# Research on the Deployment of Joint Dedicated Lanes for CAVs and Buses

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Literature Review

#### 2.1. Previous Research on Heterogeneous Traffic Flows

#### 2.2. Available Studies on Enhancing the Utilisation of Bus Lanes

#### 2.3. Existing Explorations on CAV Dedicated Lanes

#### 2.4. Summary of Literature Reviews

## 3. Methodology

#### 3.1. Basic Assumptions

#### 3.2. Description of a Multi-Modal Traffic Network

#### 3.3. Path Generalized Travel Costs Considering Bus Congestion Effects

#### 3.4. Multi-Principle Traffic Assignment Model under Heterogeneous Traffic Streams

#### 3.5. Deployment Model for Joint Dedicated Lane Deployment under Heterogeneous Traffic Stream

## 4. Solution Algorithms

## 5. Numerical Examples

#### 5.1. Nguyen–Dupuis Network Description

#### 5.2. Basic Scenario Analysis

#### 5.3. Sensitivity Analysis

#### 5.3.1. Frequency of Bus Departures

#### 5.3.2. Penetration Rates of CAVs

## 6. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Conflicts of Interest

## References

- Alawadhi, M.; Almazrouie, J.; Kamil, M.; Khalil, K.A. A Systematic Literature Review of the Factors Influencing the Adoption of Autonomous Driving. Int. J. Syst. Assur. Eng. Manag.
**2020**, 11, 1065–1082. [Google Scholar] [CrossRef] - Calvert, S.; Mahmassani, H.; Meier, J.-N.; Varaiya, P.; Hamdar, S.; Chen, D.; Li, X.; Talebpour, A.; Mattingly, S.P. Traffic Flow of Connected and Automated Vehicles: Challenges and Opportunities. In Road Vehicle Automation 4; Meyer, G., Beiker, S., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 235–245. ISBN 978-3-319-60933-1. [Google Scholar]
- Han, X.; Ma, R.; Zhang, H.M. Energy-Aware Trajectory Optimization of CAV Platoons through a Signalized Intersection. Transp. Res. Part C Emerg. Technol.
**2020**, 118, 102652. [Google Scholar] [CrossRef] - Damaj, I.W.; Yousafzai, J.K.; Mouftah, H.T. Future Trends in Connected and Autonomous Vehicles: Enabling Communications and Processing Technologies. IEEE Access
**2022**, 10, 42334–42345. [Google Scholar] [CrossRef] - Lu, G.; Nie, Y.; Liu, X.; Li, D. Trajectory-Based Traffic Management inside an Autonomous Vehicle Zone. Transp. Res. Part B Methodol.
**2019**, 120, 76–98. [Google Scholar] [CrossRef] - Letter, C.; Elefteriadou, L. Efficient control of fully automated connected vehicles at freeway merge segments. Transp.Res. Emerg. Technol.
**2017**, 80, 190–205. [Google Scholar] [CrossRef] - Chen, D.; Srivastava, A.; Ahn, S. Harnessing connected and automated vehicle technologies to control lane changes at freeway merge bottlenecks in mixed traffic. Transp.Res. Emerg. Technol.
**2021**, 123, 102950. [Google Scholar] [CrossRef] - Rios-Torres, J.; Malikopoulos, A.A. Impact of Partial Penetrations of Connected and Automated Vehicles on Fuel Consumption and Traffic Flow. IEEE Trans. Intell. Veh.
**2018**, 3, 453–462. [Google Scholar] [CrossRef] - Gong, S.; Shen, J.; Du, L. Constrained Optimization and Distributed Computation Based Car Following Control of a Connected and Autonomous Vehicle Platoon. Transp. Res. Part B Methodol.
**2016**, 94, 314–334. [Google Scholar] [CrossRef] - Fagnant, D.J.; Kockelman, K.M. The Travel and Environmental Implications of Shared Autonomous V ehicles, Using Agent-Based Model Scenarios. T ransp. Res. Part C Emerg. Technol.
**2014**, 40, 1–13. [Google Scholar] [CrossRef] - Kalra, N.; Paddock, S.M. Driving to Safety: How Many Miles of Driving Would It Take to Demonstrate Autonomous Vehicle Reliability? Transp. Res. Part A Policy Pract.
**2016**, 94, 182–193. [Google Scholar] [CrossRef] - Lin, Y. Multiobjective Environmentally Sustainable Optimal Design of Dedicated Connected Autonomous Vehicle Lanes. Sustainability
**2021**, 13, 3454. [Google Scholar] [CrossRef] - Xiong, B.; Jiang, R.; Li, X. Managing merging from a CAV lane to a human-driven vehicle lane considering the uncertainty of human driving. Transp. Res. Part C.
**2022**, 142, 103775. [Google Scholar] [CrossRef] - Gong, B.; Wang, F.; Lin, C.; Wu, D. Modeling HDV and CAV Mixed Traffic Flow on a Foggy Two-Lane Highway with Cellular Automata and Game Theory Model. Sustainability
**2022**, 14, 5899. [Google Scholar] [CrossRef] - Zhang, K.; Yu, N. Mitigating the Impact of Selfish Routing: An Optimal-Ratio Control Scheme (ORCS) Inspired by Autonomous Driving. Transp. Res. Part C Emerg. Technol.
**2018**, 87, 75–90. [Google Scholar] [CrossRef] - Hoonsiri, C. Using Combined Bus Rapid Transit and Buses in a Dedicated Bus Lane to Enhance Urban Transportation Sustainability. Sustainability
**2021**, 13, 3052. [Google Scholar] [CrossRef] - Bayrak, M.; Guler, S.I. Optimization of dedicated bus lane location on a transportation network while accounting for traffic dynamics. Public Transp.
**2021**, 13, 325–347. [Google Scholar] [CrossRef] - Chen, Z.; He, F.; Zhang, L.; Yin, Y. Optimal Deployment of Autonomous Vehicle Lanes with Endogenous Market Penetration. Transp. Res. Part C Emerg. Technol.
**2016**, 72, 143–156. [Google Scholar] [CrossRef] [Green Version] - Chen, S.; Wang, H.; Meng, Q. Designing Autonomous Vehicle Incentive Program with Uncertain Vehicle Purchase Price. Transp. Res. Part C Emerg. Technol.
**2019**, 103, 226–245. [Google Scholar] [CrossRef] - Zhang, H.; Gao, Z. Bi-level programming model and solution method for mixed transportation network design problem. J. Syst. Sci. Complex.
**2009**, 22, 446–459. [Google Scholar] [CrossRef] - Madadi, B.; van Nes, R.; Snelder, M.; van Arem, B. Assessing the travel impacts of subnetworks for automated driving: An exploratory study. Case Stud. Transp. Policy
**2019**, 7, 48–56. [Google Scholar] [CrossRef] - Bagloee, S.A.; Sarvi, M.; Patriksson, M.; Rajabifard, A. A Mixed User-Equilibrium and System-Optimal Traffic Flow for Connected Vehicles Stated as a Complementarity Problem: Mixed user-equilibrium and system-optimal traffic flow. Comput. Aided Civ. Infrastruct. Eng.
**2017**, 32, 562–580. [Google Scholar] [CrossRef] - Pettigrew, S.; Fritschi, L.; Norman, R. The Potential Implications of Autonomous Vehicles in and around the Workplace. Int. J. Environ. Res. Public Health
**2018**, 15, 1876. [Google Scholar] [CrossRef] [PubMed] [Green Version] - van den Berg, V.A.C.; Verhoef, E.T. Autonomous cars and dynamic bottleneck congestion: The effects on capacity, value of time and preference heterogeneity. Transp. Res. Part B
**2016**, 94, 43–60. [Google Scholar] [CrossRef] - Talebpour, A.; Mahmassani, H.S. Influence of connected and autonomous vehicles on traffic flow stability and throughput. Transp. Res. Part C
**2016**, 71, 143–163. [Google Scholar] [CrossRef] - Chen, J.; Zhou, Y.; Liang, H. Effects of ACC and CACC vehicles on traffic flow based on an improved variable time headway spacing strategy. IET Intell. Transp. Syst.
**2019**, 13, 1365–1373. [Google Scholar] [CrossRef] - Evin, M.W.; Boyles, S.D. A multiclass cell transmission model for shared human and autonomous vehicle roads. Transp. Res. Part C
**2016**, 62, 103–116. [Google Scholar] - Chen, D.; Ahn, S.; Chitturi, M.; Noyce, D.A. Towards vehicle automation: Roadway capacity formulation for traffic mixed with regular and automated vehicles. Transp. Res. Part B
**2017**, 100, 196–221. [Google Scholar] [CrossRef] [Green Version] - Liu, C.-J.; Wang, F.-K.; Wang, Z.-Z.; Jiang, Z.-H. Autonomous Vehicles for Enhancing Expressway Capacity: A Dynamic Perspective. Sustainability
**2022**, 14, 5193. [Google Scholar] [CrossRef] - Viegas, J.; Lu, B. Turn of the century, survival of the compact city, revival of public transport. Transform. Port Transp. Bus.
**1996**, 55–63. [Google Scholar] - Zhu, H.B. Numerical study of urban traffic flow with dedicated bus lane and intermittent bus lane. Phys. A Stat. Mech. Its Appl.
**2010**, 389, 3134–3139. [Google Scholar] [CrossRef] - Ma, C.; Xu, X.D. Providing spatial-temporal priority control strategy for BRT lanes: A simulation approach. J. Transp. Eng. Part A Syst.
**2020**, 146, 04020060. [Google Scholar] [CrossRef] - Wu, D. Study on Capacity of Bus Lane with Interemittent Priority and Its Impacts; Southeast University: Nanjing, China, 2019. [Google Scholar]
- Chen, X.; Lin, X.; He, F. Modeling and control of automated vehicle access on dedicated bus rapid transit lanes. Transp. Res. Part C Emerg. Technol.
**2020**, 120, 102795. [Google Scholar] [CrossRef] - Ghiasi, A.; Hussain, O.; Qian, Z.S.; Li, X.S. A mixed traffic capacity analysis and lane management model for connected automated vehicles: A Markov chain method. Transp. Res. Part B Methodol.
**2017**, 106, 266–292. [Google Scholar] [CrossRef] - Ghiasi, A.; Hussain, O.; Qian, Z.S.; Li, X.S. Lane management with variable lane width and model calibration for connected automated vehicles. J. Transp. Eng. Part A Syst.
**2020**, 146, 04019075. [Google Scholar] [CrossRef] - Rad, S.-R.; Farah, H.; Taale, H.; van Arem, H. Design and operation of dedicated lanes for connected and automated vehicles on motorways: A conceptual framework and research agenda. Transp. Res. Part C Emerg. Technol.
**2020**, 117, 102664. [Google Scholar] - Lin, Y.H.; Wang, Y.; He, D.; Lee, L.H. Last-mile delivery: Optimal locker location under multinomial logit choice model. Transp. Res. Part E Logist. Transp. Rev.
**2020**, 142, 102059. [Google Scholar] [CrossRef] - Nobel, D.; Yagi, S. Network Assignment Calibration of BPR Function: A Case Study of Metro Manila, the Philippines. J. East. Asia Soc. Transp. Stud.
**2017**, 12, 598–615. [Google Scholar] - Yao, J. Bus Exclusive Lane Setting Analysis and Optimization Based on Multi-Modal Transportation Equilibrium; Central South University: Changsha, China, 2014. [Google Scholar]
- Li, Y. The Research of Traffic Assignment Problem on Urban Multi-Modal Network; Southeast University: Nanjing, China, 2018. [Google Scholar]
- Liu, Z.; Song, Z. Strategic planning of dedicated autonomous vehicle lanes and autonomous vehicle/toll lanes in transportation networks. Transp. Res. Part C
**2019**, 106, 381–403. [Google Scholar] [CrossRef]

Variable | Description |
---|---|

B | Bus fixed capacity |

${Q}_{w}$ | Traffic demand on the origin and destination pair w |

${\gamma}^{cv}$ | CAV network penetration |

${q}_{w}^{m}$ | Traffic demand of transport mode m on the origin and destination pair w |

${P}_{w}^{m}$ | The path of transport mode m on the origin and destination pair w |

${f}_{p}^{m}$ | The flow of traffic mode m on a path p |

${x}_{a}^{m}$ | The flow of traffic mode m on a link a |

${t}_{a}^{m}$ | The travel time of traffic mode m on a link a |

${C}_{a}$ | Capacity of link a |

${r}_{a}^{CV}$ | Proportion of CAV traffic on link a |

L | The commutation factor for CAV |

K | The commutation factor for bus |

F | Frequency of bus departures |

$\alpha ,$$\beta $ | Parameters in BPR (Bureau of Public Road) function |

Link | ${\mathit{t}}_{\mathit{a}0}^{\mathit{H}\mathit{V}}/\mathit{h}$ | Length of Link |
---|---|---|

a1–a3, a5, a7–a16, a18, a19 | 0.1 | 3.6 |

a6, a17 | 0.2 | 7.2 |

a4 | 0.3 | 10.8 |

OD | Demand | Bus Routes | Paths (Via Nodes) | Frequency |
---|---|---|---|---|

v1-v7 | 800 | g1 | v1-v4-v8-v12-v5-v7 | 20 |

v1-v6 | 800 | g2 | v1-v2-v8-v9-v5-v6 | 20 |

v3-v7 | 600 | g3 | v3-v4-v11-v12-v5-v7 | 20 |

v3-v7 | 600 | g4 | v3-v4-v8-v12-v5-v6 | 20 |

Parameter | Values |
---|---|

${\alpha}^{HV}$$,{\alpha}^{CV}$$,{\alpha}^{BS}$ | 0.15 |

${\beta}^{HV}$$,{\beta}^{CV}$$,{\beta}^{BS}$ | 4 |

${\eta}_{11}$$,{\eta}_{21}$$,{\eta}_{12}$ | 2 s |

${\eta}_{22}$ | 1 s |

$K$ | 3 |

$B$ | 40 peo/pcu |

${\lambda}^{HV}$ | 0.8 yuan/min |

${\pi}^{HV}$ | 0.4 yuan/min |

${\lambda}^{CV}$ | 0.5 yuan/min |

${\pi}^{CV}$ | 0.7 yuan/min |

${\Delta}_{p}^{w,HV}$$,{\Delta}_{p}^{w,CV}$ | 20 yuan |

${\lambda}^{BS}$ | 1.5 yuan/min |

$\alpha $ | 0.1 |

Costs | Pre-Construction | Post-Construction |
---|---|---|

Total system travel costs/yuan | 158,382.5 | 146,883.9 |

Bus user travel costs/yuan | 17,825.3 | 16,486.6 |

CAV user travel costs/yuan | 55,837.1 | 51,682.8 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Luo, Q.; Du, R.; Jia, H.; Yang, L.
Research on the Deployment of Joint Dedicated Lanes for CAVs and Buses. *Sustainability* **2022**, *14*, 8686.
https://doi.org/10.3390/su14148686

**AMA Style**

Luo Q, Du R, Jia H, Yang L.
Research on the Deployment of Joint Dedicated Lanes for CAVs and Buses. *Sustainability*. 2022; 14(14):8686.
https://doi.org/10.3390/su14148686

**Chicago/Turabian Style**

Luo, Qingyu, Rui Du, Hongfei Jia, and Lili Yang.
2022. "Research on the Deployment of Joint Dedicated Lanes for CAVs and Buses" *Sustainability* 14, no. 14: 8686.
https://doi.org/10.3390/su14148686