Using Compound-Specific Carbon Stable Isotope Analysis of Squalene to Establish Provenance and Ensure Sustainability for the Deep-Water Shark Liver Oil Industry
Abstract
:1. Introduction
- In Southern Australia, deep-water dogfish have historically been caught on the slopes of the continental shelf with the catch divided into two groups which are sustainably managed by the Australian Fisheries Management Authority (AFMA) [13,14]: Upper-slope (shallower) species comprise the gulper sharks (Centrophorus spp.) and green eye species (Squalus spp.). Individuals in this group typically have life histories with slow maturity and low fecundity. Three species (Centrophorus harrissoni, Centrophorus moluccensis and Centrophorus zeehaani) from this group are listed as conservation-dependent under the Australian Environmental Protection and Biodiversity Conservation (EPBC) Act and several have poor (threatened) International Union for the Conservation of Nature (IUCN) listings. The AFMA has in place a rebuilding strategy for several of these sharks.
- The mid-slope (deeper) species are managed by the AFMA as the ‘Deep-water Shark Basket’ (DWSs). DWSs are a management basket of 18 species from five families. More than 90% of those harvested are a single species, Deania calcea (aka ‘Birdbeak Dogfish’/‘Brier Shark’/‘Shovelnose Spiny Dogfish’), which has an IUCN listing of “least concern”, is not EPBC listed and is not subject to a rebuilding plan. DWSs have significantly higher productive life histories than gulper sharks.
2. Materials and Methods
2.1. Squalene Isolation
2.2. Compound-Specific Stable Isotope Analysis
2.3. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bakes, M.J.; Nichols, P.D. Lipid, Fatty Acid and Squalene Composition of Liver Oil from Six Species of Deep-Sea Sharks Collected in Southern Australian Waters. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 1995, 110, 267–275. [Google Scholar] [CrossRef]
- Popa, O.; Băbeanu, N.E.; Popa, I.; Niță, S.; Dinu-Pârvu, C.E. Methods for Obtaining and Determination of Squalene from Natural Sources. BioMed Res. Int. 2015, 2015, e367202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Camin, F.; Bontempo, L.; Ziller, L.; Piangiolino, C.; Morchio, G. Stable Isotope Ratios of Carbon and Hydrogen to Distinguish Olive Oil from Shark Squalene-Squalane. Rapid Commun. Mass Spectrom. RCM 2010, 24, 1810–1816. [Google Scholar] [CrossRef]
- Lozano-Grande, M.A.; Gorinstein, S.; Espitia-Rangel, E.; Dávila-Ortiz, G.; Martínez-Ayala, A.L. Plant Sources, Extraction Methods, and Uses of Squalene. Int. J. Agron. 2018, 2018, e1829160. [Google Scholar] [CrossRef]
- Eyres, L.; Croft, J.; McNeill, A.; Nichols, P. Potential of Squalene as a Functional Lipid in Foods and Cosmetics. Lipid Technol. 2002, 14, 104–109. [Google Scholar]
- Parente, M.E.; Ga´ Mbaro, A.; Solana, G. Study of Sensory Properties of Emollients Used in Cosmetics and Their Correlation with Physicochemical Properties. Int. J. Cosmet. Sci. 2005, 27, 354. [Google Scholar] [CrossRef]
- Narayan Bhilwade, H.; Tatewaki, N.; Nishida, H.; Konishi, T. Squalene as Novel Food Factor. Curr. Pharm. Biotechnol. 2010, 11, 875–880. [Google Scholar] [CrossRef]
- Brito, L.A.; Chan, M.; Baudner, B.; Gallorini, S.; Santos, G.; O’Hagan, D.T.; Singh, M. An Alternative Renewable Source of Squalene for Use in Emulsion Adjuvants. Vaccine 2011, 29, 6262–6268. [Google Scholar] [CrossRef]
- Merly, L.; Smith, S.L. Shark-Derived Immunomodulators. In Immunobiology of the Shark; Smith, S.L., Sim, R.B., Flajnik, M.F., Eds.; CRC Press: Boca Raton, FL, USA, 2014; pp. 287–301. ISBN 978-0-429-16968-7. [Google Scholar]
- Gohil, N.; Bhattacharjee, G.; Khambhati, K.; Braddick, D.; Singh, V. Corrigendum: Engineering Strategies in Microorganisms for the Enhanced Production of Squalene: Advances, Challenges and Opportunities. Front. Bioeng. Biotechnol. 2019, 7, 50. [Google Scholar] [CrossRef] [PubMed]
- Prohaska, B.K.; Talwar, B.S.; Grubbs, R.D. Blood Biochemical Status of Deep-Sea Sharks Following Longline Capture in the Gulf of Mexico. Conserv. Physiol. 2021, 9, coaa113. [Google Scholar] [CrossRef]
- Dell’Apa, A.; Johnson, J.C.; Kimmel, D.G.; Rulifson, R.A. The International Trade and Fishery Management of Spiny Dogfish: A Social Network Approach. Ocean Coast. Manag. 2013, 80, 65–72. [Google Scholar] [CrossRef]
- AFMA. Upper-Slope-Dogfish-Management-Strategy; AFMA-Managed Fisheries; Australian Fisheries Management Authority (AFMA): Canberra, Australia, 2012; p. 43.
- AFMA. Assessment of the Commonwealth Southern and Eastern Scalefish and Shark Fishery; Species Summaries 2021; Australian Fisheries Management Authority (AFMA): Canberra, Australia, 2022; p. 63.
- Zhao, Y.; Zhang, B.; Chen, G.; Chen, A.; Yang, S.; Ye, Z. Recent Developments in Application of Stable Isotope Analysis on Agro-Product Authenticity and Traceability. Food Chem. 2014, 145, 300–305. [Google Scholar] [CrossRef] [PubMed]
- Camin, F.; Boner, M.; Bontempo, L.; Fauhl-Hassek, C.; Kelly, S.D.; Riedl, J.; Rossmann, A. Stable Isotope Techniques for Verifying the Declared Geographical Origin of Food in Legal Cases. Trends Food Sci. Technol. 2017, 61, 176–187. [Google Scholar] [CrossRef]
- Monahan, F.J.; Schmidt, O.; Moloney, A.P. Meat Provenance: Authentication of Geographical Origin and Dietary Background of Meat. Meat Sci. 2018, 144, 2–14. [Google Scholar] [CrossRef]
- Roßmann, A.; Reniero, F.; Moussa, I.; Schmidt, H.-L.; Versini, G.; Merle, M.H. Stable Oxygen Isotope Content of Water of EU Data-Bank Wines from Italy, France and Germany. Z. Leb.—Forsch. A 1999, 208, 400–407. [Google Scholar] [CrossRef]
- Zhou, X.; Taylor, M.P.; Salouros, H.; Prasad, S. Authenticity and Geographic Origin of Global Honeys Determined Using Carbon Isotope Ratios and Trace Elements. Sci. Rep. 2018, 8, 14639. [Google Scholar] [CrossRef] [Green Version]
- Matos, M.P.V.; Jackson, G.P. Isotope Ratio Mass Spectrometry in Forensic Science Applications. Forensic Chem. 2019, 13, 100154. [Google Scholar] [CrossRef]
- Gamboa-Delgado, J.; Molina-Poveda, C.; Godínez-Siordia, D.E.; Villarreal-Cavazos, D.; Ricque-Marie, D.; Cruz-Suárez, L.E. Application of Stable Isotope Analysis to Differentiate Shrimp Extracted by Industrial Fishing or Produced through Aquaculture Practices. Can. J. Fish. Aquat. Sci. 2014, 71, 1520–1528. [Google Scholar] [CrossRef] [Green Version]
- Gopi, K.; Mazumder, D.; Sammut, J.; Saintilan, N.; Crawford, J.; Gadd, P. Isotopic and Elemental Profiling to Trace the Geographic Origins of Farmed and Wild-Caught Asian Seabass (Lates Calcarifer). Aquaculture 2019, 502, 56–62. [Google Scholar] [CrossRef]
- Carter, J.F.; Tinggi, U.; Yang, X.; Fry, B. Stable Isotope and Trace Metal Compositions of Australian Prawns as a Guide to Authenticity and Wholesomeness. Food Chem. 2015, 170, 241–248. [Google Scholar] [CrossRef]
- Gopi, K.; Mazumder, D.; Sammut, J.; Saintilan, N.; Crawford, J.; Gadd, P. Combined Use of Stable Isotope Analysis and Elemental Profiling to Determine Provenance of Black Tiger Prawns (Penaeus Monodon). Food Control 2019, 95, 242–248. [Google Scholar] [CrossRef]
- Parker, I.G.; Kelly, S.D.; Sharman, M.; Dennis, M.J.; Howie, D. Investigation into the Use of Carbon Isotope Ratios (13C/12C) of Scotch Whisky Congeners to Establish Brand Authenticity Using Gas Chromatography-Combustion-Isotope Ratio Mass Spectrometry. Food Chem. 1998, 63, 423–428. [Google Scholar] [CrossRef]
- Spangenberg, J.E.; Dionisi, F. Characterization of Cocoa Butter and Cocoa Butter Equivalents by Bulk and Molecular Carbon Isotope Analyses: Implications for Vegetable Fat Quantification in Chocolate. J. Agric. Food Chem. 2001, 49, 4271–4277. [Google Scholar] [CrossRef]
- Paolini, M.; Bontempo, L.; Camin, F. Compound-Specific δ13C and δ2H Analysis of Olive Oil Fatty Acids. Talanta 2017, 174, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Rau, G.H.; Takahashi, T.; Marais, D.J.D. Latitudinal Variations in Plankton δ13C: Implications for CO2 and Productivity in Past Oceans. Nature 1989, 341, 516–518. [Google Scholar] [CrossRef] [PubMed]
- Rau, G.H.; Sweeney, R.E.; Kaplan, I.R. Plankton 13C:12C Ratio Changes with Latitude: Differences between Northern and Southern Oceans. Deep Sea Res. Part Oceanogr. Res. Pap. 1982, 29, 1035–1039. [Google Scholar] [CrossRef]
- Fry, B.; Sherr, E.B. δ13C Measurements as Indicators of Carbon Flow in Marine and Freshwater Ecosystems. In Stable Isotopes in Ecological Research; Rundel, P.W., Ehleringer, J.R., Nagy, K.A., Eds.; Springer: New York, NY, USA, 1989; pp. 196–229. [Google Scholar]
- Longinelli, A.; Lenaz, R.; Ori, C.; Selmo, E. Concentrations and δ13C Values of Atmospheric CO2 from Oceanic Atmosphere through Time: Polluted and Non-Polluted Areas. Tellus B Chem. Phys. Meteorol. 2005, 57, 385–390. [Google Scholar] [CrossRef] [Green Version]
- Rounick, J.S.; Winterbourn, M.J. Stable Carbon Isotopes and Carbon Flow in Ecosystems: Measuring 13C to 12C Ratios Can Help Trace Carbon Pathways. BioScience 1986, 36, 171–177. [Google Scholar] [CrossRef]
- Lamb, A.L.; Wilson, G.P.; Leng, M.J. A Review of Coastal Palaeoclimate and Relative Sea-Level Reconstructions Using δ13C and C/N Ratios in Organic Material. Earth-Sci. Rev. 2006, 75, 29–57. [Google Scholar] [CrossRef]
- Michener, R.H.; Kaufman, L. Stable Isotope Ratios as Tracers in Marine Food Webs: An Update. In Stable Isotopes in Ecology and Environmental Science; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2007; pp. 238–282. ISBN 978-0-470-69185-4. [Google Scholar]
Oil Sample Origin | δ13C (‰ vs. V-PDB 1) | SD |
---|---|---|
AUS | −22.6 | 0.3 |
AUS | −22.6 | 0.1 |
AUS | −22.5 | 0.1 |
AUS | −22.6 | 0.2 |
AUS | −22.5 | 0.1 |
AUS | −22.6 | 0.2 |
AUS | −22.3 | 0.2 |
NZ | −22.5 | 0.3 |
NZ | −24.2 | 0.1 |
NZ | −22.3 | 0.1 |
NZ | −22.4 | 0.1 |
NZ | −22.1 | 0.2 |
NZ | −22.4 | 0.2 |
NZ | −22.4 | 0.2 |
India | −20.4 | 0.2 |
Northeast Africa | −20.6 | 0.1 |
Northeast Africa | −20.7 | 0.1 |
Northeast Africa | −20.6 | 0.2 |
Arabian Sea | −19.9 | 0.2 |
Arabian Sea | −20.1 | 0.2 |
Capsule | Product Origin Information 1 | δ13C (‰ vs. V-PDB 2) | SD | |
---|---|---|---|---|
Australian Made 3 | Australian Squalene 4 | |||
1 | Y | n.s. | −21.1 | 0.1 |
2 | Y | n.s. | −20.8 | 0.1 |
3 | Y | n.s. | −21.1 | 0.1 |
4 | Y | n.s. | −21.2 | 0.0 |
5 | Y | n.s. | −22.0 | 0.1 |
6 | n.s. | n.s. | −21.1 | 0.2 |
7 | Y | n.s. | −21.3 | 0.5 |
8 | Y | Y | −21.2 | 0.1 |
9 | Y | Y | −21.6 | 0.3 |
10 | Y | Y | −22.0 | 0.1 |
11 | n.s. | n.s. | −20.5 | 0.1 |
12 | n.s. | n.s. | −20.5 | 0.0 |
13 | Y | n.s. | −21.1 | 0.1 |
14 | n.s. | n.s. | −21.1 | 0.2 |
15 | n.s. | n.s. | −20.8 | 0.2 |
16 | Y | n.s. | −21.5 | 0.1 |
17 | Y | n.s. | −21.1 | 0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Revill, A.T.; Saul, R.; Brewer, E.A.; Nichols, P.D. Using Compound-Specific Carbon Stable Isotope Analysis of Squalene to Establish Provenance and Ensure Sustainability for the Deep-Water Shark Liver Oil Industry. Sustainability 2022, 14, 9228. https://doi.org/10.3390/su14159228
Revill AT, Saul R, Brewer EA, Nichols PD. Using Compound-Specific Carbon Stable Isotope Analysis of Squalene to Establish Provenance and Ensure Sustainability for the Deep-Water Shark Liver Oil Industry. Sustainability. 2022; 14(15):9228. https://doi.org/10.3390/su14159228
Chicago/Turabian StyleRevill, Andrew T., Richard Saul, Elizabeth A. Brewer, and Peter D. Nichols. 2022. "Using Compound-Specific Carbon Stable Isotope Analysis of Squalene to Establish Provenance and Ensure Sustainability for the Deep-Water Shark Liver Oil Industry" Sustainability 14, no. 15: 9228. https://doi.org/10.3390/su14159228