Multimodal Evaluation of Changes in National Potential Passenger and Freight Accessibility during the EU-Driven Big Push to Transport Infrastructure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Model
2.2. Data Source and Processing
2.3. Study Area
3. Results
3.1. Spatial Patterns of Change in Accessibility
3.2. Change in the Level of Accessibility and Its Dispersion
4. Discussion
5. Conclusions
- The effects of the increase in accessibility following Poland’s accession to the European Union are rapid and, during only one programming period 2007–2013, reach from 14% for inland waterway transport to as much as 177% for air transport.
- In the same period, the effects of eliminating territorial differences in accessibility are quite different depending on the transport mode: from a generally positive effect in passenger transport to varied effects in freight transport, including particularly highly polarising effects in rail transport.
- In the near future, i.e., up to 2023, the situation in this respect should improve as a result of rail investments in peripheral areas.
- The rate of increase in the overall accessibility level;
- Spatial differentiation;
- Cohesive changes (dispersion).
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Marada, M.; Květoň, V.; Mattern, T.; Štych, P.; Hudeček, T. Accessibility Patterns: Czech Republic Case Study. Eur. XXI 2013, 61–76. [Google Scholar] [CrossRef]
- Michniak, D.; Székely, V. Relative Accessibility of District Centres in Slovakia by Public Transport in 2003 and 2017. Eur. Spat. Res. Policy 2019, 26, 27–41. [Google Scholar] [CrossRef]
- Michniak, D.; Więckowski, M.; Stępniak, M.; Rosik, P. The Impact of Selected Planned Motorways and Expressways on the Potential Accessibility of the Polish-Slovak Borderland with Respect to Tourism Development. Morav. Geogr. Rep. 2015, 23, 13–20. [Google Scholar] [CrossRef]
- Rusnák, J.; Ďurček, P.; Takáč, M.; Óvári, K. Spatial Patterns and Time-Accessibility of Supplier Network of the Automotive Industry in Slovakia. Geogr. Pol. 2022, 95, 181–200. Available online: https://rcin.org.pl/igipz/dlibra/publication/272285/edition/235708/content (accessed on 10 July 2022).
- Garbacz, E.; Komornicki, T.; Kowalczyk, K. Dostępność Dzienna w Układzie Miast Wojewódzkich w Polsce = Daily Accessibility among Poland’s Voivodeship Cities. Przegląd Geogr. 2020, 92, 247–265. [Google Scholar] [CrossRef]
- Śleszyński, P. Rozwój Miast w Polsce a Ich Położenie Względem Autostrad i Dróg Ekspresowych = The Development of Cities in Poland and Their Locations in Relation to Motorways and Expressways. Przegląd Geogr. 2021, 93, 233–248. [Google Scholar] [CrossRef]
- Holl, A. Twenty Years of Accessibility Improvements. The Case of the Spanish Motorway Building Programme. J. Transp. Geogr. 2007, 15, 286–297. [Google Scholar] [CrossRef]
- Condeço-Melhorado, A.; Zofío, J.L.; Christidis, P. Drivers of Changes in Spainish Accessibility for the 1960–2010 Period. Eur. Transp. Res. Rev. 2017, 9, 19. [Google Scholar] [CrossRef]
- Suárez, E.L. Assessment of Transport Infrastructure Plans: A Strategic Approach Integrating Efficiency, Cohesion and Environmental Aspects. Ph.D. Thesis, Universidad Politécnica de Madrid, Madrid, Spain, 2007. [Google Scholar]
- Ribeiro, A.; Antunes, A.P.; Páez, A. Road Accessibility and Cohesion in Lagging Regions: Empirical Evidence from Portugal Based on Spatial Econometric Models. J. Transp. Geogr. 2010, 18, 125–132. [Google Scholar] [CrossRef]
- Figueira, P.; Viegas, J. A Proposed Methodology for Measuring Accessibility Taking into Account Economic Relations and Daily Cycles. In Proceedings of the European Transport Conference, Robinson College, Cambridge, UK, 27–29 September 1999. [Google Scholar]
- Gómez, J.M.N.; Vulevic, A.; Couto, G.; Castanho, R.A. Accessibility in European Peripheral Territories: Analyzing the Portuguese Mainland Connectivity Patterns from 1985 to 2020. Infrastructures 2021, 6, 92. [Google Scholar] [CrossRef]
- Katsios, I.; Tsatsaris, A.; Sakellariou, A. Spatial Typology of the Greek Territory Based on Transport Accessibility Indicators: A Cartographical Approach Using G.I.S. In Proceedings of the ERSA Conference, Volos, Greece, 30 August–3 September 2006; pp. 1–20. [Google Scholar]
- Gutiérrez, J.; Condeço-Melhorado, A.; López, E.; Monzón, A. Evaluating the European Added Value of TEN-T Projects: A Methodological Proposal Based on Spatial Spillovers, Accessibility and GIS. J. Transp. Geogr. 2011, 19, 840–850. [Google Scholar] [CrossRef]
- López, E.; Gutiérrez, J.; Gómez, G. Measuring Regional Cohesion Effects of Large-Scale Transport Infrastructure Investments: An Accessibility Approach. Eur. Plan. Stud. 2008, 16, 277–301. [Google Scholar] [CrossRef]
- Rosik, P.; Stępniak, M. Monitoring of Changes in Road Potential Accessibility at Municipality Level in Poland, 1995–2015. Geogr. Pol. 2015, 88, 607–620. [Google Scholar] [CrossRef]
- Ortega, E.; López, E.; Monzón, A. Territorial Cohesion Impacts of High-Speed Rail at Different Planning Levels. J. Transp. Geogr. 2012, 24, 130–141. [Google Scholar] [CrossRef]
- Spiekermann, K.; Wegener, M.; Květoň, V.; Marada, M.; Schürmann, C.; Biosca, O.; Ulied Segui, A.; Antikainen, H.; Kotavaara, O.; Rusanen, J.; et al. Transport Accessibility at Regional/Local Scale and Patterns in Europe. In TRACC Scientific Report; ESPON & Spiekermann & Wegener, Urban and Regional Research: Luxembourg, Belgium, 2015. [Google Scholar]
- Spiekermann, K.; Neubauer, J. European Accessibility and Peripherality: Concepts, Models and Indicators; Nordregio: Stockholm, Sweden, 2002; Volume 9, pp. 1–43. [Google Scholar]
- Gould, P.R. Spatial Diffusion, Resource Paper No. 4; Association of American Geographers: Washington, DC, USA, 1969; pp. 1–80. [Google Scholar]
- Carpentieri, G.; Guida, C.; Masoumi, H.E. Multimodal Accessibility to Primary Health Services for the Elderly: A Case Study of Naples, Italy. Sustainability 2020, 12, 781. [Google Scholar] [CrossRef]
- Liu, L.; Yu, H.; Zhao, J.; Wu, H.; Peng, Z.; Wang, R. Multiscale Effects of Multimodal Public Facilities Accessibility on Housing Prices Based on MGWR: A Case Study of Wuhan, China. ISPRS Int. J. Geo-Inf. 2022, 11, 57. [Google Scholar] [CrossRef]
- Langford, M.; Price, A.; Higgs, G. Combining Temporal and Multi-Modal Approaches to Better Measure Accessibility to Banking Services. ISPRS Int. J. Geo-Inf. 2022, 11, 350. [Google Scholar] [CrossRef]
- Geurs, K.T.; van Wee, B. Accessibility Evaluation of Land-Use and Transport Strategies: Review and Research Directions. J. Transp. Geogr. 2004, 12, 127–140. [Google Scholar] [CrossRef]
- Bruinsma, F.; Rietveld, P. The Accessibility of European Cities: Theoretical Framework and Comparison of Approaches. Environ. Plan. A Econ. Sp. 1998, 30, 499–521. [Google Scholar] [CrossRef]
- Rosik, P.; Stepniak, M.; Komornicki, T. The Decade of the Big Push to Roads in Poland: Impact on Improvement in Accessibility and Territorial Cohesion from a Policy Perspective. Transp. Policy 2015, 37, 134–146. [Google Scholar] [CrossRef]
- Beria, P.; Debernardi, A.; Ferrara, E. Measuring the Long-Distance Accessibility of Italian Cities. J. Transp. Geogr. 2017, 62, 66–79. [Google Scholar] [CrossRef]
- Stępniak, M.; Jacobs-Crisioni, C. Reducing the Uncertainty Induced by Spatial Aggregation in Accessibility and Spatial Interaction Applications. J. Transp. Geogr. 2017, 61, 17–29. [Google Scholar] [CrossRef] [PubMed]
- Reggiani, A.; Bucci, P.; Russo, G.; Haas, A.; Nijkamp, P. Regional Labour Markets and Job Accessibility in City Network Systems in Germany. J. Transp. Geogr. 2011, 19, 528–536. [Google Scholar] [CrossRef]
- Kotavaara, O.; Antikainen, H.; Rusanen, J. Population Change and Accessibility by Road and Rail Networks: GIS and Statistical Approach to Finland 1970–2007. J. Transp. Geogr. 2011, 19, 926–935. [Google Scholar] [CrossRef]
- Sellner, R.; Nagl, P. Air Accessibility and Growth—The Economic Effects of a Capacity Expansion at Vienna International Airport. J. Air Transp. Manag. 2010, 16, 325–329. [Google Scholar] [CrossRef]
- Dahlgren, A. A Proximity Analysis Application for Large Source Datasets; NRDA: Östersund, Sweden, 2005.
- Nam, K.; Win, E. Competitiveness between Road and Inland Water Transport: The Case of Myanmar. Transp. Probl. 2014, 9, 49–61. [Google Scholar]
- Button, K.; Chen, Z.; Neiva, R. Chapter 9: Industrial Accessibility and the Efficiency of the US Freight Railroads. In Accessibility, Equity and Efficiency; Edward Elgar Publishing: Cheltenham, UK, 2016; pp. 167–190. [Google Scholar]
- Rosik, P.; Komornicki, T.; Stępniak, M.; Śleszyński, P.; Goliszek, S.; Pomianowski, W.; Kowalczyk, K. Evaluation of Accessibility Changes in Poland Using the MAI Indicator. Geogr. Policy 2017, 90, 361–368. [Google Scholar]
- Schürmann, C.; Talaat, A. Towards a European Peripherality Index; IRPUD: Dortmund, Germany, 2000. [Google Scholar]
- Krygsman, S.; Dijst, M.; Arentze, T. Multimodal Public Transport: An Analysis of Travel Time Elements and the Interconnectivity Ratio. Transp. Policy 2004, 11, 265–275. [Google Scholar] [CrossRef]
- Stepniak, M.; Rosik, P. Accessibility Improvement, Territorial Cohesion and Spillovers: A Multidimensional Evaluation of Two Motorway Sections in Poland. J. Transp. Geogr. 2013, 31, 154–163. [Google Scholar] [CrossRef]
- Stępniak, M.; Rosik, P. From Improvements in Accessibility to the Impact on Territorial Cohesion: The Spatial Approach. J. Transp. Land Use 2015, 9, 1–13. [Google Scholar] [CrossRef]
- Shen, J.; Cheng, J.; Huang, W.; Zeng, F. An Exploration of Spatial and Social Inequalities of Urban Sports Facilities in Nanning City, China. Sustainability 2020, 12, 4353. [Google Scholar] [CrossRef]
- Brussel, M.; Zuidgeest, M.; Pfeffer, K.; Van Maarseveen, M. Access or Accessibility? A Critique of the Urban Transport SDG Indicator. ISPRS Int. J. Geo-Inf. 2019, 8, 67. [Google Scholar] [CrossRef]
- Rosik, P.; Stępniak, M.; Wiśniewski, R. Delineation of Health Care Deserts Using Accessibility Measures: The Case of Poland. Eur. Plan. Stud. 2021, 29, 1151–1173. [Google Scholar] [CrossRef]
- Rosik, P.; Puławska-Obiedowska, S.; Goliszek, S. Public Transport Accessibility to Upper Secondary Schools Measured by the Potential Quotient: The Case of Kraków. Morav. Geogr. Rep. 2021, 29, 15–26. [Google Scholar] [CrossRef]
- Stępniak, M.; Rosik, P. The Role of Transport and Population Components in Change in Accessibility: The Influence of the Distance Decay Parameter. Netw. Spat. Econ. 2018, 18, 291–312. [Google Scholar] [CrossRef]
- Rosik, P.; Pomianowski, W.; Komornicki, T.; Goliszek, S.; Szejgiec-Kolenda, B.; Duma, P. Regional Dispersion of Potential Accessibility Quotient at the Intra-European and Intranational Level. Core-Periphery Pattern, Discontinuity Belts and Distance Decay Tornado Effect. J. Transp. Geogr. 2020, 82, 102554. [Google Scholar] [CrossRef]
- Rosik, P.; Komornicki, T.; Goliszek, S.; Duma, P. Improvement of Accessibility in Eastern Europe Due to Implementation of Road Projects in the Via Carpatia Corridor. Mitteilungen Österr. Geogr. Ges. 2018, 160, 177–196. [Google Scholar] [CrossRef]
- Śleszyński, P. Expected Traffic Speed in Poland Using Corine Land Cover, SRTM-3 and Detailed Population Places Data. J. Maps 2015, 11, 245–254. [Google Scholar] [CrossRef]
- Móscicka, A.; Pokonieczny, K.; Wilbik, A.; Wabínski, J. Transport Accessibility of Warsaw: A Case Study. Sustainability 2019, 11, 5536. [Google Scholar] [CrossRef]
- Christodoulou, A.; Christidis, P. Measuring Cross-Border Road Accessibility in the European Union. Sustainability 2019, 11, 4000. [Google Scholar] [CrossRef]
- Rosik, P.; Komornicki, T.; Goliszek, S.; Duma, P.; Szejgiec-Kolenda, B. Changes in Structure and Spatial Distribution of Heavy Goods Vehicles Traffic in Poland in 2005–2015, with Particular Emphasis on Border Traffic. In Transport Development Challenges in the 21st Century; Suchanek, M., Ed.; Springer International Publishing: Cham, Switzerland, 2021; pp. 23–36. [Google Scholar]
- Rokicki, B.; Stępniak, M. Major Transport Infrastructure Investment and Regional Economic Development—An Accessibility-Based Approach. J. Transp. Geogr. 2018, 72, 36–49. [Google Scholar] [CrossRef]
- Wang, W.; Wu, Y. Is Uncertainty Always Bad for the Performance of Transportation Systems? Commun. Transp. Res. 2021, 1, 100021. [Google Scholar] [CrossRef]
Transport Type | Transport Mode | Land Use Data (“Masses” in Accessibility Model) | Source of Travel Times |
---|---|---|---|
Passenger transport | Road | Population | IGSO PAS speed model |
Railway | Population | Maximum technical speeds for passenger trains (data from PKP PLK S.A.) | |
Air | Airport capacity | IGSO PAS speed model—access to the airports | |
Freight transport | Road | Population and GDP | IGSO PAS HGV speed model |
Railway | Population and GDP | Maximum technical speeds for freight trains (data from PKP PLK S.A.) | |
Water inland | Class of waterway | IGSO PAS HGV speed model—access to the waterways |
Type | Mode | Level (Acc) and Dispersion (PAD) | Calculation for the End of the Year | Calculation of Change | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2007–2015 Programming Period | 2007–2015 (One EU Programming Period) | 2004–2023 (Three EU Programming Periods) | |||||||||||
2004 | 2006 | 2008 | 2010 | 2012 | 2015 | 2023 (Forecast) | Change (%) | Change (abs) | Change (%) | Change (abs) | |||
Travel | Road | Acc | 29.07 | 30.49 | 30.87 | 31.63 | 34.11 | 35.90 | 40.28 | 18% | 5.42 | 39% | 11.21 |
PAD | 0.376 | 0.389 | 0.384 | 0.383 | 0.390 | 0.386 | 0.384 | –0.91% | 0.00 | 2.06% | 0.01 | ||
Rail | Acc | 30.09 | 29.42 | 29.97 | 29.69 | 31.41 | 35.20 | 44.70 | 20% | 5.78 | 49% | 14.61 | |
PAD | 0.430 | 0.438 | 0.437 | 0.432 | 0.426 | 0.431 | 0.407 | –1.68% | –0.01 | –5.24% | –0.02 | ||
Air | Acc | 41.87 | 71.07 | 86.29 | 87.89 | 125.74 | 197.15 | 234.91 | 177% | 126.08 | 461% | 193.04 | |
PAD | 0.656 | 0.670 | 0.716 | 0.711 | 0.589 | 0.632 | 0.633 | –5.66% | –0.04 | –3.41% | –0.02 | ||
Freight | Road | Acc | 26.77 | 28.59 | 30.24 | 31.38 | 33.61 | 35.86 | 43.49 | 25% | 7.27 | 62% | 16.72 |
PAD | 0.397 | 0.405 | 0.407 | 0.407 | 0.415 | 0.415 | 0.421 | 2.38% | 0.01 | 6.16% | 0.02 | ||
Rail | Acc | 22.90 | 23.69 | 25.15 | 25.81 | 27.36 | 30.23 | 45.81 | 28% | 6.54 | 100% | 22.90 | |
PAD | 0.452 | 0.454 | 0.471 | 0.468 | 0.472 | 0.478 | 0.459 | 5.23% | 0.02 | 1.53% | 0.01 | ||
Water inland | Acc | 18.19 | 18.97 | 19.80 | 20.07 | 20.82 | 21.72 | 32.32 | 14% | 2.74 | 78% | 14.14 | |
PAD | 1.034 | 1.000 | 0.983 | 0.982 | 0.958 | 0.945 | 0.932 | –5.50% | –0.05 | –9.89% | –0.10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosik, P.; Komornicki, T.; Goliszek, S.; Pomianowski, W.; Stępniak, M. Multimodal Evaluation of Changes in National Potential Passenger and Freight Accessibility during the EU-Driven Big Push to Transport Infrastructure. Sustainability 2022, 14, 10044. https://doi.org/10.3390/su141610044
Rosik P, Komornicki T, Goliszek S, Pomianowski W, Stępniak M. Multimodal Evaluation of Changes in National Potential Passenger and Freight Accessibility during the EU-Driven Big Push to Transport Infrastructure. Sustainability. 2022; 14(16):10044. https://doi.org/10.3390/su141610044
Chicago/Turabian StyleRosik, Piotr, Tomasz Komornicki, Sławomir Goliszek, Wojciech Pomianowski, and Marcin Stępniak. 2022. "Multimodal Evaluation of Changes in National Potential Passenger and Freight Accessibility during the EU-Driven Big Push to Transport Infrastructure" Sustainability 14, no. 16: 10044. https://doi.org/10.3390/su141610044