Landscape Pattern Evolution in a Mining City: An Urban Life Cycle Perspective
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Study Methods
2.3.1. Definition of a Mining City’s Life Cycle
Theory of Urban Life Cycle
Features of a Mining City’s Life Cycle Stages
Inflection-Point-Based Definition of a Mining City’s Lifecycle
2.3.2. Optimum Analytical Grain Size of Landscape Patterns
Analysis of Landscape Index Grain Size Effect
Information Loss Method for Defining the Optimum Grain Size
3. Results and Analysis
3.1. Features of Landscape Pattern Evolution at the Type Level
3.2. Features of Landscape Pattern Evolution at the Landscape Level
4. Discussion
4.1. Problems in Different Stages of a Mining City’s Development
4.2. Proposals for Mining City Development
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jing, G.; Peng, Y. Does Coal Mining Have Effects on Land Use Changes in a Coal Resource-Based City? Evidence from Huaibei City on the North China Plain. Int. J. Environ. Res. Public Health 2021, 18, 11616. [Google Scholar]
- Min, Z.; Jinman, W.; Feng, Y. Temporal and Spatial Change of Land Use in a Large-Scale Opencast Coal Mine Area: A Complex Network Approach. Land Use Policy 2019, 86, 375–386. [Google Scholar]
- Cao, Y.; Bai, Z.; Wei, Z.; Zhang, X. Analyses of traits and driving forces on urban land expansion in a typical coal-resource-based city in a loess area. Environ. Earth Sci. 2016, 75. [Google Scholar] [CrossRef]
- Haibin, L.; Zhenling, L. Recycling Utilization Patterns of Coal Mining Waste in China. Resour. Conserv. Recy. 2010, 54, 1331–1340. [Google Scholar] [CrossRef]
- Zhenhua, W.; Shaogang, L.; Qingwu, Y.; Zhengfu, B.; Qinging, L. Landscape Ecological Network Construction Controlling Surface Coal Mining Effect on Landscape Ecology: A Case Study of a Mining City in Semi-arid Steppe. Ecol. Indic. 2021, 133, 108403. [Google Scholar]
- Nguyen, T.A.; Le, P.M.T.; Pham, T.M.; Hoang, H.T.T.; Nguyen, M.Q.; Ta, H.Q.; Phung, H.T.M.; Le, H.T.T.; Hens, L. Toward a Sustainable City of Tomorrow: A Hybrid Markov–Cellular Automata Modeling for Urban Landscape Evolution in the Hanoi City (Vietnam) During 1990–2030. Environ. Dev. Sustain. 2019, 21, 429–446. [Google Scholar] [CrossRef]
- Dongmei, J.; Xiaoshun, L.; Yuexiang, W.; Zhengfu, B.; Jian, Z.; Fan, H. Coordinating Urban Construction and Coal Resource Mining Based on Equilibrium Value between Coal Reserve and Land Resource in Coal Cities. Geom. Nat. Hazards Risk. 2021, 12, 2865–2879. [Google Scholar]
- Wen, B.; Pan, Y.; Zhang, Y.; Liu, J.; Xia, M. Does the Exhaustion of Resources Drive Land Use Changes? Evidence from the Influence of Coal Resources-Exhaustion on Coal Resources–Based Industry Land Use Changes. Sustainability 2018, 10, 2698. [Google Scholar] [CrossRef] [Green Version]
- Dorner, B.; Lertzman, K.; Fall, J. Landscape Pattern in Topographically Complex Landscapes: Issues and Techniques for Analysis. Landsc. Ecol. 2002, 17, 729–743. [Google Scholar] [CrossRef]
- Cuiping, Z.; Jiaguo, G.; Qinghui, Z.; Miao, Y.; Ying, W. Landscape Pattern Evolution Processes and the Driving Forces in the Wetlands of Lake Baiyangdian. Sustainability 2021, 13, 9747. [Google Scholar]
- Migoń, P.; Latocha, A. Human Interactions with the Sandstone Landscape of Central Sudetes. Appl. Geogr. 2013, 42, 206–216. [Google Scholar] [CrossRef]
- Ramachandra, T.V.; Aithal, B.H.; Sanna, D.D. Insights to Urban Dynamics through Landscape Spatial Pattern Analysis. Int. J. Appl. Earth Obs. Geoinf. 2012, 18, 329–343. [Google Scholar]
- Aguilera, F.; Valenzuela, L.M.; Botequilha-Leitão, A. Landscape Metrics in the Analysis of Urban Land Use Patterns: A Case Study in a Spanish Metropolitan Area. Landsc. Urban Plan. 2011, 99, 226–238. [Google Scholar] [CrossRef]
- Qindong, F.; Liuke, L.; Hu, L.I. Gradient Analysis of Landscape Pattern in the Core Area of the “Zhengzhou and Kaifeng Integration” at the Landscape Level. An. Acad. Bras. Cienc. 2021, 93, e20181159. [Google Scholar] [CrossRef]
- Zhang, Z.; Bai, Z.; Fan, X.; Lu, Y.; Cao, Y.; Zhao, Z.; Sun, Q.; Pan, J. Urban Expansion Process, Pattern, and Land Use Response in an Urban Mining Composited Zone from 1986 to 2013. J. Urban Plan. Dev. 2016, 142, 04016014. [Google Scholar] [CrossRef]
- Zhou, L.; Zhang, D.; Wang, J.; Huang, Z.; Pan, D. Mapping Land Subsidence Related to Underground Coal Fires in the Wuda Coalfield (Northern China) Using a Small Stack of ALOS PALSAR Differential Interferograms. Remote Sens. 2013, 5, 1152–1176. [Google Scholar] [CrossRef] [Green Version]
- Ye, X.; Dong, L.; Lv, L.; Shang, Y. Spatiotemporal Evolution Law and Driving Force of Mining City Patterns. Environ. Sci. Pollut. Res. 2022, 29, 10291–10307. [Google Scholar] [CrossRef]
- Liu, X.Q.; Pei, T.; Zhou, C.H.; Du, Y.Y.; Ma, T.; Xie, C.J.; Xu, J. A Systems Dynamic Model of a Coal-Based City with Multiple Adaptive Scenarios: A Case Study of Ordos, China. Sci. China (Earth Sci.) 2018, 61, 15. [Google Scholar] [CrossRef]
- Sikuzani, Y.U.; Boisson, S.; Kaleba, S.C.; Khonde, C.N.; Malaisse, F.; Halleux, J.M.; Bogaert, J.; Kankumbi, F.M. Land Cover Dynamics around Mining Sites along Urban-Rural Gradient of Lubumbashi City (DR Congo) Description of the Subject. Biotechnol. Agron. Soc. Environ. 2020, 24, 14–27. [Google Scholar]
- Wu, Z.; Lei, S.; Lu, Q.; Bian, Z. Impacts of Large-Scale Open-Pit Coal Base on the Landscape Ecological Health of Semi-arid Grasslands. Remote Sens. 2019, 11, 1820. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Liu, M.; Liu, X.; Yang, W.; Wang, W. Characterising Three Decades of Evolution of Forest Spatial Pattern in a Major Coal-Energy Province in Northern China Using Annual Landsat Time Series. Int. J. Appl. Earth Obs. Geoinf. 2021, 95, 102254. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, J.; Li, S.; Feng, D.; Cao, E. Dynamic Changes in Landscape Pattern in a Large-Scale Opencast Coal Mine Area from 1986 to 2015: A Complex Network Approach. CATENA 2020, 194, 104677. [Google Scholar] [CrossRef]
- Zhengyu, D.; Jiashuo, C.; Yuandong, H. Spatial and Temporal Evolution of Landscape Pattern in Downtown Area of Jixi City, China. Eur. J. Remote Sens. 2020, 53 (Suppl. S1), 104–113. [Google Scholar]
- Balanay, R.M.; Halog, A. Promoting Life Cycle Thinking for Sustainability in the Mining Sector of the Philippines. Int. J. Life Cycle Assess 2017, 22, 1864–1874. [Google Scholar] [CrossRef]
- Ristimäki, M.; Junnila, S. Sustainable Urban Development Calls for Responsibility through Life Cycle Management. Sustainability 2015, 7, 12539–12563. [Google Scholar] [CrossRef] [Green Version]
- Vernon, R. International Investment and International Trade in the Product Cycle. Q. J. Econ. 1966, 80, 190–207. [Google Scholar] [CrossRef]
- Champion, A.G. Growth-Centers in the European Urban System; Hall, P., Hay, D., Eds.; Newcastle University: Newcastle upon Tyne, UK, 1981. [Google Scholar]
- Boix, A.P.; Llorach-Massana, P.; Sanjuan-Delmás, D.; Sierra-Pérez, J.; Vinyes, E.; Gabarrell, X.; Rieradevall, J.; Sanyé-Mengual, E. Application of Life Cycle Thinking Towards Sustainable Cities: A Review. J. Clean. Prod. 2017, 166, 939–951. [Google Scholar] [CrossRef] [Green Version]
- Czamanski, D.; Broitman, D. The Life Cycle of Cities. Habitat Int. 2018, 72, 100–108. [Google Scholar] [CrossRef]
- Cady Steven, H.; Wheeler Jane, V.; Schlechter Anton, F.; Goodman, S. A Proposed Theory Life Cycle Model: Standing on the Shoulders of Giants. J. Appl. Behav. Sci. 2019, 55, 418–452. [Google Scholar]
- Ebrahimi, S.M.; Koh, L. Manufacturing Sustainability: Institutional Theory and Life Cycle Thinking. J. Clean. Prod. 2021, 298, 126787. [Google Scholar] [CrossRef]
- Wiesel, I. Can Ageing Improve Neighbourhoods? Revisiting Neighbourhood Life-Cycle Theory. Hous. Theor. Soc. 2012, 29, 145–156. [Google Scholar] [CrossRef]
- Feng, Y.; Li, Z. Study on Mining City Development Based on Life Cycle Theory. In Proceedings of the International Conference on Engineering and Business Management, Chengdu, China, 24–26 March 2010. [Google Scholar]
- Suarez-Villa, L. Urban Growth and Manufacturing Change in the United States-Mexico Borderlands: A Conceptual Framework and an Empirical Analysis. Ann. Reg. Sci. 1985, 19, 54–108. [Google Scholar] [CrossRef]
- Song, Y.; Wang, S.; Wang, X.; Pang, R. Study on the Life Cycle and Evolution Law of Spatial Structure of Mining City. Hum. Geogr. 2012, 27, 54–61. [Google Scholar]
- Frondel, M.; Kambeck, R.; Schmidt, C.M. Hard Coal Subsidies: A Never-Ending Story? Energy Policy 2007, 35, 3807–3814. [Google Scholar] [CrossRef] [Green Version]
- Shahbaz, M.; Tiwari, A.K.; Jam, F.A.; Ozturk, I. Are Fluctuations in Coal Consumption Per Capita Temporary? Evidence from Developed and Developing Economies. Renew. Sustain. Energy Rev. 2014, 33, 96–101. [Google Scholar] [CrossRef]
- Zafrilla, J.E. The Mining Industry under the Thumb of Politicians: The Environmental Consequences of the Spanish Coal Decree. J. Clean. Prod. 2014, 84, 715–722. [Google Scholar] [CrossRef]
- Burchart-Korol, D.; Fugiel, A.; Czaplicka-Kolarz, K.; Turek, M. Model of Environmental Life Cycle Assessment for Coal Mining Operations. Sci. Total Environ. 2016, 562, 61–72. [Google Scholar] [CrossRef]
- Ming, T.; Wenqing, C.; Kemi, N.; Xu, Z.; Wenzhuo, C. Life Cycle Assessment of Underground Coal Mining in China. Sci. Total Environ. 2022, 805, 150231. [Google Scholar]
- Qian, Y.; Ralescu, D.A.; Zhang, B. The Analysis of Factors Affecting Global Gold Price. Resour. Policy 2019, 64, 101478. [Google Scholar] [CrossRef]
- Qiangyi, L.; Fu, Z.; Shanghui, L.; Mian, Y.; Fei, X. The effects of China’s sustainable development policy for resource-based cities on local industrial transformation. Resour. Policy 2021, 71, 101940. [Google Scholar]
- Xingcheng, G.; Jun, X.; Yong, X.; Xin, G.; Deyan, Y. Evaluation and Dynamic Evolution of Eco-efficiency of Resource-Based Cities—A Case Study of Typical Resource-Based Cities in China. Sustainability 2021, 13, 6802. [Google Scholar]
- Zeng, L.; Wang, B.; Fan, L.; Wu, J. Analyzing Sustainability of Chinese Mining Cities Using an Association Rule Mining Approach. Resour. Policy 2016, 49, 394–404. [Google Scholar] [CrossRef]
- Zhao, J. The Study of the Urban Spatial Development of the Resource-Based City in China. Urban Stud. 2006, 3, 86–106. [Google Scholar]
- Teng, M.; Zeng, L.; Zhou, Z.; Wang, P.; Xiao, W.; Dian, Y. Responses of Landscape Metrics to Altering Grain Size in the Three Gorges Reservoir Landscape in China. Environ. Earth Sci. 2016, 75, 1055. [Google Scholar] [CrossRef]
- Zhang, J.; Rao, Y.; Xu, Y.; Fu, M. Effects of Grain Size on Landscape Patterns in Mineral Resource Zones: A Case Study of Wu’an, China. Int. J. Coal Sci. Technol. 2014, 1, 227–234. [Google Scholar] [CrossRef] [Green Version]
- Zhaobi, L.; Dongjie, G.; Lidan, C. Study on the Gradient Change of the Landscape Pattern in the Three Gorges Reservoir Area by Coupling the Optimal Grain Size Method and Multidirectional Gradient Transect Method. Environ. Sci. Pollut. Res. Int. 2020, 27, 44585–44603. [Google Scholar]
- Xu, Z.; Hu, Y.; Liu, Y.; Yan, Y. A Review on the Accuracy Analysis of Spatial Scaling Data. Prog. Geogr. 2012, 31, 1574–1582. [Google Scholar]
- Wu, Q.; Pang, J.; Qi, S.; Li, Y.; Han, C.; Liu, T.; Huang, L. Impacts of coal mining subsidence on the surface landscape in Longkou city, Shandong Province of China. Environ. Earth Sci. 2009, 59, 783–791. [Google Scholar] [CrossRef]
- Liu, L.; Zhou, J. Analyzing Ecological Functions in Coal Mining Cities Based on RS and GIS. Pol. J. Environ. Stud. 2018, 27, 1165–1174. [Google Scholar] [CrossRef]
- Wan, L.; Ye, X.; Lee, J.; Lu, X.; Zheng, L.; Wu, K. Effects of urbanization on ecosystem service values in a mineral resource-based city. Habitat Int. 2015, 46, 54–63. [Google Scholar] [CrossRef]
- Liu, L.; Liu, Z.; Liu, Z.; Xu, X.; Wang, B. Analysis on the spatio-temporal characteristics of urban expansion and the complex driving mechanism: Taking the Pearl River Delta urban agglomeration as a case. Complexity 2020, 2020, 8157143. [Google Scholar] [CrossRef]
Classification | Indicators |
---|---|
Mining scale | Raw coal production |
Industrial output in GDP | |
Economic capacity | GDP |
Growth rate of GDP | |
Output in primary, secondary, and tertiary industries | |
Employment level | Proportion of mining employees |
Number of employees |
Indicator | Lead-In | Growth | Maturity | Decay | Transition |
---|---|---|---|---|---|
Mining scale | Rising unsteadily | Rising steadily | Basically steady | Declining unsteadily | Declining |
Economic capacity | Rising slowly | Developing rapidly | Basically steady | Developing slowly | Relatively stable |
Employment level | Relatively unsteady | Rising steadily | Basically steady | Declining | Steady |
Standard | Inflection Point Interval |
---|---|
Mining scale | 1998, 2009, 2016 |
Economic growth capacity | 1998–2002, 2009–2012, 2016 |
Employment level | 2000, 2008, 2016 |
Year | PD/n·(100 ha)−1 | LSI/% | CONTAG/% | SHDI | SHEI |
---|---|---|---|---|---|
1990 | 3.14 | 26.18 | 56.30 | 1.20 | 0.67 |
1998 | 3.94 | 26.95 | 57.66 | 1.18 | 0.66 |
2009 | 7.47 | 32.33 | 56.59 | 1.20 | 0.67 |
2016 | 8.27 | 34.40 | 55.74 | 1.21 | 0.67 |
2020 | 4.41 | 25.39 | 60.24 | 1.18 | 0.66 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shang, Y.; Ye, X.; Dong, L.; Liu, S.; Du, T.; Wang, G. Landscape Pattern Evolution in a Mining City: An Urban Life Cycle Perspective. Sustainability 2022, 14, 8492. https://doi.org/10.3390/su14148492
Shang Y, Ye X, Dong L, Liu S, Du T, Wang G. Landscape Pattern Evolution in a Mining City: An Urban Life Cycle Perspective. Sustainability. 2022; 14(14):8492. https://doi.org/10.3390/su14148492
Chicago/Turabian StyleShang, Yuhang, Xin Ye, Lun Dong, Shiming Liu, Tiantian Du, and Guan Wang. 2022. "Landscape Pattern Evolution in a Mining City: An Urban Life Cycle Perspective" Sustainability 14, no. 14: 8492. https://doi.org/10.3390/su14148492