kumar, S.; Haleem, A. Barriers to implement green supply chain management in automobile industry using interpretive structural modeling technique: An Indian perspective. J. Ind. Eng. Manag. 2011, 4, 231–257. [Google Scholar] [CrossRef]
- Mittal, V.K.; Sangwan, K.S. Assessment of hierarchy and inter-relationships of barriers to environmentally conscious manufacturing adoption. World J. Sci. Technol. Sustain. Dev. 2013, 10, 297–307. [Google Scholar] [CrossRef]
- Waqas, M.; Qianli, D.; Ahmad, N.; Zhu, Y.; Nadeem, M. Modeling reverse logistics barriers in manufacturing industry of Pakistan: An ISM and MICMAC approach. J. Adv. Manuf. Syst. 2020, 19, 309–341. [Google Scholar] [CrossRef]
- Singhal, D.; Tripathy, S.; Jena, S.K. Sustainability through remanufacturing of e-waste: Examination of critical factors in the Indian context. Sustain. Prod. Consum. 2019, 20, 128–139. [Google Scholar] [CrossRef]
- Sawhney, A. Striving towards a circular economy: Climate policy and renewable energy in India. Clean Technol. Environ. Policy 2021, 23, 491–499. [Google Scholar] [CrossRef]
- Gandhi, N.S.; Thanki, S.J.; Thakkar, J.J. Ranking of drivers for integrated lean-green manufacturing for Indian manufacturing SMEs. J. Clean. Prod. 2018, 171, 675–689. [Google Scholar] [CrossRef]
- Dhull, S.; Narwal, M. Prioritizing the drivers of green supply chain management in Indian manufacturing industries using fuzzy TOPSIS method: Government, industry, environment, and public perspectives. Process Integr. Optim. Sustain. 2018, 2, 47–60. [Google Scholar] [CrossRef]
- Wu, Y.; Hu, Y.; Lin, X.; Li, L.; Ke, Y. Identifying and analyzing barriers to offshore wind power development in China using the grey decision-making trial and evaluation laboratory approach. J. Clean. Prod. 2018, 189, 853–863. [Google Scholar] [CrossRef]
- Al-Maskari, A.; Al-Maskari, M.; Alqanoobi, M.; Kunjumuhammed, S. Internal and external obstacles facing medium and large enterprises in Rusayl Industrial Estates in the Sultanate of Oman. J. Glob. Entrep. Res. 2019, 9, 1. [Google Scholar] [CrossRef]
- Jones, P.; Hillier, D.; Comfort, D. Shopping for tomorrow: Promoting sustainable consumption within food stores. Br. Food J. 2011, 113, 935–948. [Google Scholar] [CrossRef]
- Luthra, S.; Garg, D.; Haleem, A. Critical success factors of green supply chain management for achieving sustainability in Indian automobile industry. Prod. Plan. Control 2015, 26, 339–362. [Google Scholar]
- Luthra, S.; Mangla, S.K.; Yadav, G. An analysis of causal relationships among challenges impeding redistributed manufacturing in emerging economies. J. Clean. Prod. 2019, 225, 949–962. [Google Scholar] [CrossRef]
- Bhatia, M.S.; Srivastava, R.K. Analysis of external barriers to remanufacturing using grey-DEMATEL approach: An Indian perspective. Resour. Conserv. Recycl. 2018, 136, 79–87. [Google Scholar] [CrossRef]
- Schmidt, K.; Matthies, E. Where to start fighting the food waste problem? Identifying most promising entry points for intervention programs to reduce household food waste and overconsumption of food. Resour. Conserv. Recycl. 2018, 139, 1–14. [Google Scholar] [CrossRef]
- Shah, I.A.; Amjed, S.; Alkathiri, N.A. The economics of paper consumption in offices. J. Bus. Econ. Manag. 2019, 20, 43–62. [Google Scholar] [CrossRef]
- Kannan, G.; Haq, A.N.; Sasikumar, P.; Arunachalam, S. Analysis and selection of green suppliers using interpretative structural modelling and analytic hierarchy process. Int. J. Manag. Decis. Mak. 2008, 9, 163–182. [Google Scholar] [CrossRef]
- Mandal, A.; Deshmukh, S. Vendor selection using interpretive structural modelling (ISM). Int. J. Oper. Prod. Manag. 1994, 14, 52–59. [Google Scholar] [CrossRef]
- Ravi, V.; Shankar, R. Analysis of interactions among the barriers of reverse logistics. Technol. Forecast. Soc. Chang. 2005, 72, 1011–1029. [Google Scholar] [CrossRef]
- Makki, A.A.; Alidrisi, H.; Iqbal, A.; Al-Sasi, B.O. Barriers to green entrepreneurship: An ISM-based investigation. J. Risk Financ. Manag. 2020, 13, 249. [Google Scholar] [CrossRef]
- Warshall, S. A theorem on boolean matrices. J. ACM 1962, 9, 11–12. [Google Scholar] [CrossRef]
- Kataria, K.K.; Goyal, S.; Luthra, S.; Sharma, M. Analysing The Barriers and Solutions to Promote Environmentally Conscious Manufacturing Using Ahppromethee Hybrid Framework. Ind. Eng. J. 2021, 14, 12–18. [Google Scholar]
- Pinto, M.M.A.; Kovaleski, J.L.; Yoshino, R.T.; Pagani, R.N. Knowledge and technology transfer influencing the process of innovation in green supply chain management: A multicriteria model based on the DEMATEL Method. Sustainability 2019, 11, 3485. [Google Scholar] [CrossRef]
Acronym | Barrier | Description | References |
---|---|---|---|
ECM-B1 | Poor adoption of remanufacturing and reusing | Lack of developed frameworks based on strategic approaches to implementing remanufacturing and reusing practices. | [33,34] |
ECM-B2 | Less skilled workforce | A workforce segment with a limited skill set or minimal economic value for the work performed towards ECM. | [35] |
ECM-B3 | Communication gap | The utter absence and obscurity of ECM-related internal communication or the misinterpretation of information. | [36] |
ECM-B4 | Heavy Taxes | Taxes reduce the payoff to entrepreneurship, investment, and work effort towards ECM. | [37] |
ECM-B5 | Poor policy framing and lack of implementation | The lack of structured processes eliciting, measuring, and evaluating the best ECM alternatives and identifying the consequences. | [38] |
ECM-B6 | Higher cost of sustainable products | The higher cost of sustainable products compared to conventional products. | [39] |
ECM-B7 | Ignorance of management towards ECM | Management’s choice to strategically ignore information or the impact of their manufacturing on the environment to pursue their own self-interest. | [40] |
ECM-B8 | Poor financial support | The lack or low monetary resources assigned to enable an organization to be an environmentally conscious manufacturer. | [41] |
ECM-B9 | Lack of technological up-gradation | Absence of efficient, waste reducing, quality improving, power efficient tools, machinery, equipment, and plants that enable ECM. | [42] |
ECM-B10 | Overconsumption of natural resources | The use case of a renewable natural resource exceeds its capacity to regenerate. A prolonged overconsumption pattern leads to the loss of primary resource sources. | [43,44] |
Scenario | Direction of Relationship | SSIM Entry Codes | IRM Entries | |
---|---|---|---|---|
(ECM-Bi, ECM-Bj) * | (ECM-Bi, ECM-Bj) * | (ECM-Bi, ECM-Bj) * | (ECM-Bj, ECM-Bi) * | |
1 | ECM-Bi → ECM-Bj | V | 1 | 0 |
2 | ECM-Bi ← ECM-Bj | A | 0 | 1 |
3 | ECM-Bi ↔ ECM-Bj | X | 1 | 1 |
4 | ECM-Bi × ECM-Bj | O | 0 | 0 |
Barrier | ECM-B1 | ECM-B2 | ECM-B3 | ECM-B4 | ECM-B5 | ECM-B6 | ECM-B7 | ECM-B8 | ECM-B9 | ECM-B10 |
---|---|---|---|---|---|---|---|---|---|---|
ECM-B1 | A | A | A | A | X | A | A | A | V | |
ECM-B2 | A | A | V | V | A | A | V | V | ||
ECM-B3 | O | V | V | A | V | V | V | |||
ECM-B4 | A | V | A | V | X | V | ||||
ECM-B5 | V | A | V | V | V | |||||
ECM-B6 | A | A | A | V | ||||||
ECM-B7 | V | V | V | |||||||
ECM-B8 | V | V | ||||||||
ECM-B9 | V | |||||||||
ECM-B10 |
Barrier | ECM-B1 | ECM-B2 | ECM-B3 | ECM-B4 | ECM-B5 | ECM-B6 | ECM-B7 | ECM-B8 | ECM-B9 | ECM-B10 | Driving Power |
---|---|---|---|---|---|---|---|---|---|---|---|
ECM-B1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 3 |
ECM-B2 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 6 |
ECM-B3 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 8 |
ECM-B4 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 7 |
ECM-B5 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 7 |
ECM-B6 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 3 |
ECM-B7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 10 |
ECM-B8 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 6 |
ECM-B9 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 5 |
ECM-B10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
Dependence Power | 9 | 5 | 2 | 4 | 4 | 9 | 1 | 5 | 7 | 10 |
Barrier | ECM-B1 | ECM-B2 | ECM-B3 | ECM-B4 | ECM-B5 | ECM-B6 | ECM-B7 | ECM-B8 | ECM-B9 | ECM-B10 | Driving Power |
---|---|---|---|---|---|---|---|---|---|---|---|
ECM-B1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 3 |
ECM-B2 | 1 | 1 | 0 | 1 * | 1 | 1 | 0 | 1 * | 1 | 1 | 8 |
ECM-B3 | 1 | 1 | 1 | 1 * | 1 | 1 | 0 | 1 | 1 | 1 | 9 |
ECM-B4 | 1 | 1 | 0 | 1 | 1 * | 1 | 0 | 1 | 1 | 1 | 8 |
ECM-B5 | 1 | 1 * | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 8 |
ECM-B6 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 3 |
ECM-B7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 10 |
ECM-B8 | 1 | 1 | 0 | 1 * | 1 * | 1 | 0 | 1 | 1 | 1 | 8 |
ECM-B9 | 1 | 1 * | 0 | 1 | 1 * | 1 | 0 | 1 * | 1 | 1 | 8 |
ECM-B10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
Dependence Power | 9 | 7 | 2 | 7 | 7 | 9 | 1 | 7 | 7 | 10 |
Iteration | Barrier | Reachability Set | Antecedent Set | Intersection Set | Level |
---|---|---|---|---|---|
1 | ECM-B1 | ECM-B1, ECM-B6, ECM-B10 | ECM-B1, ECM-B2, ECM-B3, ECM-B4, ECM-B5, ECM-B6, ECM-B7, ECM-B8, ECM-B9 | ECM-B1, ECM-B6 | |
ECM-B2 | ECM-B1, ECM-B2, ECM-B4, ECM-B5, ECM-B6, ECM-B8, ECM-B9, ECM-B10 | ECM-B2, ECM-B3, ECM-B4, ECM-B5, ECM-B7, ECM-B8, ECM-B9 | ECM-B2, ECM-B4, ECM-B5, ECM-B8, ECM-B9 | ||
ECM-B3 | ECM-B1, ECM-B2, ECM-B3, ECM-B4, ECM-B5, ECM-B6, ECM-B8, ECM-B9, ECM-B10 | ECM-B3, ECM-B7 | ECM-B3 | ||
ECM-B4 | ECM-B1, ECM-B2, ECM-B4, ECM-B5, ECM-B6, ECM-B8, ECM-B9, ECM-B10 | ECM-B2, ECM-B3, ECM-B4, ECM-B5, ECM-B7, ECM-B8, ECM-B9 | ECM-B2, ECM-B4, ECM-B5, ECM-B8, ECM-B9 | ||
ECM-B5 | ECM-B1, ECM-B2, ECM-B4, ECM-B5, ECM-B6, ECM-B8, ECM-B9, ECM-B10 | ECM-B2, ECM-B3, ECM-B4, ECM-B5, ECM-B7, ECM-B8, ECM-B9 | ECM-B2, ECM-B4, ECM-B5, ECM-B8, ECM-B9 | ||
ECM-B6 | ECM-B1, ECM-B6, ECM-B10 | ECM-B1, ECM-B2, ECM-B3, ECM-B4, ECM-B5, ECM-B6, ECM-B7, ECM-B8, ECM-B9 | ECM-B1, ECM-B6 | ||
ECM-B7 | ECM-B1, ECM-B2, ECM-B3, ECM-B4, ECM-B5, ECM-B6, ECM-B7, ECM-B8, ECM-B9, ECM-B10 | ECM-B7 | ECM-B7 | ||
ECM-B8 | ECM-B1, ECM-B2, ECM-B4, ECM-B5, ECM-B6, ECM-B8, ECM-B9, ECM-B10 | ECM-B2, ECM-B3, ECM-B4, ECM-B5, ECM-B7, ECM-B8, ECM-B9 | ECM-B2, ECM-B4, ECM-B5, ECM-B8, ECM-B9 | ||
ECM-B9 | ECM-B1, ECM-B2, ECM-B4, ECM-B5, ECM-B6, ECM-B8, ECM-B9, ECM-B10 | ECM-B2, ECM-B3, ECM-B4, ECM-B5, ECM-B7, ECM-B8, ECM-B9 | ECM-B2, ECM-B4, ECM-B5, ECM-B8, ECM-B9 | ||
ECM-B10 | ECM-B10 | ECM-B1, ECM-B2, ECM-B3, ECM-B4, ECM-B5, ECM-B6, ECM-B7, ECM-B8, ECM-B9, ECM-B10 | ECM-B10 | I | |
2 | ECM-B1 | ECM-B1, ECM-B6 | ECM-B1, ECM-B2, ECM-B3, ECM-B4, ECM-B5, ECM-B6, ECM-B7, ECM-B8, ECM-B9 | ECM-B1, ECM-B6 | II |
ECM-B2 | ECM-B1, ECM-B2, ECM-B4, ECM-B5, ECM-B6, ECM-B8, ECM-B9 | ECM-B2, ECM-B3, ECM-B4, ECM-B5, ECM-B7, ECM-B8, ECM-B9 | ECM-B2, ECM-B4, ECM-B5, ECM-B8, ECM-B9 | ||
ECM-B3 | ECM-B1, ECM-B2, ECM-B3, ECM-B4, ECM-B5, ECM-B6, ECM-B8, ECM-B9 | ECM-B3, ECM-B7 | ECM-B3 | ||
ECM-B4 | ECM-B1, ECM-B2, ECM-B4, ECM-B5, ECM-B6, ECM-B8, ECM-B9 | ECM-B2, ECM-B3, ECM-B4, ECM-B5, ECM-B7, ECM-B8, ECM-B9 | ECM-B2, ECM-B4, ECM-B5, ECM-B8, ECM-B9 | ||
ECM-B5 | ECM-B1, ECM-B2, ECM-B4, ECM-B5, ECM-B6, ECM-B8, ECM-B9 | ECM-B2, ECM-B3, ECM-B4, ECM-B5, ECM-B7, ECM-B8, ECM-B9 | ECM-B2, ECM-B4, ECM-B5, ECM-B8, ECM-B9 | ||
ECM-B6 | ECM-B1, ECM-B6 | ECM-B1, ECM-B2, ECM-B3, ECM-B4, ECM-B5, ECM-B6, ECM-B7, ECM-B8, ECM-B9 | ECM-B1, ECM-B6 | II | |
ECM-B7 | ECM-B1, ECM-B2, ECM-B3, ECM-B4, ECM-B5, ECM-B6, ECM-B7, ECM-B8, ECM-B9 | ECM-B7 | ECM-B7 | ||
ECM-B8 | ECM-B1, ECM-B2, ECM-B4, ECM-B5, ECM-B6, ECM-B8, ECM-B9 | ECM-B2, ECM-B3, ECM-B4, ECM-B5, ECM-B7, ECM-B8, ECM-B9 | ECM-B2, ECM-B4, ECM-B5, ECM-B8, ECM-B9 | ||
ECM-B9 | ECM-B1, ECM-B2, ECM-B4, ECM-B5, ECM-B6, ECM-B8, ECM-B9 | ECM-B2, ECM-B3, ECM-B4, ECM-B5, ECM-B7, ECM-B8, ECM-B9 | ECM-B2, ECM-B4, ECM-B5, ECM-B8, ECM-B9 | ||
3 | ECM-B2 | ECM-B2, ECM-B4, ECM-B5, ECM-B8, ECM-B9 | ECM-B2, ECM-B3, ECM-B4, ECM-B5, ECM-B7, ECM-B8, ECM-B9 | ECM-B2, ECM-B4, ECM-B5, ECM-B8, ECM-B9 | III |
ECM-B3 | ECM-B2, ECM-B3, ECM-B4, ECM-B5, ECM-B8, ECM-B9 | ECM-B3, ECM-B7 | ECM-B3 | ||
ECM-B4 | ECM-B2, ECM-B4, ECM-B5, ECM-B8, ECM-B9 | ECM-B2, ECM-B3, ECM-B4, ECM-B5, ECM-B7, ECM-B8, ECM-B9 | ECM-B2, ECM-B4, ECM-B5, ECM-B8, ECM-B9 | III | |
ECM-B5 | ECM-B2, ECM-B4, ECM-B5, ECM-B8, ECM-B9 | ECM-B2, ECM-B3, ECM-B4, ECM-B5, ECM-B7, ECM-B8, ECM-B9 | ECM-B2, ECM-B4, ECM-B5, ECM-B8, ECM-B9 | III | |
ECM-B7 | ECM-B2, ECM-B3, ECM-B4, ECM-B5, ECM-B7, ECM-B8, ECM-B9 | ECM-B7 | ECM-B7 | ||
ECM-B8 | ECM-B2, ECM-B4, ECM-B5, ECM-B8, ECM-B9 | ECM-B2, ECM-B3, ECM-B4, ECM-B5, ECM-B7, ECM-B8, ECM-B9 | ECM-B2, ECM-B4, ECM-B5, ECM-B8, ECM-B9 | III | |
ECM-B9 | ECM-B2, ECM-B4, ECM-B5, ECM-B8, ECM-B9 | ECM-B2, ECM-B3, ECM-B4, ECM-B5, ECM-B7, ECM-B8, ECM-B9 | ECM-B2, ECM-B4, ECM-B5, ECM-B8, ECM-B9 | III | |
4 | ECM-B3 | ECM-B3 | ECM-B3, ECM-B7 | ECM-B3 | IV |
ECM-B7 | ECM-B3, ECM-B7 | ECM-B7 | ECM-B7 | ||
5 | ECM-B7 | ECM-B7 | ECM-B7 | ECM-B7 | V |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alqahtani, A.Y.; Makki, A.A. Barriers to the Sustainable Implementation of Environmentally Conscious Manufacturing: A Contextual-Based Interpretive Structural Model. Sustainability 2022, 14, 10066. https://doi.org/10.3390/su141610066
Alqahtani AY, Makki AA. Barriers to the Sustainable Implementation of Environmentally Conscious Manufacturing: A Contextual-Based Interpretive Structural Model. Sustainability. 2022; 14(16):10066. https://doi.org/10.3390/su141610066
Chicago/Turabian StyleAlqahtani, Ammar Y., and Anas A. Makki. 2022. "Barriers to the Sustainable Implementation of Environmentally Conscious Manufacturing: A Contextual-Based Interpretive Structural Model" Sustainability 14, no. 16: 10066. https://doi.org/10.3390/su141610066
APA StyleAlqahtani, A. Y., & Makki, A. A. (2022). Barriers to the Sustainable Implementation of Environmentally Conscious Manufacturing: A Contextual-Based Interpretive Structural Model. Sustainability, 14(16), 10066. https://doi.org/10.3390/su141610066