Spatiotemporal Evolution Characteristics and the Climatic Response of Carbon Sources and Sinks in the Chinese Grassland Ecosystem from 2010 to 2020
Abstract
:1. Introduction
2. Study Area and Data Acquisition
2.1. Study Area
2.2. Data Acquisition
3. Methodology
3.1. Research Framework
- Step 1: NEP estimation of the CGE. Based on the VPM and SRM, the NEP of the CGE on interannual grid scale from 2010 to 2020 was estimated;
- Step 2: Analysis of the spatial distribution characteristics of carbon sources and sinks in the CGE. The spatial distribution characteristics of carbon sources and sinks of the CGE from 2010 to 2020 were analyzed from the grid scale and provincial administrative division scale;
- Step 3: Analysis of the spatiotemporal evolution trend of carbon sources and sinks in the CGE. By constructing the univariate linear regression equation and variation coefficient formula of NEP interannual variation in the CGE, the interannual variation rate and spatiotemporal variation rate with its spatial grid were calculated, and the spatiotemporal evolution trend and stability of carbon sources and sinks in its ecosystem were discussed.
- Step 4: Study of the response relationship between NEP and climate change in the CGE. By calculating the correlation coefficient and partial correlation coefficient between NEP and temperature and precipitation, this study explores the correlation mechanism between NEP and meteorological elements in the CGE and analyzes the response process of NEP to climate change in the CGE.
3.2. Estimation Model of NEP
3.3. Interannual Variation Rate of NEP
3.4. Stability Analysis of NEP
3.5. Correlation between NEP and Climate Factors
4. Results and Analysis
4.1. Spatial Distribution Characteristics of Carbon Sources and Sinks in the CGE
4.2. Interannual Variation of Carbon Sources and Sinks in the CGE
4.3. Spatiotemporal Variability of Carbon Sources and Sinks in the CGE
4.4. Correlation between the Spatiotemporal Evolution of Carbon Sources and Sinks and Climatic Factors in the CGE
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saier, M.H. Climate Change, 2007. Water Air Soil Pollut. 2007, 181, 1–2. [Google Scholar] [CrossRef]
- Solomon, S.; Plattner, G.K.; Knutti, R.; Friedlingstein, P. Irreversible climate change due to carbon dioxide emissions. Proc. Natl. Acad. Sci. USA 2009, 106, 1704–1709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanders, S. 125 Questions: Exploration and Discovery; Science/AAAS Custom Publishing Office: Washington, DC, USA, 2021. [Google Scholar]
- International Energy Agency. Global Energy Review: CO2 Emissions in 2021; IEA Publications: Paris, France, 2021. [Google Scholar]
- Schleussner, C.F.; Lissner, T.K.; Fischer, E.M.; Wohland, J.; Perrette, M.; Golly, A.; Rogelj, J.; Childers, K.; Schewe, J.; Frieler, K.; et al. Differential climate impacts for policy-relevant limits to global warming: The case of 1.5 °C and 2 °C. Earth Syst. Dyn. 2016, 7, 327–351. [Google Scholar] [CrossRef] [Green Version]
- Schulze, E.D.; Wirth, C.; Heimann, M. Managing Forests After Kyoto. Science 2000, 289, 2058–2059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, W.J.; Zhao, Y.; Li, Z.; Yin, Y.T.; Cao, C.L. Carbon Emission Peak Paths Under Different Scenarios Based on the LEAP Model—A Case Study of Suzhou, China. Front. Environ. Sci. 2022, 10, 905471. [Google Scholar] [CrossRef]
- Chai, Q.M.; Guo, H.Y.; Liu, C.Y.; Dong, L.; Ju, L.X.; Liu, C.S.; Chen, Y.; Chen, H.B.; Zhuang, G.Y. Global Climate Change and China’s Action Scheme: Climate Governance of China in the 14th Five-Year Plan Period from 2021 to 2025 (Conversation by Writing). Yuejiang Acad. J. 2020, 12, 36–58. [Google Scholar]
- Lin, B.Q. The Period of Carrying out Energy Revolution to Promote Low Carbon Clean Development in China. China Ind. Econ. 2018, 6, 15–23. [Google Scholar]
- Liu, J.B. Carbon neutralization: Building a community of human and natural life together. Fujian For. 2021, 4, 1. [Google Scholar]
- Central People’s Government of the People’s Republic of China. Action Plan for Carbon Dioxide Peaking before 2030. Available online: http://www.gov.cn/zhengce/content/2021-10/26/content_5644984.htm (accessed on 6 May 2022).
- Intergovernmental Panel on Climate Change. IPCC Climate Change 2021: The Physical Science Basis; Cambridge University Press: London, UK, 2021. [Google Scholar]
- Shi, P.J.; Ye, Q.; Han, G.Y.; Li, N.; Wang, M.; Fang, W.H.; Liu, Y.H. Living with global climate diversity-suggestions on international governance for coping with climate change risk. Int. J. Disaster Risk Sci. 2012, 3, 177–184. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.Z.; Fan, J.W.; Liu, S. A Comprehensive Analysis of Difference in Carbon Stock Estimation in the Grasslands of China. Acta Agrestia Sin. 2017, 25, 905–913. [Google Scholar]
- Ni, J. Carbon storage in grasslands of China. J. Arid. Environ. 2002, 50, 205–218. [Google Scholar] [CrossRef]
- Gao, Y.J.; Shi, J.; Li, X. Knowledge mapping analysis of grassland carbon sink research based on CiteSpace. Acta Prataculturae Sin. 2020, 8, 195–203. [Google Scholar]
- Zhang, J.P.; Liu, C.L.; He, H.G.; Sun, L.; Qiao, Q.; Wang, H.; Ning, Y.C. Spatial-temporal Change of Carbon Storage and Carbon Sink of Grassland Ecosystem in the Three-River Headwaters Region Based on MODIS GPP/NPP Data. Ecol. Environ. Sci. 2015, 24, 8–13. [Google Scholar]
- Pan, J.H.; Li, Z. Temporal-spatial change of vegetation net primary productivity in the arid region of Northwest China during 2001 and 2012. Chin. J. Ecol. 2015, 34, 3333–3340. [Google Scholar]
- Yun, Y.J.; Zhao, J. Spatial Pattern of Vegetation Carbon Sinks Based on MODIS-NDVI Data: A Case Study in Shiyang River Basin, China. Mt. Res. 2018, 36, 644–653. [Google Scholar]
- Xinhua News Agency. National Carbon Emissions Trading Market Online Trading Officially Launched. Available online: http://www.gov.cn/xinwen/2021-07/17/content_5625625.htm#1 (accessed on 6 May 2022).
- Ministry of Natural Resources, PRC. 2021 China Mineral Resources. Available online: http://mnr.gov.cn/sj/sjfw/kc_19263/zgkczybg/202111/t20211105_2701985.html (accessed on 6 May 2022).
- Ding, Y.; Chun, L.; Sun, J.J.; Wu, Z.N.; Yun, X.J.; Li, F.; Jia, D.Z.; Lai, Y.N. China Grassland. For. Hum. 2020, Z1, 20–39+12–19. [Google Scholar]
- Chen, J.; Ban, Y.; Li, S. China: Open access to Earth land-cover map. Nature 2014, 514, 434. [Google Scholar]
- Xiao, X.; Boles, S.; Liu, J.; Zhuang, D.; Fronlking, S.; Li, C.; Salas, W.; Ill, B.M. Mapping paddy rice agriculture in southern China using multi-temporal MODIS images. Remote Sens. Environ. 2005, 95, 480–492. [Google Scholar] [CrossRef]
- Wang, D.D.; Liang, S.L.; Zhang, Y.; Gao, X.Y.; Bron, M.G.L.; Jia, A.L. A New Set of MODIS Land Products (MCD18): Downward Shortwave Radiation and Photosynthetically Active Radiation. Remote Sens. 2020, 12, 168. [Google Scholar] [CrossRef] [Green Version]
- Didan, K. MOD13A2 MODIS/Terra Vegetation Indices 16-Day L3 Global 1 km SIN Grid V006. NASA EOSDIS Land Processes DAAC. Available online: https://lpdaac.usgs.gov/products/mod13a2v006/ (accessed on 6 May 2022).
- Dai, E.F.; Huang, Y.; Wu, Z.; Zhao, D.S. Spatial-temporal features of carbon source-sink and its relationship with climate factors in lnner Mongolia grassland ecosystem. Acta Geogr. Sin. 2016, 71, 21–34. [Google Scholar]
- Huang, X.J.; Zhang, X.Y.; Lu, X.H.; Wang, P.Y.; Qin, J.Y.; Jiang, Y.C.; Liu, Z.M.; Wang, Z.; Zhu, A.X. Land development and utilization for carbon neutralization. J. Nat. Resour. 2021, 36, 2995–3006. [Google Scholar] [CrossRef]
- Lee, M.; Nakane, K.; Nakatsubo, T.; Koizumi, H. Seasonal changes in the contribution of root respiration to total soil respiration in a cool-temperate deciduous forest. Plant Soil 2003, 255, 311–318. [Google Scholar] [CrossRef]
- Tang, X.; Fan, S.; Qi, L.; Guan, F.; Du, M.; Zhang, H. Soil respiration and net ecosystem production in relation to intensive management in Moso bamboo forests. Catena 2016, 137, 219–228. [Google Scholar] [CrossRef]
- Chen, J.Q.; Yan, H.M.; Wang, S.Q.; Gao, Y.N.; Huang, M.; Wang, J.B.; Xiao, X.M. Estimation of gross primary productivity in Chinese terrestrial ecosystems by using VPM model. Quat. Sci. 2014, 34, 732–742. [Google Scholar]
- Xiao, X.M.; Zhang, Q.Y.; Braswell, B.; Urbanski, S.; Boles, S.; Wofsy, S.; Berrien, M.; Ojimac, D. Modeling gross primary production of temperate deciduous broadleaf forest usingsatellite images and climate data. Remote Sens. Ensironmen 2004, 91, 256–270. [Google Scholar] [CrossRef]
- Xiao, X.; Hollinger, D.; Aber, J.; Goltz, M.; Davidson, E.A.; Zhang, Q.; Moore, B., III. Satellite-based modeling of gross primary production in an evergreen needleleaf forest. Remote Sens. Environ. 2004, 89, 519–534. [Google Scholar] [CrossRef]
- Raich, J.W.; Rastetter, E.B.; Melillo, J.M.; Kicklighter, D.W.; Steudler, P.A.; Peterson, B.J.; Grace, A.L.; Moore, B.; Vorosmarty, C.J. Potential net primaryproductivity in South America: Application of a global model. Ecol. Appl. 1991, 1, 399–429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pei, Z.; Ouyang, H.; Zhou, C.; Xu, X. Carbon Balance in an Alpine Steppe in the Qinghai-Tibet Plateau. J. Integr. Plant Biol. 2009, 51, 521–526. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, T.B.; Yi, G.H.; Chen, T.T.; Bie, X.J.; He, Y.X. Tempo-spatial variations and driving factors analysis of net primary productivity in the Hengduan mountain area from 2004 to 2014. Acta Ecol. Sin. 2017, 37, 3084–3095. [Google Scholar]
- Pan, J.H.; Huang, K.J.; Li, Z. Spatio-temporal variation in vegetation net primary productivity and its relationship with climatic factors in the Shule River basin from 2001 to 2010. Acta Ecol. Sin. 2017, 37, 1888–1899. [Google Scholar] [CrossRef]
- Schober, P.; Boer, C.; Schwarte, L.A. Correlation Coefficients. Anesth. Analg. 2018, 126, 1763–1768. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.H. Mathematical Methods in Contemporary Geography, 2nd ed.; Higher Education Press: Beijing, China, 2002. [Google Scholar]
- Liu, F.; Zeng, Y.N. Analysis of the spatio-temporal variation of vegetation carbon source/sink in Qinghai Plateau from. Acta Ecol. Sin. 2021, 41, 5792–5803. [Google Scholar]
- Wu, S.S.; Yan, Z.J.; Jiang, L.G.; Wang, R.; Liu, Z.F. The Spatial-Temporal Variations and Hydrological Effects of Vegetation NPP Based on MODIS in the Source Region of the Yangtze River. J. Nat. Resour. 2016, 31, 39–51. [Google Scholar]
Type | Significant Positive Correlation (%) | Insignificant Positive Correlation (%) | Insignificant Negative Correlation (%) | Significant Negative Correlation (%) |
---|---|---|---|---|
Correlation coefficient between NEP and temperature | 2.25 | 44.04 | - | 53.72 |
Correlation coefficient between NEP and precipitation | 1.60 | 63.12 | - | 35.27 |
Partial correlation coefficient between NEP and temperature | 2.48 | 44.84 | - | 52.67 |
Partial correlation coefficient between NEP and precipitation | 4.78 | 60.83 | - | 34.39 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Lin, G.; Jiang, D.; Fu, J.; Wang, Y. Spatiotemporal Evolution Characteristics and the Climatic Response of Carbon Sources and Sinks in the Chinese Grassland Ecosystem from 2010 to 2020. Sustainability 2022, 14, 8461. https://doi.org/10.3390/su14148461
Li X, Lin G, Jiang D, Fu J, Wang Y. Spatiotemporal Evolution Characteristics and the Climatic Response of Carbon Sources and Sinks in the Chinese Grassland Ecosystem from 2010 to 2020. Sustainability. 2022; 14(14):8461. https://doi.org/10.3390/su14148461
Chicago/Turabian StyleLi, Xiang, Gang Lin, Dong Jiang, Jingying Fu, and Yaxin Wang. 2022. "Spatiotemporal Evolution Characteristics and the Climatic Response of Carbon Sources and Sinks in the Chinese Grassland Ecosystem from 2010 to 2020" Sustainability 14, no. 14: 8461. https://doi.org/10.3390/su14148461
APA StyleLi, X., Lin, G., Jiang, D., Fu, J., & Wang, Y. (2022). Spatiotemporal Evolution Characteristics and the Climatic Response of Carbon Sources and Sinks in the Chinese Grassland Ecosystem from 2010 to 2020. Sustainability, 14(14), 8461. https://doi.org/10.3390/su14148461