Carbon Emission Measurement of Urban Green Passenger Transport: A Case Study of Qingdao
Abstract
:1. Introduction
2. Literature Review
3. Method and Data
3.1. Method
3.1.1. Carbon Emission Measurement Model for Urban Passenger Transport
3.1.2. Sensitivity Analysis
3.2. Data
4. Results
4.1. Mode Sharing of Urban Passenger Transport Carbon Emission in Qingdao
4.2. Carbon Emission per PKM of Different Modes
4.3. Carbon Emission Intensity Corresponding to Different Energy Types
5. Discussion
5.1. New Energy Vehicle Sensitivity Analysis
5.2. Comparative Analysis of Results
6. Conclusions
- Based on the “top-down” and “bottom-up” principles, we established carbon emission measurement formulae through energy emission factors and vehicle driving characteristics and analyzed the carbon dioxide emission patterns and energy emission intensity of different transportation modes. We assessed the level of urban transportation emission reduction development and the current development of urban carbon emission.
- In this paper, Qingdao city was studied as an example. The analysis shows that the carbon emission of urban passenger transport in Qingdao in 2020 was 8,155,160,000 tons. Private cars have the highest per PKM carbon emission, while ground buses have the lowest. The carbon emission factors of rail transit and bus transport are the same when non-traction energy consumption is ignored.
- The emission intensity of hydrogen fuel cell buses is better than that of other fuel type vehicles. Hydrogen energy has good development prospects and is expected to be an important strategic development trend in the global energy field in the future.
- In terms of vehicles, battery electric buses have the largest sensitivity coefficient, therefore the carbon emission reduction which could be achieved by developing battery electric buses is most significant. By comparing our results with other results from the literature, we find that the measurement model established in this paper has reasonable and comparable results and can effectively measure the carbon emissions of urban passenger transport.
- In this paper, the measurement model considers the local energy structure and the development trend of new energy vehicles. The proposed model improves the theoretical system for measuring carbon emissions from urban passenger transport., and can serve as a theoretical foundation and practical reference for measuring carbon emissions from passenger transportation in other cities.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, X. A Study on Decoupling of Carbon Emissions from Beijing-Tianjin-Hebei Transport Industry. IOP Conf. Ser. Earth Environ. Sci. 2020, 615, 012069. [Google Scholar] [CrossRef]
- Wimbardana, R.; Djalante, R.; Mori, A. Urban Experiments with Public Transport for Low Carbon Mobility Transitions in Cities: A Systematic Literature Review (1990–2020). Sustain. Cities Soc. 2021, 72, 103023. [Google Scholar] [CrossRef]
- Hasan, M.A.; Chapman, R.; Frame, D.J. Acceptability of transport emissions reduction policies: A multi-criteria analysis. Renew. Sustain. Energy Rev. 2020, 133, 110298. [Google Scholar] [CrossRef]
- Mohsin, M.; Abbas, Q.; Zhang, J.; Ikram, M.; Iqbal, N. Integrated effect of energy consumption, economic development, and population growth on CO2 based environmental degradation: A case of transport sector. Environ. Sci. Pollut. Res. 2019, 26, 32824–32835. [Google Scholar] [CrossRef] [PubMed]
- Solaymani, S. CO2 emissions patterns in 7 top carbon emitter economies: The case of transport sector. Energy 2019, 168, 989–1001. [Google Scholar] [CrossRef]
- Tran, M.; Brand, C. Smart urban mobility for mitigating carbon emissions, reducing health impacts and avoiding environmental damage costs. Environ. Res. Lett. 2021, 16, 114023. [Google Scholar] [CrossRef]
- Ahmadi, M.H.; Jashnani, H.; Chau, K.-W.; Kumar, R.; Rosen, M.A. Carbon dioxide emissions prediction of five Middle Eastern countries using artificial neural networks. Energy Sources Part Recovery Util. Environ. Eff. 2019, 41, 1–13. [Google Scholar] [CrossRef]
- Güzel, T.D.; Alp, K. Modeling of greenhouse gas emissions from the transportation sector in Istanbul by 2050. Atmos. Pollut. Res. 2020, 11, 2190–2201. [Google Scholar] [CrossRef]
- Kazancoglu, Y.; Ozbiltekin-Pala, M.; Ozkan-Ozen, Y.D. Prediction and evaluation of greenhouse gas emissions for sustainable road transport within Europe. Sustain. Cities Soc. 2021, 70, 102924. [Google Scholar] [CrossRef]
- Córdova, C.; Zorio-Grima, A.; Merello, P. Carbon Emissions by South American Companies: Driving Factors for Reporting Decisions and Emissions Reduction. Sustainability 2018, 10, 2411. [Google Scholar] [CrossRef] [Green Version]
- Engo, J. Decoupling analysis of CO2 emissions from transport sector in Cameroon. Sustain. Cities Soc. 2019, 51, 101732. [Google Scholar] [CrossRef]
- Hasan, M.A.; Frame, D.J.; Chapman, R.; Archie, K.M. Emissions from the road transport sector of New Zealand: Key drivers and challenges. Environ. Sci. Pollut. Res. 2019, 26, 23937–23957. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Liu, X.; Zhou, C.; Hu, J.; Ou, J. Examining the impacts of socioeconomic factors, urban form, and transportation networks on CO2 emissions in China’s megacities. Appl. Energy 2017, 185, 189–200. [Google Scholar] [CrossRef]
- Bai, C.; Zhou, L.; Xia, M.; Feng, C. Analysis of the spatial association network structure of China’s transportation carbon emissions and its driving factors. J. Environ. Manage. 2020, 253, 109765. [Google Scholar] [CrossRef] [PubMed]
- Ghaffarpasand, O.; Talaie, M.R.; Ahmadikia, H.; Khozani, A.T.; Shalamzari, M.D. A high-resolution spatial and temporal on-road vehicle emission inventory in an Iranian metropolitan area, Isfahan, based on detailed hourly traffic data. Atmos. Pollut. Res. 2020, 11, 1598–1609. [Google Scholar] [CrossRef]
- Nnadiri, G.U.; Chiu, A.S.F.; Biona, J.B.M.; Lopez, N.S. Comparison of Driving Forces to Increasing Traffic Flow and Transport Emissions in Philippine Regions: A Spatial Decomposition Study. Sustainability 2021, 13, 6500. [Google Scholar] [CrossRef]
- He, Z.; Zhang, W.; Jia, N. Estimating Carbon Dioxide Emissions of Freeway Traffic: A Spatiotemporal Cell-Based Model. IEEE Trans. Intell. Transp. Syst. 2020, 21, 1976–1986. [Google Scholar] [CrossRef]
- Patella, S.M.; Scrucca, F.; Asdrubali, F.; Carrese, S. Traffic Simulation-Based Approach for A Cradle-to-Grave Greenhouse Gases Emission Model. Sustainability 2019, 11, 4328. [Google Scholar] [CrossRef] [Green Version]
- Yaacob, N.F.F.; Mat Yazid, M.R.; Abdul Maulud, K.N.; Ahmad Basri, N.E. A Review of the Measurement Method, Analysis and Implementation Policy of Carbon Dioxide Emission from Transportation. Sustainability 2020, 12, 5873. [Google Scholar] [CrossRef]
- Rahman, M.M.; Zhou, Y.; Rogers, J.; Chen, V.; Sattler, M.; Hyun, K. A comparative assessment of CO2 emission between gasoline, electric, and hybrid vehicles: A Well-To-Wheel perspective using agent-based modeling. J. Clean. Prod. 2021, 321, 128931. [Google Scholar] [CrossRef]
- Nocera, S.; Ruiz-Alarcón-Quintero, C.; Cavallaro, F. Assessing carbon emissions from road transport through traffic flow estimators. Transp. Res. Part C Emerg. Technol. 2018, 95, 125–148. [Google Scholar] [CrossRef]
- Cong, R.; Saito, M.; Hirata, R.; Ito, A.; Maksyutov, S. Exploration on quantifying carbon dioxide (CO2) emission from road traffic in megacity. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, XLII–4, 115–119. [Google Scholar] [CrossRef] [Green Version]
- Cai, M.; Shi, Y.; Ren, C. Developing a high-resolution emission inventory tool for low-carbon city management using hybrid method—A pilot test in high-density Hong Kong. Energy Build. 2020, 226, 110376. [Google Scholar] [CrossRef]
- Fameli, K.M.; Kotrikla, A.M.; Psanis, C.; Biskos, G.; Polydoropoulou, A. Estimation of the emissions by transport in two port cities of the northeastern Mediterranean, Greece. Environ. Pollut. 2020, 257, 113598. [Google Scholar] [CrossRef]
- Ježek, I.; Blond, N.; Skupinski, G.; Močnik, G. The traffic emission-dispersion model for a Central-European city agrees with measured black carbon apportioned to traffic. Atmos. Environ. 2018, 184, 177–190. [Google Scholar] [CrossRef]
- Réquia, W.J.; Koutrakis, P.; Roig, H.L.; Adams, M.D. Spatiotemporal analysis of traffic emissions in over 5000 municipal districts in Brazil. J. Air Waste Manag. Assoc. 2016, 66, 1284–1293. [Google Scholar] [CrossRef]
- Knobloch, F.; Hanssen, S.V.; Lam, A.; Pollitt, H.; Salas, P.; Chewpreecha, U.; Huijbregts, M.A.J.; Mercure, J.-F. Net emission reductions from electric cars and heat pumps in 59 world regions over time. Nat. Sustain. 2020, 3, 437–447. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.S.; Duffy, P.; Hyde, B.; McNabola, A. Improvement in the estimation and back-extrapolation of CO2 emissions from the Irish road transport sector using a bottom-up data modelling approach. Transp. Res. Part Transp. Environ. 2017, 56, 18–32. [Google Scholar] [CrossRef]
- Isik, M.; Dodder, R.; Kaplan, P.O. Transportation emissions scenarios for New York City under different carbon intensities of electricity and electric vehicle adoption rates. Nat. Energy 2021, 6, 92–104. [Google Scholar] [CrossRef]
- Jiang, Y.; Wu, P. Scenario Assessment of CO2 and Air Pollutants Emission Reduction Policies for Private Passenger Vehicles in China. E3S Web Conf. 2019, 118, 04035. [Google Scholar] [CrossRef]
- Zhang, L.; Long, R.; Chen, H.; Geng, J. A review of China’s road traffic carbon emissions. J. Clean. Prod. 2019, 207, 569–581. [Google Scholar] [CrossRef]
- Shamsapour, N.; Hajinezhad, A.; Noorollahi, Y. Developing a system dynamics approach for CNG vehicles for low-carbon urban transport: A case study. Int. J. Low Carbon Technol. 2021, 16, 577–591. [Google Scholar] [CrossRef]
- Li, D.; Zheng, J.; Cui, D.; Li, Y. Study on Structure of Traffic CO2 Emissions on Typical Urban Roads in Beijing. IOP Conf. Ser. Mater. Sci. Eng. 2018, 394, 052027. [Google Scholar] [CrossRef]
- Bharadwaj, S.; Ballare, S.; Rohit; Chandel, M.K. Impact of congestion on greenhouse gas emissions for road transport in mumbai metropolitan region. Transp. Res. Procedia 2017, 25, 3538–3551. [Google Scholar] [CrossRef]
- Brand, C.; Dons, E.; Anaya-Boig, E.; Avila-Palencia, I.; Clark, A.; de Nazelle, A.; Gascon, M.; Gaupp-Berghausen, M.; Gerike, R.; Gotschi, T.; et al. The climate change mitigation effects of daily active travel in cities. Transp. Res. Part Transp. Environ. 2021, 93, 102764. [Google Scholar] [CrossRef]
- Zhang, L.; Long, R.; Chen, H.; Yang, T. Analysis of an optimal public transport structure under a carbon emission constraint: A case study in Shanghai, China. Environ. Sci. Pollut. Res. 2018, 25, 3348–3359. [Google Scholar] [CrossRef]
- Li, Y.; Lu, S. Study on the optimization of urban passenger traffic structure based on multi-objective linear programming—a case study of Beijing. Environ. Sci. Pollut. Res. 2021, 28, 10192–10206. [Google Scholar] [CrossRef] [PubMed]
- Luna, T.F.; Uriona-Maldonado, M.; Silva, M.E.; Vaz, C.R. The influence of e-carsharing schemes on electric vehicle adoption and carbon emissions: An emerging economy study. Transp. Res. Part Transp. Environ. 2020, 79, 102226. [Google Scholar] [CrossRef]
- Hu, J.-W.; Creutzig, F. A systematic review on shared mobility in China. Int. J. Sustain. Transp. 2022, 16, 374–389. [Google Scholar] [CrossRef]
- Jenelius, E.; Cebecauer, M. Impacts of COVID-19 on public transport ridership in Sweden: Analysis of ticket validations, sales and passenger counts. Transp. Res. Interdiscip. Perspect. 2020, 8, 100242. [Google Scholar] [CrossRef]
- Przybylowski, A.; Stelmak, S.; Suchanek, M. Mobility Behaviour in View of the Impact of the COVID-19 Pandemic—Public Transport Users in Gdansk Case Study. Sustainability 2021, 13, 364. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). 2006 Guidelines for National Greenhouse Gas Inventories; Prepared by the National Greenhouse Gas Inventories Programme; Institute for Global Environmental Strategies: Japan, Tokyo, 2006. [Google Scholar]
- Hameş, Y.; Kaya, K.; Baltacıoğlu, E.; Türksoy, A. Analysis of the control strategies for fuel saving in the hydrogen fuel cell vehicles. Int. J. Hydrog. Energy 2018, 43, 10810–10821. [Google Scholar] [CrossRef]
- Khan, U.; Yamamoto, T.; Sato, H. Understanding attitudes of hydrogen fuel-cell vehicle adopters in Japan. Int. J. Hydrog. Energy 2021, 46, 30698–30717. [Google Scholar] [CrossRef]
- Manoharan, Y.; Hosseini, S.E.; Butler, B.; Alzhahrani, H.; Senior, B.T.F.; Ashuri, T.; Krohn, J. Hydrogen Fuel Cell Vehicles; Current Status and Future Prospect. Appl. Sci. 2019, 9, 2296. [Google Scholar] [CrossRef] [Green Version]
- Yan, Z. The Measurement of China’s Transportation CO2 Emissions and the Spatial Econometric Analysis of Its Influencing Factors. Master’s Thesis, Beijing Jiaotong University, Beijing, China, 2018. [Google Scholar]
- Wang, Z.; Chen, F.; Fujiyama, T. Carbon Emission from Urban Passenger Transportation in Beijing. Transp. Res. Part D Transp. Environ. 2015, 41, 217–227. [Google Scholar] [CrossRef]
- Feng, G.; Xu, X.; Wang, Y.; Wang, K. Sensitivity Analysis of Nearly Zero Energy Buildings Envelope Design Parameters Based on Energy Consumption. J. Shenyang Jianzhu Univ. (Nat. Sci.) 2018, 34, 1069–1077. [Google Scholar]
- 2021 Qingdao Statistical Yearbook. Available online: http://qdtj.qingdao.gov.cn/tongjisj/tjsj_tjnj/tjnj_2021/202112/t20211221_4105003.shtml (accessed on 2 August 2022).
- Qingdao City Taxi Industry 2020 Annual Capacity Monitoring and Adjustment White Paper. Available online: http://qdjt.qingdao.gov.cn/jtj_jtxw/202112/t20211214_3998260.shtml (accessed on 2 August 2022).
- Practice and Exploration of Energy Management and Energy Saving Technology in Qingdao Metro. Available online: http://mp.weixin.qq.com/s?__biz=Mzk0NjAxNDczNw==&mid=2247491372&idx=1&sn=5953b0d4de3363ba15212bb70d556330&chksm=c30dc052f47a4944a27d5371f55193aaa400866d509e06cb4b94306161d81a1d95c1f22170da#rd (accessed on 3 August 2022).
- 2020’s Qingdao Public Transportation Group Social Responsibility Report. Available online: http://www.bus-info.cn/?c=article&id=4074 (accessed on 3 August 2022).
- Zhenqing Bus Social Responsibility Report. Available online: http://mp.weixin.qq.com/s?__biz=MzA5MTM1OTUzNA==&mid=2650311977&idx=1&sn=7f8e58ee42d958a8578c978f26db328d&chksm=8871bd68bf06347e9d6477a7af1ab88a47ed9c0e6ef92224ba6acbf7b74d0d477b59430b1fb1#rd (accessed on 3 August 2022).
- Qingdao City Transport Holdings Jiaoyun Warm Bus Annual Social Responsibility Report 2020. Available online: http://www.qdcykg.com/ (accessed on 3 August 2022).
- Technical Guide for the Preparation of Road Motor Vehicle Air Pollutant Emission Inventories. Available online: https://www.docin.com/p-1016482803.html (accessed on 3 August 2022).
- General Rules for Calculation of the Comprehensive Energy Consumption. Available online: http://www.szguanjia.cn/article/1328 (accessed on 3 August 2022).
- Guidelines for the Preparation of Provincial Greenhouse Gas Inventories. Available online: https://max.book118.com/html/2021/1020/7024101154004024.shtm (accessed on 3 August 2022).
- Wang, Z.; Zhang, Z.; Gao, B.; Chen, R. A Study of Urban Travel Characteristics Based on Multi-source Big Data—Qingdao City as an Example. In Quality Transportation and Collaborative Governance—Proceedings of 2019 China Urban Transportation Planning Annual Conference; China Building Industry Press: Beijing, China, 2019; pp. 3263–3270. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, Z.; Gao, B.; Du, C. Study on Travel of Urban Residents Based on Vehicle License Plate Recogniton Data. J. Qingdao Univ. Technol. 2020, 41, 130–137. [Google Scholar]
- Xu, H.; Pei, Y.; Wang, L.; Zhang, W. Emission Reduction of CO2 Caused by BEV in Urban Passenger Transport: A Case Study of Harbin. J. Transp. Inf. Saf. 2018, 36, 111–118. [Google Scholar]
- Alimujiang, A.; Jiang, P.; Dong, H.; Hu, B. Synergy and co-benefits of reducing CO2 and air pollutant emissions by promoting new energy vehicles: A case of Shanghai. Acta Sci. Circumst. 2020, 40, 1873–1883. [Google Scholar] [CrossRef]
- Lv, C.; Zhang, Z.; Chen, X.; Chen, X.; Ma, D.; Cai, B. Study on CO2 emission factors of road transport in Chinese provinces. China Environ. Sci. 2021, 41, 3122–3130. [Google Scholar] [CrossRef]
- Hodges, T. Public Transportation’s Role in Responding to Climate Change; DIANE Publishing: Collingdale, PA, USA, 2010; ISBN 978-1-4379-3361-1. [Google Scholar]
- Chen, W. Optimize Travel Structure to Achieve Energy Saving and Emission Reduction of Urban Passenger Transportation System. Master’s Thesis, Beijing Jiaotong University, Beijing, China, 2020. [Google Scholar]
- Zhang, X.; Xu, M.; Xu, D.; Zhong, P.; Peng, X.; Fan, J. Carbon footprint assessment of coal-to-hydrogen technology combined with CCUS in China. China Popul. Resour. Environ. 2021, 31, 1–11. [Google Scholar]
- Shao, D.; Li, H. Decarbonization Benefits and Carbon Peak Goals of Urban Passenger Transport Electrification: Case Study of Shanghai. Urban Transp. China 2021, 19, 53–58+42. [Google Scholar] [CrossRef]
- Li, P. Urban Low Carbon Transportation Development Model and Structure Optimization Based on System Dynamics. Master’s Thesis, Xi’an University of Architecture and Technology, Xi’an, China, 2018. [Google Scholar]
Number | Transportation | Fuel Type | Average Trip Distance 1 | Energy Consumption 2 |
---|---|---|---|---|
(km) | ||||
1 | Ground buses | Diesel | 67,000 | 28.88 L/100 km |
CNG | 42.18 m3/100 km | |||
LNG | 36 L/100 km | |||
BEV | 106.61 kWh/100 km | |||
HEV | 96 kWh/100 km, 10.25 L/100 km | |||
Hydrogen | 18,857 | 3 6.67 kg/100 km | ||
2 | Private cars | Gasoline | 18,491 | 6.43 L/100 km |
BEV | 12.45 kWh/100 km | |||
HEV | 10 kWh/100 km, 3.5 L/100 km | |||
3 | Cruising taxis | Gasoline | 135,000 | 9 L/100 km |
CNG | 8.95 m3/100 km | |||
4 | Online-hailing taxis | Gasoline | 100,000 | 7.8 L/100 km |
BEV | 15 kWh /100 km | |||
HEV | 13 kWh/100 km,4 L/100 km |
Fuel Type | NCV 1 | CC 2 | OF 2 | Density | Carbon Emission Factor |
---|---|---|---|---|---|
(T/TJ) | (%) | ||||
Gasoline | 43,124 kJ/kg | 18.9 | 0.98 | 0.725 kg/L | 2.123 kg/L |
Diesel | 42,705 kJ/kg | 20.2 | 0.98 | 0.835 kg/L | 2.588 kg/L |
CNG | 35,608 kJ/m3 | 15.3 | 0.99 | 0.71 kg/m3 | 1.978 kg/m3 |
LNG | 51,498 kJ/kg | 17.2 | 0.98 | 0.46 kg/m3 | 1.464 kg/m3 |
Hydrogen | — | — | — | — | 22.66 kg/kg |
Electric | — | — | — | — | 0.884 kg/(kWh) |
Transport Modes | Carbon Emission | Passenger Volume | Sharing of Carbon Emission | Sharing of Passenger Volume |
---|---|---|---|---|
(10-kt) | (10,000 Person-Times) | |||
Ground buses | 44.301 | 65,014 | 5.43% | 35.30% |
Private cars | 687.554 | 84,088 | 84.31% | 45.66% |
Taxis | 57.078 | 21,077 | 7.00% | 11.45% |
Rail transit | 26.583 | 13,975 | 3.26% | 7.59% |
Total | 815.516 | 184,154 | 100.00% | 100.00% |
Transport Modes | CO2 Emission | Average Trip Distance | Passenger Volume | Emission Factors |
---|---|---|---|---|
(10 kt) | (km) | (10,000 Person-Times) | (kg CO2/PKM) | |
Ground buses | 44.301 | 6.6 | 65,014 | 0.103 |
Private cars | 687.554 | 16.38 | 84,088 | 0.499 |
Cruising taxis | 29.7 | 5.86 | 10,415 | 0.487 |
Online-hailing taxis | 27.379 | 6.57 | 10,622 | 0.392 |
Rail transit | 26.583 | 9.3 | 13,975 | 0.205 |
Transport Modes | Fuel Type | Rate of Change (%) | SAF | ||||
---|---|---|---|---|---|---|---|
−10 | −5 | 0 | 5 | 10 | |||
Ground buses | BEV | 813.257 | 814.387 | 815.516 | 816.645 | 817.775 | 0.02769564 |
HEV | 815.415 | 815.466 | 815.516 | 815.566 | 815.617 | 0.00123545 | |
Hydrogen | 815.504 | 815.511 | 815.516 | 815.526 | 815.533 | 0.00017474 | |
Private cars | BEV | 814.463 | 814.989 | 815.516 | 816.043 | 816.569 | 0.01291622 |
HEV | 815.151 | 815.333 | 815.516 | 815.699 | 815.881 | 0.00447902 | |
Online-hailing taxis | BEV | 814.238 | 814.877 | 815.516 | 816.155 | 816.794 | 0.01567334 |
HEV | 815.086 | 815.301 | 815.516 | 815.731 | 815.946 | 0.00526802 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Lv, T.; Zhan, J.; Wang, S.; Pan, F. Carbon Emission Measurement of Urban Green Passenger Transport: A Case Study of Qingdao. Sustainability 2022, 14, 9588. https://doi.org/10.3390/su14159588
Li X, Lv T, Zhan J, Wang S, Pan F. Carbon Emission Measurement of Urban Green Passenger Transport: A Case Study of Qingdao. Sustainability. 2022; 14(15):9588. https://doi.org/10.3390/su14159588
Chicago/Turabian StyleLi, Xinguang, Tong Lv, Jun Zhan, Shen Wang, and Fuquan Pan. 2022. "Carbon Emission Measurement of Urban Green Passenger Transport: A Case Study of Qingdao" Sustainability 14, no. 15: 9588. https://doi.org/10.3390/su14159588