Leveraging Blockchain and Smart Contract Technologies to Overcome Circular Economy Implementation Challenges
Abstract
:1. Introduction
2. Barriers and Challenges While Implementing Circular Economy
3. Role of Information and Communication Technologies
4. Blockchain in General and Scope for Circular Economy Blockchain Implementation
4.1. Blockchain Features and Implementation Steps
4.2. Circular Economy Blockchain: Scope, Architecture, and Implementation Steps
5. Benefits and Challenges of Circular Economy Blockchain
5.1. Benefits and Promises of Circular Economy Blockchain
5.2. Challenges with Circular Economy Blockchain
5.2.1. Scalability, Data Storage Capacity, and Management Challenges
5.2.2. Data Privacy, Anonymity, and Security
5.2.3. Consensus, Smart Contracts, and Platforms
5.2.4. Cultural and Organizational Challenges
5.2.5. Policy and Regulatory Challenges
5.2.6. Financial Challenges
5.2.7. Lack of Skilled Workforce
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kirchherr, J.; Reike, D.; Hekkert, M. Conceptualizing the circular economy: An analysis of 114 definitions. Resour. Conserv. Recycl. 2017, 127, 221–232. [Google Scholar] [CrossRef]
- Bocken, N.M.P.; Olivetti, E.A.; Cullen, J.M.; Potting, J.; Lifset, R. Taking the Circularity to the Next Level: A Special Issue on the Circular Economy. J. Ind. Ecol. 2017, 21, 476–482. [Google Scholar] [CrossRef]
- Jacobi, N.; Haas, W.; Wiedenhofer, D.; Mayer, A. Providing an economy-wide monitoring framework for the circular economy in Austria: Status quo and challenges. Resour. Conserv. Recycl. 2018, 137, 156–166. [Google Scholar] [CrossRef]
- MacArthur, E. Circular Economy Overview. 2013. Available online: https://www.ellenmacarthurfoundation.org/circular-economy/concept (accessed on 24 December 2018).
- European Commission (Ed.) Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions A Roadmap for Moving to a Competitive Low Carbon Economy in 2050; European Commission: Brussels, Belgium, 2011. [Google Scholar]
- European Commission (Ed.) Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. Accelerating Europe’s Transition to a Low-Carbon Economy; European Commission: Brussels, Belgium, 2016. [Google Scholar]
- European Commission (Ed.) Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. Closing the Loop−An EU Action Plan for the Circular Economy; European Commission: Brussels, Belgium, 2015. [Google Scholar]
- de Oliveira, F.R.; França, S.L.B.; Rangel, L.A.D. Challenges and opportunities in a circular economy for a local productive arrangement of furniture in Brazil. Resour. Conserv. Recycl. 2018, 135, 202–209. [Google Scholar] [CrossRef]
- Mathews, J.A.; Tan, H. Circular economy: Lessons from China. Nature 2016, 531, 440–442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohnishi, S.; Fujii, M.; Fujita, T.; Matsumoto, T.; Dong, L.; Akiyama, H.; Dong, H. Comparative analysis of recycling industry development in Japan following the Eco-Town program for eco-industrial development. J. Clean. Prod. 2016, 114, 95–102. [Google Scholar] [CrossRef]
- McDowall, W.; Geng, Y.-J.; Huang, B.; Barteková, E.; Bleischwitz, R.; Türkeli, S.; Kemp, R.; Doménech, T. Circular Economy Policies in China and Europe. J. Ind. Ecol. 2017, 21, 651–661. [Google Scholar] [CrossRef] [Green Version]
- Gregson, N.; Crang, M.; Fuller, S.; Holmes, H. Interrogating the circular economy: The moral economy of resource recovery in the EU. Econ. Soc. 2015, 44, 218–243. [Google Scholar] [CrossRef]
- Mathews, J.A.; Tan, H. Progress toward a circular economy in China: The drivers (and inhibitors) of eco-industrial initiative. J. Ind. Ecol. 2011, 15, 435–457. [Google Scholar] [CrossRef]
- Schulze, G. Growth Within: A Circular Economy Vision for a Competitive Europe. Ellen MacArthur Foundation and the McKinsey Center for Business and Environment. 2016, pp. 1–22. Available online: https://www.mckinsey.com/business-functions/sustainability/our-insights/growth-within-a-circular-economy-vision-for-a-competitive-europe (accessed on 24 December 2018).
- European Commission. Study on Modelling of the Economic and Environmental Impacts of Raw Material Consumption; European Commission: Brussels, Belgium, 2014. [Google Scholar]
- Kirchherr, J.; Piscicelli, L.; Bour, R.; Kostense-Smit, E.; Muller, J.; Huibrechtse-Truijens, A.; Hekkert, M. Barriers to the Circular Economy: Evidence From the European Union (EU). Ecol. Econ. 2018, 150, 264–272. [Google Scholar] [CrossRef] [Green Version]
- Wijkman, A.; Skanberg, K. The Circular Economy and Benefits for Society–Swedish Case Study Shows Jobs and Climate as Clear Winners; An interim report by the Club of Rome with support from the MAVA Foundation and the Swedish Association of Recycling Industries; Club of Rome: Canton Zurich, Switzerland, 2015. [Google Scholar]
- De Vries, B.J.; Petersen, A.C. Conceptualizing sustainable development: An assessment methodology connecting values, knowledge, worldviews and scenarios. Ecol. Econ. 2009, 68, 1006–1019. [Google Scholar] [CrossRef] [Green Version]
- Gladek, E. The Seven Pillars of the Circular Economy. 2017. Available online: http://www.metabolic.nl/the-seven-pillars-of-the-circular-economy/ (accessed on 24 December 2018).
- Potting, J.; Hekkert, M.P.; Worrell, E.; Hanemaaijer, A. Circular Economy: Measuring Innovation in the Product Chain; PBL: The Hague, The Netherlands, 2017. [Google Scholar]
- Blomsma, F.; Brennan, G. The Emergence of Circular Economy: A New Framing Around Prolonging Resource Productivity. J. Ind. Ecol. 2017, 21, 603–614. [Google Scholar] [CrossRef]
- Lacy, P.; Rutqvistand, J. Waste to Wealth: The Circular Economy Advantage; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- de Jesus, A.; Mendonça, S. Lost in Transition? Drivers and Barriers in the Eco-innovation Road to the Circular Economy. Ecol. Econ. 2018, 145, 75–89. [Google Scholar] [CrossRef] [Green Version]
- Geng, Y.; Haight, M.; Zhu, Q. Empirical analysis of eco-industrial development in China. Sustain. Dev. 2007, 15, 121–133. [Google Scholar] [CrossRef]
- Geng, Y.; Doberstein, B. Developing the circular economy in China: Challenges and opportunities for achieving ‘leapfrog development’. Int. J. Sustain. Dev. World Ecol. 2008, 15, 231–239. [Google Scholar] [CrossRef] [Green Version]
- Ormazabal, M.; Prieto-Sandoval, V.; Puga-Leal, R.; Jaca, C. Circular Economy in Spanish SMEs: Challenges and opportunities. J. Clean. Prod. 2018, 185, 157–167. [Google Scholar] [CrossRef]
- Lacy, P. Using Digital Tech to Spin the Circular Economy. 2015, p. 105. Available online: https://www.smart-circle.org/circulareconomy/circulaire-economie/using-digital-tech-spin-circular-economy/ (accessed on 24 December 2018).
- Ellen MacArthur Foundation. Intelligent Assets: Unlocking the Circular Economy Potential; Ellen MacArthur Foundation: Cowes, UK, 2016; pp. 1–39. [Google Scholar]
- Maria Antikainen, T.U. Digitalization Accelerates the Circular Economy. 2018. Available online: https://vttblog.com/2018/06/27/digitalisation-accelerates-the-circular-economy/ (accessed on 3 January 2019).
- Nallapaneni, M.K.; Chopra, S.S. Sustainability and Resilience of Circular Economy Business Models Based on Digital Ledger Technologies. In Proceedings of the Nature Conference on Waste Management and Valorisation for a Sustainable Future, Seoul, Korea, 26–28 October 2021. [Google Scholar]
- Ruan, P.; Dinh, T.T.A.; Loghin, D.; Zhang, M.; Chen, G.; Lin, Q.; Ooi, B.C. Blockchains vs. Distributed Databases: Dichotomy and Fusion. In Proceedings of the 2021 International Conference on Management of Data, Virtual, China, 20–25 June 2021; pp. 1504–1517. [Google Scholar]
- Mont, O.; Dalhammar, C.; Jacobsson, N. A new business model for baby prams based on leasing and product remanufacturing. J. Clean. Prod. 2006, 14, 1509–1518. [Google Scholar] [CrossRef]
- Besch, K. Product-service systems for office furniture: Barriers and opportunities on the European market. J. Clean. Prod. 2005, 13, 1083–1094. [Google Scholar] [CrossRef] [Green Version]
- Pearce, J.A. The profit-making allure of product reconstruction. MIT Sloan Manag. Rev. 2009, 50, 59. [Google Scholar]
- Sundin, E.; Lindahl, M.; Ijomah, W. Product design for product/service systems: Design experiences from Swedish industry. J. Manuf. Technol. Manag. 2009, 20, 723–753. [Google Scholar] [CrossRef]
- Berchicci, L.; Bodewes, W. Bridging environmental issues with new product development. Bus. Strat. Environ. 2005, 14, 272–285. [Google Scholar] [CrossRef]
- Kuo, T.C.; Ma, H.-Y.; Huang, S.H.; Hu, A.H.; Huang, C.S. Barrier analysis for product service system using interpretive structural model. Int. J. Adv. Manuf. Technol. 2009, 49, 407–417. [Google Scholar] [CrossRef]
- Seitz, M.A. A critical assessment of motives for product recovery: The case of engine remanufacturing. J. Clean. Prod. 2007, 15, 1147–1157. [Google Scholar] [CrossRef]
- Östlin, J.; Sundin, E.; Björkman, M. Importance of closed-loop supply chain relationships for product remanufacturing. Int. J. Prod. Econ. 2008, 115, 336–348. [Google Scholar] [CrossRef] [Green Version]
- Östlin, J.; Sundin, E.; Björkman, M. Product life-cycle implications for remanufacturing strategies. J. Clean. Prod. 2009, 17, 999–1009. [Google Scholar] [CrossRef] [Green Version]
- King, A.M.; Burgess, S.C.; Ijomah, W.L.; McMahon, C.A. Reducing waste: Repair, recondition, remanufacture or recycle? Sustain. Dev. 2006, 14, 257–267. [Google Scholar] [CrossRef] [Green Version]
- Guiltinan, J. Creative Destruction and Destructive Creations: Environmental Ethics and Planned Obsolescence. J. Bus. Ethic. 2009, 89, 19–28. [Google Scholar] [CrossRef]
- Michaud, C.; Llerena, D. Green consumer behaviour: An experimental analysis of willingness to pay for remanufactured products. Bus. Strat. Environ. 2010, 20, 408–420. [Google Scholar] [CrossRef]
- Linder, M.; Williander, M. Circular Business Model Innovation: Inherent Uncertainties. Bus. Strat. Environ. 2017, 26, 182–196. [Google Scholar] [CrossRef]
- Preston, F. A Global Redesign? Shaping the Circular Economy; Chatham House London: London, UK, 2012. [Google Scholar]
- Bicket, M.; Guilcher, S.; Hestin, M.; Hudson, C.; Razzini, P.; Tan, A.; ten Brink, P.; van Dijl, E.; Vanner, R.; Watkins, E. Scoping Study to Identify Potential Circular Economy Actions, Priority Sectors, Material Flows and Value Chains; Luxembourg Publications Office of the European Union: Luxembourg, 2014. [Google Scholar]
- Van Eijk, F. Barriers & Drivers Towards a Circular Economy. Acceleratio BV. 2015. Available online: www.circulairondernemen. nl/uploads/e00e8643951aef8adde612123e824493.pdf (accessed on 24 December 2018).
- Rizos, V.; Behrens, A.; Kafyeke, T.; Hirschnitz-Garbers, M.; Ioannou, A. The Circular Economy: Barriers and Opportunities for SMEs. CEPS Working Documents. 2015. Available online: https://ssrn.com/abstract=2664489 (accessed on 24 December 2018).
- Ormazabal, M.; Prieto-Sandoval, V.; Jaca, C.; Santos, J. An overview of the circular economy among SMEs in the Basque country: A multiple case study. J. Ind. Eng. Manag. 2016, 9, 1047–1058. [Google Scholar] [CrossRef] [Green Version]
- Ritzén, S.; Sandström, G. Barriers to the Circular Economy—Integration of Perspectives and Domains. Procedia CIRP 2017, 64, 7–12. [Google Scholar] [CrossRef]
- Rizos, V.; Behrens, A.; Van Der Gaast, W.; Hofman, E.; Ioannou, A.; Kafyeke, T.; Flamos, A.; Rinaldi, R.; Papadelis, S.; Hirschnitz-Garbers, M.; et al. Implementation of Circular Economy Business Models by Small and Medium-Sized Enterprises (SMEs): Barriers and Enablers. Sustainability 2016, 8, 1212. [Google Scholar] [CrossRef] [Green Version]
- Van Renswoude, K.; ten Wolde, A.; Joustra, D.J. Circular Business Models—Part 1: An introduction to IMSA’s Circular Business Model Scan; IMSA: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Amsterdam, I. Unleashing the Power of the Circular Economy; IMSA: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Mont, O.; Plepys, A.; Whalen, K.; Nußholz, J.L.K. Business Model Innovation for a Circular Economy: Drivers and Barriers for the Swedish Industry—The Voice of REES Companies; Mistra REES: Lund, Sweden, 2017; Available online: https://lucris.lub.lu.se/ws/portalfiles/portal/33914256/MISTRA_REES_Drivers_and_Barriers_Lund.pdf (accessed on 24 December 2018).
- Korhonen, J.; Honkasalo, A.; Seppälä, J. Circular Economy: The Concept and its Limitations. Ecol. Econ. 2018, 143, 37–46. [Google Scholar] [CrossRef]
- Reuter, M.A.; Matusewicz, R.; van Schaik, A. Lead, Zinc and their minor elements: Enablers of a circular economy. World Met.-Erzmetall 2015, 68, 132–146. [Google Scholar]
- Shuva, M.A.H.; Rhamdhani, M.A.; Brooks, G.A.; Masood, S.H.; Reuter, M.A. Thermodynamics data of valuable elements relevant to e-waste processing through primary and secondary copper production: A review. J. Clean. Prod. 2016, 131, 795–809. [Google Scholar] [CrossRef]
- van Schalkwyk, R.; Reuter, M.; Gutzmer, J.; Stelter, M. Challenges of digitalizing the circular economy: Assessment of the state-of-the-art of metallurgical carrier metal platform for lead and its associated technology elements. J. Clean. Prod. 2018, 186, 585–601. [Google Scholar] [CrossRef]
- Shi, J.; Zhou, J.; Zhu, Q. Barriers of a closed-loop cartridge remanufacturing supply chain for urban waste recovery governance in China. J. Clean. Prod. 2018, 212, 1544–1553. [Google Scholar] [CrossRef]
- Pheifer, A.G. Barriers & Enablers to Circular Business Models. White Paper. ValueC, Brielle. 2017. Available online: https://www.scribd.com/document/502885354/Barriers-and-Enablers-to-Circular-Business-Models# (accessed on 9 January 2019).
- Pagoropoulos, A.; Pigosso, D.C.; McAloone, T.C. The Emergent Role of Digital Technologies in the Circular Economy: A Review. Procedia CIRP 2017, 64, 19–24. [Google Scholar] [CrossRef] [Green Version]
- Antikainen, M.; Uusitalo, T.; Kivikytö-Reponen, P. Digitalisation as an Enabler of Circular Economy. Procedia CIRP 2018, 73, 45–49. [Google Scholar] [CrossRef]
- Townsend, J. ICT for Sustainability Beyond Efficiency: Pushing Cleantech and the Circular Economy. In ICT4S. 2018. Available online: https://ww.easychair.org/publications/download/L74j (accessed on 9 January 2019).
- European Policy Centre (EPC). Digital Roadmap for a Circular Economy. Sustainable Prosperity for Europe. Available online: https://www.epc.eu/prog_forum.php?forum_id=77&prog_id=2 (accessed on 9 January 2019).
- Deloitte. Circular Goes Digital. 2018, pp. 1–2. Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwjWh9695pr5AhWGEKYKHZmDCm4QFnoECBgQAQ&url=https%3A%2F%2Fwww2.deloitte.com%2Fcontent%2Fdam%2FDeloitte%2Ffi%2FDocuments%2Frisk%2FCircular%2520goes%2520digital.pdf&usg=AOvVaw3mLQI0u27FTtcP5HMkhEwF (accessed on 9 January 2019).
- Pardo, R. How the Circular Economy can benefit from the Digital Revolution. EPC Commentary, 11 April 2018. [Google Scholar]
- Jaoude, J.A.; Saade, R.G. Blockchain Applications–Usage in Different Domains. IEEE Access 2019, 7, 45360–45381. [Google Scholar] [CrossRef]
- Makhdoom, I.; Abolhasan, M.; Abbas, H.; Ni, W. Blockchain’s adoption in IoT: The challenges, and a way forward. J. Netw. Comput. Appl. 2018, 125, 251–279. [Google Scholar] [CrossRef]
- Christidis, K.; Devetsikiotis, M. Blockchains and Smart Contracts for the Internet of Things. IEEE Access 2016, 4, 2292–2303. [Google Scholar] [CrossRef]
- Ruan, P.; Chen, G.; Dinh, T.T.A.; Lin, Q.; Ooi, B.C.; Zhang, M. Fine-grained, secure and efficient data provenance on blockchain systems. Proc. VLDB Endow. 2019, 12, 975–988. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Peng, Z.; Gao, S.; Xiao, B.; Chan, H. Smartphone-assisted energy efficient data communication for wearable devices. Comput. Commun. 2017, 105, 33–43. [Google Scholar] [CrossRef]
- Gao, S.; Peng, Z.; Xiao, B.; Xiao, Q.; Song, Y. SCoP: Smartphone energy saving by merging push services in Fog computing. In Proceedings of the 2017 IEEE/ACM 25th International Symposium on Quality of Service (IWQoS), Vilanova i la Geltrú, Spain, 14–16 June 2017; pp. 1–10. [Google Scholar]
- Luu, L.; Chu, D.-H.; Olickel, H.; Saxena, P.; Hobor, A. Making smart contracts smarter. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna, Austria, 24–28 October 2016. [Google Scholar]
- Narayanan, A.; Bonneau, J. Bitcoin and Cryptocurrency Technologies: A Comprehensive Introduction; Princeton University Press: Princeton, NJ, USA, 2016. [Google Scholar]
- Ølnes, S.; Ubacht, J.; Janssen, M. Blockchain in government: Benefits and implications of distributed ledger technology for information sharing. Gov. Inf. Q. 2017, 34, 355–364. [Google Scholar] [CrossRef] [Green Version]
- Buterin, V. On Public and Private Blockchains. Ethereum Blog. Posted on 7 August 2015. Available online: https://blog.ethereum.org/2015/08/07/on-public-and-private-blockchains/ (accessed on 10 January 2019).
- Zheng, Z.; Xie, S.; Dai, S.-N.; Chen, X. Blockchain challenges and opportunities: A survey. Int. J. Web Grid Serv. 2018, 14, 352–375. [Google Scholar] [CrossRef]
- Nakamoto, S. Bitcoin: A Peer-to-Peer Electronic Cash System. 2008. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3440802 (accessed on 10 January 2019).
- Haferkorn, M.; Diaz, J.M.Q. Seasonality and interconnectivity within cryptocurrencies-an analysis on the basis of Bitcoin, Litecoin and Namecoin. In International Workshop on Enterprise Applications and Services in the Finance Industry; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Casino, F.; Dasaklis, T.K.; Patsakis, C. A systematic literature review of blockchain-based applications: Current status, classification and open issues. Telematics Informatics 2018, 36, 55–81. [Google Scholar] [CrossRef]
- Vukolić, M. The quest for scalable blockchain fabric: Proof-of-work vs. BFT replication. In International Workshop on Open Problems in Network Security; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Kiayias, A.; Russell, A.; David, B.; Oliynykov, R. Ouroboros: A Provably Secure Proof-of-Stake Blockchain Protocol. IACR Cryptology ePrint Archive. 2016, pp. 1–67. Available online: https://eprint.iacr.org/2016/889.pdf (accessed on 28 September 2019).
- Castro, M.; Liskov, B. Practical byzantine fault tolerance and proactive recovery. ACM Trans. Comput. Syst. 2002, 20, 398–461. [Google Scholar] [CrossRef]
- Huang, B.; Zhao, J.; Chai, J.; Xue, B.; Zhao, F.; Wang, X. Environmental influence assessment of China’s multi-crystalline silicon (multi-Si) photovoltaic modules considering recycling process. Sol. Energy 2017, 143, 132–141. [Google Scholar] [CrossRef]
- Kouhizadeh, M.; Sarkis, J.; Zhu, Q. At the Nexus of Blockchain Technology, the Circular Economy, and Product Deletion. Appl. Sci. 2019, 9, 1712. [Google Scholar] [CrossRef] [Green Version]
- Manupati, V.; Schoenherr, T.; Ramkumar, M.; Panigrahi, S.; Sharma, Y.; Mishra, P. Recovery strategies for a disrupted supply chain network: Leveraging blockchain technology in pre- and post-disruption scenarios. Int. J. Prod. Econ. 2021, 245, 108389. [Google Scholar] [CrossRef]
- Swan, M. Blockchain: Blueprint for a New Economy; O’Reilly Media, Inc.: Sevastopol, CA, USA, 2015. [Google Scholar]
- Cartier, L.E.; Ali, S.H.; Krzemnicki, M.S. Blockchain, Chain of Custody and Trace Elements: An Overview of Tracking and Traceability Opportunities in the Gem Industry. J. Gemmol. 2018, 36, 212–227. [Google Scholar] [CrossRef]
- Raj, P.V.R.P.; Jauhar, S.K.; Ramkumar, M.; Pratap, S. Procurement, traceability and advance cash credit payment transactions in supply chain using blockchain smart contracts. Comput. Ind. Eng. 2022, 167, 108038. [Google Scholar] [CrossRef]
- Kuo, T.-T.; Ohno-Machado, L. Modelchain: Decentralized privacy-preserving healthcare predictive modeling framework on private blockchain networks. arXiv 2018, arXiv:1802.01746. [Google Scholar]
- Huckle, S.; Bhattacharya, R.; White, M.; Beloff, N. Internet of Things, Blockchain and Shared Economy Applications. Procedia Comput. Sci. 2016, 98, 461–466. [Google Scholar] [CrossRef] [Green Version]
- Pazaitis, A.; De Filippi, P.; Kostakis, V. Blockchain and value systems in the sharing economy: The illustrative case of Backfeed. Technol. Forecast. Soc. Chang. 2017, 125, 105–115. [Google Scholar] [CrossRef]
- Wu, H.; Peng, Z.; Guo, S.; Yang, Y.; Xiao, B. VQL: Efficient and Verifiable Cloud Query Services for Blockchain Systems. IEEE Trans. Parallel Distrib. Syst. 2021, 33, 1393–1406. [Google Scholar] [CrossRef]
- Isaja, M.; Soldatos, J.K. Distributed Ledger Architecture for Automation, Analytics and Simulation in Industrial Environments. IFAC-PapersOnLine 2018, 51, 370–375. [Google Scholar] [CrossRef]
- Angrish, A.; Craver, B.; Hasan, M.; Starly, B. A Case Study for Blockchain in Manufacturing: “FabRec”: A Prototype for Peer-to-Peer Network of Manufacturing Nodes. Procedia Manuf. 2018, 26, 1180–1192. [Google Scholar] [CrossRef]
- Zhu, Q.; Kouhizadeh, M. Blockchain Technology, Supply Chain Information, and Strategic Product Deletion Management. IEEE Eng. Manag. Rev. 2019, 47, 36–44. [Google Scholar] [CrossRef]
- Yli-Huumo, J.; Ko, D.; Choi, S.; Park, S.; Smolander, K. Where Is Current Research on Blockchain Technology?—A Systematic Review. PLoS ONE 2016, 11, e0163477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reyna, A.; Martín, C.; Chen, J.; Soler, E.; Díaz, M. On blockchain and its integration with IoT. Challenges and opportunities. Futur. Gener. Comput. Syst. 2018, 88, 173–190. [Google Scholar] [CrossRef]
- Eberhardt, J.; Tai, S. On or off the blockchain? Insights on off-chaining computation and data. In Proceedings of the European Conference on Service-Oriented and Cloud Computing, Oslo, Norway, 27–29 September 2017; Springer: Berlin/Heidelberg, Germany, 2017.
- Mougayar, W. The Business Blockchain: Promise, Practice, and Application of the Next Internet Technology; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Pongnumkul, S.; Siripanpornchana, C.; Thajchayapong, S. Performance analysis of private blockchain platforms in varying workloads. In Proceedings of the 2017 26th International Conference on Computer Communication and Networks (ICCCN), Vancouver, BC, Canada, 31 July–3 August 2017. [Google Scholar]
- Lopez, J.; Rios, R.; Bao, F.; Wang, G. Evolving privacy: From sensors to the Internet of Things. Futur. Gener. Comput. Syst. 2017, 75, 46–57. [Google Scholar] [CrossRef]
- Roman, R.; Zhou, J.; Lopez, J. On the features and challenges of security and privacy in distributed internet of things. Comput. Networks 2013, 57, 2266–2279. [Google Scholar] [CrossRef]
- Li, Z.; Gao, S.; Peng, Z.; Guo, S.; Yang, Y.; Xiao, B. B-DNS: A Secure and Efficient DNS Based on the Blockchain Technology. IEEE Trans. Netw. Sci. Eng. 2021, 8, 1674–1686. [Google Scholar] [CrossRef]
- Liu, C.; Yang, C.; Zhang, X.; Chen, J. External integrity verification for outsourced big data in cloud and IoT: A big picture. Futur. Gener. Comput. Syst. 2015, 49, 58–67. [Google Scholar] [CrossRef]
- Mathiyazhagan, K.; Govindan, K.; NoorulHaq, A.; Geng, Y. An ISM approach for the barrier analysis in implementing green supply chain management. J. Clean. Prod. 2013, 47, 283–297. [Google Scholar] [CrossRef]
- Jharkharia, S.; Shankar, R. IT-enablement of supply chains: Understanding the barriers. J. Enterp. Inf. Manag. 2005, 18, 11–27. [Google Scholar] [CrossRef]
- Gorane, S.; Kant, R. Modelling the SCM implementation barriers: An integrated ISM-fuzzy MICMAC approach. J. Model. Manag. 2015, 10, 158–178. [Google Scholar] [CrossRef]
- Kiviat, T.I. Beyond bitcoin: Issues in regulating blockchain transactions. Duke Law J. 2015, 65, 569–608. [Google Scholar]
- Mangla, S.K.; Luthra, S.; Mishra, N.; Singh, A.; Rana, N.P.; Dora, M.; Dwivedi, Y. Barriers to effective circular supply chain management in a developing country context. Prod. Plan. Control 2018, 29, 551–569. [Google Scholar] [CrossRef] [Green Version]
Barrier Category | Challenges | Reference |
---|---|---|
Technological | -Limited consideration in the present product design for the EOL phase | [47] |
-Limited recycled material availability | [47,52,53] | |
-No proper evidence on the quality of recycled PCMs | [47,53] | |
-Lack of experience, especially the proven and demonstrated CE projects and lack of technical framework on product redesign as the linear technologies are deeply rooted | [47] | |
-Existing inefficiencies to develop new business strategies and sustainable footprint (e.g., eco-design, circular design, design for reuse-repair-refurbish remanufacture- recycling, design for services instead of ownership) | [47] | |
-Lacking the manufacturing ability to deliver high-quality remanufactured PCMs | [16] | |
-Operational risk due to the use of cheap or lower-grade technical solutions | [37] | |
-Lack of tools and data models the define the efficiency of CE projects, thermodynamic limitations | [54,55,56,57,58] | |
Financial | -High or significant upfront investment costs | [16,45,47,54] |
-Low virgin material prices and recycled materials tend to be even more costly than fresh materials | [16,54] | |
-Limited funding for CE business models | [16] | |
-Challenges in the predictability and reliability of return flow | [40] | |
-Environmental costs | [47] | |
-A shareholder with short-term agendas dominates the company governance | [47] | |
- Increased management and planning costs of CE projects | [47] | |
-Capital tied up between the stakeholders | [47] | |
Infrastructural | -Limited applications of new business models | [47] |
-Lack of secure information exchange system (IES) | [47] | |
-The capacity of reverse logistics limits-Exchange of materials | [47] | |
-Inadequate information management system (IMS) | [47] | |
-Lack of qualified professionals in environment management | [47] | |
-Limited dissemination of innovation | [45] | |
-Resource-intensive infrastructure lock-in | [45] | |
-Very few large-scale demonstration projects | [16,53] | |
-Lack of technical resources or facilities | [36,47,48] | |
Institutional | -Lack of global consensus | [16] |
-Obstructing laws and regulations | [16] | |
-Lack of supportive policy frameworks | [16] | |
-Lack of smart regulations | [16] | |
-Limited circular procurement | [16] | |
-Effective integration of circularity principles into policy innovation is still lacking | [47] | |
-Financial governance incentive support for the linear business models still exists | [47] | |
-Recycling policies to obtain high-quality material flows are inefficient | [47] | |
-Governance concerns related to duties, obligations, and ownership | [47] | |
-Lack of support from the public institutions | [25,45,50] | |
Societal | -Hesitant culture of the organization | [16] |
-Lack of awareness of benefits and readiness to work together throughout the value chain | [16] | |
-A secure attachment to a linear system | [16] | |
-Lack of visionary leadership for CE transition | [7] | |
-The difference in attitudes and behavior of employees | [8] | |
-Changing consumer preferences | [16] | |
-Lack of awareness among consumers | [16] | |
-Consumers prefer new products | [10] | |
-The dynamic mindset of the consumers | [16] | |
-Customer type restriction | [13] | |
-Cooperation of external partners | [32] | |
-Challenges in collaborating with other companies due to partner restrictions | [32,54] | |
-Lack of willingness to contribute to sustainability | [16] | |
-Lack of confidence and trust is hampering the exchange of information | [47] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, N.M.; Chopra, S.S. Leveraging Blockchain and Smart Contract Technologies to Overcome Circular Economy Implementation Challenges. Sustainability 2022, 14, 9492. https://doi.org/10.3390/su14159492
Kumar NM, Chopra SS. Leveraging Blockchain and Smart Contract Technologies to Overcome Circular Economy Implementation Challenges. Sustainability. 2022; 14(15):9492. https://doi.org/10.3390/su14159492
Chicago/Turabian StyleKumar, Nallapaneni Manoj, and Shauhrat S. Chopra. 2022. "Leveraging Blockchain and Smart Contract Technologies to Overcome Circular Economy Implementation Challenges" Sustainability 14, no. 15: 9492. https://doi.org/10.3390/su14159492