A Bibliometric Analysis of End-of-Life Vehicles Related Research: Exploring a Path to Environmental Sustainability
Abstract
:1. Introduction
- RQ1: How has the field of ELV-related research evolved over the time?
- RQ2: What are the essential research themes and trend found in the ELV research?
2. Research Methodology
2.1. Search Strategy and Selection Criteria
2.2. Data Collection and Refinement
2.3. Data Processing and Analysis
2.4. Tools
3. Results and Analysis
3.1. Development of the Literature over Time
3.2. Influential Researchers
3.3. Influential Institutions
3.4. Influential Countries
3.5. Analyzing Research Areas
4. Discussion
4.1. Overview of the Literature
4.2. Factors Influencing ELV Management and Recycling
4.3. Contribution to the Literature
4.4. Implications: Future Trends and Research Directions
5. Conclusions
Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khan, S.A.R.; Umar, M.; Zia-ul-haq, H.M.; Yu, Z. Technological Advancement and Circular Economy Practices in Food Supply Chain. In Agri-Food 4.0.; Emerald Publishing Limited: Bingley, UK, 2022. [Google Scholar]
- Li, Y.; Fujikawa, K.; Wang, J.; Li, X.; Ju, Y.; Chen, C. The potential and trend of end-of-life passenger vehicles recycling in China. Sustainability 2020, 12, 1455. [Google Scholar] [CrossRef] [Green Version]
- Modoi, O.C.; Mihai, F.C. E-Waste and End-of-Life Vehicles Management and Circular Economy Initiatives in Romania. Energies 2022, 15, 1120. [Google Scholar] [CrossRef]
- Ranjbari, M.; Saidani, M.; Esfandabadi, Z.S.; Peng, W.; Lam, S.S.; Aghbashlo, M.; Quatraro, F.; Tabatabaei, M. Two decades of research on waste management in the circular economy: Insights from bibliometric, text mining, and content analyses. J. Clean. Prod. 2021, 314, 128009. [Google Scholar] [CrossRef]
- Kurogi, D.; Kosai, S.; Murakami, G.; Phong, L.T.; Quang, N.D.; Huy, T.D.; Luong, N.; Yamasue, E. Estimating the generation of recycled metals from obsolete motorcycles in Vietnam for ELV management. J. Mater. Cycles Waste Manag. 2021, 23, 1563–1575. [Google Scholar] [CrossRef]
- Chaabane, A.; Montecinos, J.; Ouhimmou, M.; Khabou, A. Vehicle routing problem for reverse logistics of End-of-Life Vehicles (ELVs). Waste Manag. 2021, 120, 209–220. [Google Scholar] [CrossRef]
- He, M.; Lin, T.; Wu, X.; Luo, J.; Peng, Y. A systematic literature review of reverse logistics of end-of-life vehicles: Bibliometric analysis and research trend. Energies 2020, 13, 5586. [Google Scholar] [CrossRef]
- D’Adamo, I.; Gastaldi, M.; Rosa, P. Recycling of end-of-life vehicles: Assessing trends and performances in Europe. Technol. Forecast. Soc. Chang. 2020, 152, 119887. [Google Scholar] [CrossRef]
- Mihai, F.C.; Gnoni, M.G.; Meidiana, C.; Ezeah, C.; Elia, V. Waste electrical and electronic equipment (WEEE): Flows, quantities, and management—A global scenario. In Electronic Waste Management and Treatment Technology; Butterworth-Heinemann: Oxford, UK, 2019; pp. 1–34. [Google Scholar]
- Forti, V.; Baldé, C.P.; Kuehr, R.; Bel, G. The Global E-Waste Monitor 2020; United Nations University (UNU): Bonn, Germany; International Telecommunication Union (ITU): Geneva, Switzerland; International Solid Waste Association (ISWA): Rotterdam, The Netherlands, 2020; p. 120. [Google Scholar]
- Arora, N.; Bakshi, S.K.; Bhattacharjya, S. Framework for sustainable management of end-of-life vehicles management in India. J. Mater. Cycles Waste Manag. 2019, 21, 79–97. [Google Scholar] [CrossRef]
- Al-Quradaghi, S.; Zheng, Q.P.; Betancourt-Torcat, A.; Elkamel, A. Optimization Model for Sustainable End-of-Life Vehicle Processing and Recycling. Sustainability 2022, 14, 3551. [Google Scholar] [CrossRef]
- Lin, H.T.; Nakajima, K.; Yamasue, E.; Ishihara, K.N. Recycling of end-of-life vehicles in small Islands: The Case of Kinmen, Taiwan. Sustainability 2018, 10, 4377. [Google Scholar] [CrossRef] [Green Version]
- Statista Research Department. Automobile Production in China from January 2021 to April 2022, by Type of Vehicle. 2022. Available online: https://www.statista.com/statistics/276938/automobile-production-in-china-by-month/ (accessed on 13 June 2022).
- Sakai, S.I.; Yoshida, H.; Hiratsuka, J.; Vandecasteele, C.; Kohlmeyer, R.; Rotter, V.S.; Passarini, F.; Santini, A.; Peeler, M.; Li, J.; et al. An international comparative study of end-of-life vehicle (ELV) recycling systems. J. Mater. Cycles Waste Manag. 2014, 16, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Restrepo, E.; Løvik, A.N.; Wäger, P.; Widmer, R.; Lonka, R.; Müller, D.B. Stocks, flows, and distribution of critical metals in embedded electronics in passenger vehicles. Environ. Sci. Technol. 2017, 51, 1129–1139. [Google Scholar] [CrossRef]
- Jang, Y.C.; Choi, K.; Jeong, J.H.; Kim, H.; Kim, J.G. Recycling and Material-Flow Analysis of End-of-Life Vehicles towards Resource Circulation in South Korea. Sustainability 2022, 14, 1270. [Google Scholar] [CrossRef]
- Karagoz, S.; Aydin, N.; Simic, V. End-of-life vehicle management: A comprehensive review. J. Mater. Cycles Waste Manag. 2020, 22, 416–442. [Google Scholar] [CrossRef] [Green Version]
- Canzano, S.; Capasso, S.; Natale, M.D.; Erto, A.; Iovino, P.; Musmarra, D. Remediation of groundwater polluted by aromatic compounds by means of adsorption. Sustainability 2014, 6, 4807–4822. [Google Scholar] [CrossRef] [Green Version]
- Nwachukwu, M.A.; Feng, H.; Achilike, K. Integrated studies for automobile wastes management in developing countries; in the concept of environmentally friendly mechanic village. Environ. Monit. Assess. 2011, 178, 581–593. [Google Scholar] [CrossRef]
- Harraz, N.A.; Galal, N.M. Design of Sustainable End-of-life Vehicle recovery network in Egypt. Ain Shams Eng. J. 2011, 2, 211–219. [Google Scholar] [CrossRef] [Green Version]
- De Almeida, S.T.; Borsato, M. Assessing the efficiency of End of Life technology in waste treatment—A bibliometric literature review. Resour. Conserv. Recycl. 2019, 140, 189–208. [Google Scholar] [CrossRef]
- Pritchard, A. Statistical bibliography or bibliometrics. J. Doc. 1969, 25, 348–349. [Google Scholar]
- Pilkington, A.; Meredith, J. The evolution of the intellectual structure of operations management—1980–2006: A citation/co-citation analysis. J. Oper. Manag. 2009, 27, 185–202. [Google Scholar] [CrossRef]
- Petronijević, V.; Đorđević, A.; Stefanović, M.; Arsovski, S.; Krivokapić, Z.; Mišić, M. Energy recovery through end-of-life vehicles recycling in developing countries. Sustainability 2020, 12, 8764. [Google Scholar] [CrossRef]
- Yang, Y.; Hu, J.; Liu, Y.; Chen, X. Alternative selection of end-of-life vehicle management in China: A group decision-making approach based on picture hesitant fuzzy measurements. J. Clean. Prod. 2019, 206, 631–645. [Google Scholar] [CrossRef]
- Charrette, Y.E. Waste to Energy Background Paper; Morrison Hershfield Ltd.: Whitehorse, YC, Canada, 2011. [Google Scholar]
- Mohan, T.V.; Amit, R.K. Dismantlers’ dilemma in end-of-life vehicle recycling markets: A system dynamics model. Ann. Oper. Res. 2020, 290, 591–619. [Google Scholar] [CrossRef]
- Xiao, Z.; Sun, J.; Shu, W.; Wang, T. Location-allocation problem of reverse logistics for end-of-life vehicles based on the measurement of carbon emissions. Comput. Ind. Eng. 2019, 127, 169–181. [Google Scholar] [CrossRef]
- Soo, V.K.; Peeters, J.; Compston, P.; Doolan, M.; Duflou, J.R. Comparative study of end-of-life vehicle recycling in Australia and Belgium. Procedia CIRP 2017, 61, 269–274. [Google Scholar] [CrossRef]
- Pan, Y.; Li, H. Sustainability evaluation of end-of-life vehicle recycling based on emergy analysis: A case study of an end-of-life vehicle recycling enterprise in China. J. Clean. Prod. 2016, 131, 219–227. [Google Scholar] [CrossRef]
- Saleh, H.M.; Husain, M.N.; Isa, A.A.M. New Solution for ICT/ELV Infrastructure Project Reporting Using Datalink Technique System. J. Telecommun. Electron. Comput. Eng. 2018, 10, 57–62. [Google Scholar]
- Zhou, Z.; Dai, G.; Cao, J.; Guo, G. A novel application of PSO algorithm to optimize the disassembly equipment layout of ELV. Int. J. Simul. Syst. Sci. Technol. 2016, 17, 1–6. [Google Scholar]
- Wong, Y.C.; Al-Obaidi, K.M.; Mahyuddin, N. Recycling of end-of-life vehicles (ELVs) for building products: Concept of processing framework from automotive to construction industries in Malaysia. J. Clean. Prod. 2018, 190, 285–302. [Google Scholar] [CrossRef]
- Zhou, F.; Lim, M.K.; He, Y.; Lin, Y.; Chen, S. End-of-life vehicle (ELV) recycling management: Improving performance using an ISM approach. J. Clean. Prod. 2019, 228, 231–243. [Google Scholar] [CrossRef]
- Miller, L.; Soulliere, K.; Sawyer-Beaulieu, S.; Tseng, S.; Tam, E. Challenges and alternatives to plastics recycling in the automotive sector. Waste Management Valorization; Apple Academic Press: Palm Bay, FL, USA, 2017; pp. 237–266. [Google Scholar]
- Yi, S.; Lee, H. Policies to Promote Resource Circulation through an Economic Analysis of End-of-Life Vehicles in Korea. ISSE 2019, 2019, 372. [Google Scholar]
- Hao, H.; Cheng, X.; Liu, Z.; Zhao, F. Electric vehicles for greenhouse gas reduction in China: A cost-effectiveness analysis. Transp. Res. Part D Transp. Environ. 2017, 56, 68–84. [Google Scholar] [CrossRef]
- Andersson, M.; Söderman, M.L.; Sandén, B.A. Challenges of recycling multiple scarce metals: The case of Swedish ELV and WEEE recycling. Resour. Policy 2019, 63, 101403. [Google Scholar] [CrossRef]
- Rafaj, P.; Amann, M. Decomposing air pollutant emissions in Asia: Determinants and projections. Energies 2018, 11, 1299. [Google Scholar] [CrossRef] [Green Version]
- James, A.T.; Gandhi, O.P.; Deshmukh, S.G. Development of methodology for the disassemblability index of automobile systems using a structural approach. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2017, 231, 516–535. [Google Scholar] [CrossRef]
- Hartman, H.; Hernborg, N.; Malmsten, J. Increased Re-Use of Components from ELV’s: A Sign of Customer and Environmental Care. In Total Life Cycle Conference and Exposition; No. 2000-01-1513; SAE International: Warrendale, PA, USA, 2000. [Google Scholar]
- Díaz, V.; Fernández, M.G. Treatment Center of End-of-Life Vehicles; SAE Technical Paper; No. 2001-01-3745; SAE International: Warrendale, PA, USA, 2001. [Google Scholar]
- Zhang, X.; Ao, X.; Cai, W.; Jiang, Z.; Zhang, H. A sustainability evaluation method integrating the energy, economic and environment in remanufacturing systems. J. Clean. Prod. 2019, 239, 118100. [Google Scholar] [CrossRef]
- Khan, S.A.R.; Godil, D.I.; Thomas, G.; Tanveer, M.; Zia-ul-haq, H.M.; Mahmood, H. The Decision-Making Analysis on End-of-Life Vehicle Recycling and Remanufacturing under Extended Producer Responsibility Policy. Sustainability 2021, 13, 11215. [Google Scholar] [CrossRef]
- Wan, Z.; Liu, J.; Zhang, J. Nonlinear optimization to management problems of end-of-life vehicles with environmental protection awareness and damaged/aging degrees. J. Ind. Manag. Optim. 2020, 16, 2117. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, Y.T.; Chen, C.; Yu, B. Optimization of a regional distribution center location for parts of end-of-life vehicles. Simulation 2018, 94, 577–591. [Google Scholar] [CrossRef]
- Simic, V. Interval-parameter chance-constraint programming model for end-of-life vehicles management under rigorous environmental regulations. Waste Manag. 2016, 52, 180–192. [Google Scholar] [CrossRef]
- Simic, V.; Dimitrijevic, B. Interval linear programming model for long-term planning of vehicle recycling in the Republic of Serbia under uncertainty. Waste Manag. Res. 2015, 33, 114–129. [Google Scholar] [CrossRef]
- Amaral, J.; Ferrao, P.; Rosas, C. Is recycling technology innovation a major driver for technology shift in the automobile industry under an EU context? Int. J. Technol. Policy Manag. 2006, 6, 385–398. [Google Scholar] [CrossRef]
- Yi, H.C.; Park, J.W. Design and implementation of an end-of-life vehicle recycling center based on IoT (Internet of Things) in Korea. Procedia CIRP 2015, 29, 728–733. [Google Scholar] [CrossRef]
- Umar, M.; Khan, S.A.R.; Zia-ul-haq, H.M.; Yusliza, M.Y.; Farooq, K. The role of emerging technologies in implementing green practices to achieve sustainable operations. TQM J. 2021, 34, 232–249. [Google Scholar] [CrossRef]
- Yu, Z.; Khan, S.A.R.; Zia-ul-haq, H.M. Application of Renewable Energy, Advanced Technology, and Energy Efficiency: A Fresh Insight from European Countries. In Proceedings of the 2021 International Conference on Advanced Technology of Electrical Engineering and Energy (ATEEE), Qingdao, China, 24–26 December 2021; pp. 99–103. [Google Scholar]
- Widodo, S.; Khoiruddin, K.; Ariono, D.; Subagjo, S.; Wenten, I.G. Re-refining of waste engine oil using ultrafiltration membrane. J. Environ. Chem. Eng. 2020, 8, 103789. [Google Scholar] [CrossRef]
- Mohajerani, A.; Burnett, L.; Smith, J.V.; Markovski, S.; Rodwell, G.; Rahman, M.T.; Kurmus, H.; Mirzababaei, M.; Arulrajah, A.; Horpibulsuk, S. Recycling waste rubber tyres in construction materials and associated environmental considerations: A review. Resour. Conserv. Recycl. 2020, 155, 104679. [Google Scholar] [CrossRef]
- Pavlovic, M.; Arsovski, S.; Nikolic, M.; Tadic, D.; Tomovic, A. The Technological Level of Equipment of Participants in the ELV Recycling Process in Serbia and the Region. In Waste Management and Resource Efficiency; Springer: Singapore, 2019; pp. 177–186. [Google Scholar]
- Vermeulen, I.; Van Caneghem, J.; Block, C.; Baeyens, J.; Vandecasteele, C. Automotive shredder residue (ASR): Reviewing its production from end-of-life vehicles (ELVs) and its recycling, energy or chemicals’ valorisation. J. Hazard. Mater. 2011, 190, 8–27. [Google Scholar] [CrossRef]
- Bari, M.A.; Kindzierski, W.B.; Lashaki, M.J.; Hashisho, Z. Automotive wastes. Water Environ. Res. 2011, 83, 1467–1487. [Google Scholar] [CrossRef]
- Kindzierski, W.B.; Bari, M.A.; Hashisho, Z.; Reid, B.; Shariaty, P. Automotive wastes. Water Environ. Res. 2013, 85, 1452–1473. [Google Scholar] [CrossRef]
- Simic, V. End-of-life vehicle recycling-a review of the state-of-the-art. Teh. Vjesn. Tech. Gaz. 2013, 20, 371–380. [Google Scholar]
- Gan, J.W.; He, Z.G. Literature review and prospect on the end-of-life vehicles reverse logistics. In Advanced Materials Research; Trans Tech Publications Ltd.: Bäch, Switzerland, 2014; Volume 878, pp. 66–74. [Google Scholar]
- Cin, E.; Kusakcı, A.O. A literature survey on reverse logistics of end of life vehicles. Southeast Eur. J. Soft Comput. 2017, 6, 32–39. [Google Scholar] [CrossRef] [Green Version]
- Hiratsuka, J.; Sato, N.; Yoshida, H. Current status and future perspectives in end-of-life vehicle recycling in Japan. J. Mater. Cycles Waste Manag. 2014, 16, 21–30. [Google Scholar] [CrossRef]
- Li, J.; Yu, K.; Gao, P. Recycling and pollution control of the End of Life Vehicles in China. J. Mater. Cycles Waste Manag. 2014, 16, 31–38. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, M. Current recycling regulations and technologies for the typical plastic components of end-of-life passenger vehicles: A meaningful lesson for China. J. Mater. Cycles Waste Manag. 2014, 16, 187–200. [Google Scholar] [CrossRef]
- Rosa, P.; Terzi, S. Improving end of life vehicle’s management practices: An economic assessment through system dynamics. J. Clean. Prod. 2018, 184, 520–536. [Google Scholar] [CrossRef]
- Cucchiella, F.; D’Adamo, I.; Rosa, P.; Terzi, S. Scrap automotive electronics: A mini-review of current management practices. Waste Manag. Res. 2016, 34, 3–10. [Google Scholar] [CrossRef]
- Khodier, A.; Williams, K.; Dallison, N. Challenges around automotive shredder residue production and disposal. Waste Manag. 2018, 73, 566–573. [Google Scholar] [CrossRef] [Green Version]
- Hao, H.; Zhang, Q.; Wang, Z.; Zhang, J. Forecasting the number of end-of-life vehicles using a hybrid model based on grey model and artificial neural network. J. Clean. Prod. 2018, 202, 684–696. [Google Scholar] [CrossRef]
- Ortego, A.; Valero, A.; Valero, A.; Iglesias, M. Downcycling in automobile recycling process: A thermodynamic assessment. Resour. Conserv. Recycl. 2018, 136, 24–32. [Google Scholar] [CrossRef]
- Raja Mamat TN, A.; Mat Saman, M.Z.; Sharif, S.; Simic, V.; Abd Wahab, D. Development of a performance evaluation tool for end-of-life vehicle management system implementation using the analytic hierarchy process. Waste Manag. Res. 2018, 36, 1210–1222. [Google Scholar] [CrossRef]
- Sato, F.E.K.; Furubayashi, T.; Nakata, T. Application of energy and CO2 reduction assessments for end-of-life vehicles recycling in Japan. Appl. Energy 2019, 237, 779–794. [Google Scholar] [CrossRef]
- Wang, Z.; Hao, H.; Gao, F.; Zhang, Q.; Zhang, J.; Zhou, Y. Multi-attribute decision making on reverse logistics based on DEA-TOPSIS: A study of the Shanghai End-of-life vehicles industry. J. Clean. Prod. 2019, 214, 730–737. [Google Scholar] [CrossRef]
- Qiao, Q.; Zhao, F.; Liu, Z.; Hao, H. Electric vehicle recycling in China: Economic and environmental benefits. Resour. Conserv. Recycl. 2019, 140, 45–53. [Google Scholar] [CrossRef]
- Yano, J.; Xu, G.; Liu, H.; Toyoguchi, T.; Iwasawa, H.; Sakai, S.I. Resource and toxic characterization in end-of-life vehicles through dismantling survey. J. Mater. Cycles Waste Manag. 2019, 21, 1488–1504. [Google Scholar] [CrossRef]
- Salonitis, K.; Jolly, M.; Pagone, E.; Papanikolaou, M. Life-cycle and energy assessment of automotive component manufacturing: The dilemma between aluminum and cast iron. Energies 2019, 12, 2557. [Google Scholar] [CrossRef] [Green Version]
- Soo, V.K.; Peeters, J.; Paraskevas, D.; Compston, P.; Doolan, M.; Duflou, J.R. Sustainable aluminium recycling of end-of-life products: A joining techniques perspective. J. Clean. Prod. 2018, 178, 119–132. [Google Scholar] [CrossRef] [Green Version]
- Rovinaru, F.I.; Rovinaru, M.D.; Rus, A.V. The economic and ecological impacts of dismantling end-of-life vehicles in Romania. Sustainability 2019, 11, 6446. [Google Scholar] [CrossRef] [Green Version]
- Yi, S.; Lee, H. Economic analysis to promote the resource circulation of end-of-life vehicles in Korea. Waste Manag. 2021, 120, 659–666. [Google Scholar] [CrossRef]
- Pomili, L.; Fabrizi, A. Automotive recycling: A circular economy centre. Environ. Eng. Manag. J. 2020, 19, 1747–1753. [Google Scholar] [CrossRef]
- Yu, Z.; Khan, S.A.R.; Mathew, M.; Umar, M.; Hassan, M.; Sajid, M.J. Identifying and analyzing the barriers of Internet-of-Things in sustainable supply chain through newly proposed spherical fuzzy geometric mean. Comput. Ind. Eng. 2022, 169, 108227. [Google Scholar] [CrossRef]
- Khan, S.A.R.; Ponce, P.; Yu, Z.; Ponce, K. Investigating economic growth and natural resource dependence: An asymmetric approach in developed and developing economies. Resour. Policy 2022, 77, 102672. [Google Scholar] [CrossRef]
- Khan, S.A.R. Circular economy and digital technologies: An evolving trend in environmental research. Integr. Environ. Assess. Manag. 2022, 18, 853–854. [Google Scholar] [CrossRef]
- Yu, Z.; Waqas, M.; Tabish, M.; Tanveer, M.; Haq, I.U.; Khan, S.A.R. Sustainable supply chain management and green technologies: A bibliometric review of literature. Environ. Sci. Pollut. Res. 2022. [Google Scholar] [CrossRef]
- Khan, S.A.R.; Piprani, A.Z.; Yu, Z. Supply chain analytics and post-pandemic performance: Mediating role of triple-A supply chain strategies. Int. J. Emerg. Mark. 2022. [Google Scholar] [CrossRef]
- Yu, Z.; Ridwan, I.L.; Irshad, A.U.R.; Tanveer, M.; Khan, S.A.R. Investigating the nexuses between transportation Infrastructure, renewable energy Sources, and economic Growth: Striving towards sustainable development. Ain Shams Eng. J. 2022. [Google Scholar] [CrossRef]
- Yu, Z.; Khan, S.A.R.; Ponce, P.; Zia-ul-haq, H.M.; Ponce, K. Exploring essential factors to improve waste-to-resource recovery: A roadmap towards sustainability. J. Clean. Prod. 2022, 350, 131305. [Google Scholar] [CrossRef]
- Yu, Z.; Umar, M.; Rehman, S.A. Adoption of technological innovation and recycling practices in automobile sector: Under the COVID-19 pandemic. Oper. Manag. Res. 2022. [Google Scholar] [CrossRef]
- Khan, S.A.R.; Yu, Z.; Umar, M.; Tanveer, M. Green capabilities and green purchasing practices: A strategy striving towards sustainable operations. Bus. Strategy Environ. 2022, 31, 1719–1729. [Google Scholar] [CrossRef]
- Buekens, A.; Zhou, X. Recycling plastics from automotive shredder residues: A review. J. Mater. Cycles Waste Manag. 2014, 16, 398–414. [Google Scholar] [CrossRef]
- Lashlem, A.A.; Wahab, D.A.; Abdullah, S.; Haron, C.H. A review on end-of-life vehicle design process and management. J. Appl. Sci. 2013, 13, 654–662. [Google Scholar] [CrossRef] [Green Version]
- Mayyas, A.; Qattawi, A.; Omar, M.; Shan, D. Design for sustainability in automotive industry: A comprehensive review. Renew. Sustain. Energy Rev. 2012, 16, 1845–1862. [Google Scholar] [CrossRef]
- Khan, S.A.R.; Ponce, P.; Thomas, G.; Yu, Z.; Al-Ahmadi, M.S.; Tanveer, M. Digital Technologies, Circular Economy Practices and Environmental Policies in the Era of COVID-19. Sustainability 2021, 13, 12790. [Google Scholar] [CrossRef]
- Go, T.F.; Wahab, D.A.; Rahman, M.A.; Ramli, R.; Azhari, C.H. Disassemblability of end-of-life vehicle: A critical review of evaluation methods. J. Clean. Prod. 2011, 19, 1536–1546. [Google Scholar] [CrossRef]
- Kumar, V.; Sutherland, J.W. Sustainability of the automotive recycling infrastructure: Review of current research and identification of future challenges. Int. J. Sustain. Manuf. 2008, 1, 145–167. [Google Scholar] [CrossRef] [Green Version]
- Cossu, R.; Lai, T. Automotive shredder residue (ASR) management: An overview. Waste Manag. 2015, 45, 143–151. [Google Scholar] [CrossRef]
- Zorpas, A.A.; Inglezakis, V.J. Automotive industry challenges in meeting EU 2015 environmental standard. Technol. Soc. 2012, 34, 55–83. [Google Scholar] [CrossRef]
- Nourreddine, M. Recycling of auto shredder residue. J. Hazard. Mater. 2007, 139, 481–490. [Google Scholar] [CrossRef]
S. No | Year | Articles | Citations |
---|---|---|---|
1 | 2000 | 11 | 571 |
2 | 2001 | 11 | 354 |
3 | 2002 | 18 | 340 |
4 | 2003 | 20 | 967 |
5 | 2004 | 23 | 1299 |
6 | 2005 | 18 | 379 |
7 | 2006 | 32 | 2559 |
8 | 2007 | 34 | 1545 |
9 | 2008 | 34 | 1156 |
10 | 2009 | 39 | 1258 |
11 | 2010 | 35 | 1207 |
12 | 2011 | 48 | 1729 |
13 | 2012 | 52 | 1033 |
14 | 2013 | 66 | 1953 |
15 | 2014 | 70 | 2056 |
16 | 2015 | 70 | 2978 |
17 | 2016 | 102 | 3020 |
18 | 2017 | 91 | 2296 |
19 | 2018 | 106 | 1227 |
20 | 2019 | 151 | 1889 |
21 | 2020 | 162 | 1214 |
22 | 2021 | 212 | 307 |
S. No | COUNTRY/TERRITORY | Articles |
---|---|---|
1 | United States | 270 |
2 | China | 175 |
3 | United Kingdom | 120 |
4 | India | 87 |
5 | Italy | 84 |
6 | Canada | 83 |
7 | Germany | 76 |
8 | Japan | 76 |
9 | France | 61 |
10 | South Korea | 60 |
11 | Sweden | 46 |
12 | Spain | 45 |
13 | Malaysia | 43 |
14 | Australia | 39 |
15 | Netherlands | 37 |
Other Countries | 508 |
Previous Studies | Scope | Target Period | Number of Articles |
---|---|---|---|
He et al., (2020) [7] | Reverse logistics | 2000–2019 | 299 |
Cin and Kusakci (2017) [62] | ✓ | 2005–2016 | 23 |
Gan and He (2014) [61] | ✓ | 2002–2013 | 38 |
Karagoz et al., (2020) [18] | ELV management | 2000–2019 | 232 |
Rosa and Terzi (2018) [66] | Automotive electronics | 2001–2015 | 35 |
Cucchiella et al., (2016) [67] | ✓ | 2000–2014 | 50 |
Buekens and Zhou (2014) [90] | Automotive shredder residue plastics | 1977–2012 | 76 |
Zhang and Chen (2014) [65] | Automotive plastics | 1993–2012 | 63 |
Li et al., (2014) [64] | Management practices | 2005–2012 | 16 |
Sakai et al., (2014) [15] | ✓ | 1991–2012 | 90 |
Lashlem et al., (2013) [91] | ✓ | 1995–2012 | 20 |
Simic (2013) [60] | Environmental engineering issues | 2003–2012 | 93 |
Kindzierski et al., (2013) [59] | Automotive waste | 2012 | 107 |
Bari et al., (2011) [58] | ✓ | 2010 | 103 |
Mayyas et al., (2012) [92]; Khan et al., (2021) [93] | Sustainability of the automotive industry | 1984–2011 | 90 |
Go et al., (2011) [94] | Disassembling | 1992–2010 | 38 |
Hiratsuka et al., (2014) [63] | Vehicle recovery infrastructure | 1995–2012 | 26 |
Kumar and Sutherland (2008) [95] | ✓ | 1986–2007 | 73 |
De Almeida and Borsato (2019) [22] | Automotive shredder residue treatment | 1999–2016 | 76 |
Cossu and Lai (2015) [96] | ✓ | 2005–2014 | 120 |
Zorpas and Inglezakis (2012) [97] | ✓ | 1978–2010 | 110 |
Vermeulen et al., (2011) [57] | ✓ | 1994–2011 | 150 |
Nourreddine (2007) [98] | ✓ | 1991–2004 | 26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Z.; Khan, S.A.R.; Zia-ul-haq, H.M.; Tanveer, M.; Sajid, M.J.; Ahmed, S. A Bibliometric Analysis of End-of-Life Vehicles Related Research: Exploring a Path to Environmental Sustainability. Sustainability 2022, 14, 8484. https://doi.org/10.3390/su14148484
Yu Z, Khan SAR, Zia-ul-haq HM, Tanveer M, Sajid MJ, Ahmed S. A Bibliometric Analysis of End-of-Life Vehicles Related Research: Exploring a Path to Environmental Sustainability. Sustainability. 2022; 14(14):8484. https://doi.org/10.3390/su14148484
Chicago/Turabian StyleYu, Zhang, Syed Abdul Rehman Khan, Hafiz Muhammad Zia-ul-haq, Muhammad Tanveer, Muhammad Jawad Sajid, and Shehzad Ahmed. 2022. "A Bibliometric Analysis of End-of-Life Vehicles Related Research: Exploring a Path to Environmental Sustainability" Sustainability 14, no. 14: 8484. https://doi.org/10.3390/su14148484