A Fog-Cluster Based Load-Balancing Technique
Abstract
:1. Introduction
- Firstly, an architecture of cloud-based fog-paradigm for real-time (delay-sensitive) applications was proposed. In this proposed architecture, a fog layer is designed to design a fog layer in such a manner that it can take advantage of the fog concept as well as reduce the delay for mission-critical applications.
- Secondly, a load-balancing algorithm for effective distribution of the task load to fog nodes placed in fog cluster. This algorithm covers the solution to the problem of determining Optimal Refresh Period.
- Finally, the data flushing algorithm effectively flushes the data from fog nodes.
2. Related Work
3. Proposed Framework
3.1. User Subsystem
3.1.1. Overall Strategy of Fog Cluster-Based Load Balancing (FCBLB)
3.1.2. Fog Cluster-Based Load-Balancing (FCBLB) Algorithm
3.1.3. Determination of Refresh Period
Algorithm1: Fog cluster Based Load Balancing (FCBLB). | |
Result: Balanced load leading to efficiency | |
Input: Jobs, clusters | |
Output: Balanced load leading to efficiency | |
|
Algorithm2: Calculation of the Optimal Refresh Period. |
Result: Optimal Refresh Period Computation |
Output: Tr |
|
- i ← 10
- if i > 6 then
- i ← i − 1
- else
- if i < 3 then
- i ← i + 2
- end if
- end if
3.2. Cloud Sub-System
4. Experiment Setup & Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yu, C.-M.; Ku, M.L.; Wang, L.-C. Joint topology construction and hybrid routing strategy on load balancing for Bluetooth low energy networks. IEEE Internet Things J. 2021, 8, 7101–7102. [Google Scholar] [CrossRef]
- Liang, Y.; Lan, Y. Tclbm: A task chain-based load balancing algorithm for microservices. Tsinghua Sci. Technol. 2020, 26, 251–258. [Google Scholar] [CrossRef]
- Lyu, H.; Chen, K. Hybrid load-modulated balanced amplifier with high linearity and extended dynamic range. IEEE Microw. Wirel. Compon. Lett. 2021, 31, 1067–1070. [Google Scholar] [CrossRef]
- Hung, L.-H.; Wu, C.-H.; Tsai, C.-H.; Huang, H.-C. Migration-based load balance of virtual machine servers in cloud computing by load prediction using genetic-based methods. IEEE Access 2021, 9, 49760–49773. [Google Scholar] [CrossRef]
- Korndörfer, J.H.M.; Eleliemy, A.; Mohammed, A.; Ciorba, F.M. Lb4omp: A dynamic load balancing library for multithreaded applications. arXiv 2021, arXiv:2106.05108. [Google Scholar] [CrossRef]
- Mi, J.; Ren, Q.; Su, D. Parallel subdomain-level dgtd method with automatic load balancing scheme with tetrahedral and hexahedral elements. IEEE Trans. Antennas Propag. 2020, 69, 2230–2241. [Google Scholar] [CrossRef]
- Cao, Y.; Chen, K. Hybrid asymmetrical load modulated balanced amplifier with wide bandwidth and three-way-doherty efficiency enhancement. IEEE Microw. Wirel. Compon. Lett. 2021, 31, 721–724. [Google Scholar] [CrossRef]
- Aktas, M.F.; Behrouzi-Far, A.; Soljanin, E.; Whiting, P. Evaluating load balancing performance in distributed storage with redundancy. arXiv 2021, arXiv:1910.05791. [Google Scholar] [CrossRef]
- Giordano, A.; De Rango, A.; Rongo, R.; D’Ambrosio, D.; Spataro, W. Dynamic load balancing in parallel execution of cellular automata. IEEE Trans. Parallel Distrib. Syst. 2020, 32, 470–484. [Google Scholar] [CrossRef]
- Liu, C.; Li, K.; Li, K. A game approach to multi-servers load balancing with load-dependent server availability consideration. IEEE Trans. Cloud Comput. 2018, 9, 1–13. [Google Scholar] [CrossRef]
- Duong, T.-V.T.; Binh, L.H. Load balancing routing under constraints of quality of transmission in mesh wireless network based on software defined networking. J. Commun. Netw. 2021, 23, 12–22. [Google Scholar]
- Liu, Y.; Gu, H.; Yan, F.; Calabretta, N. Highly-efficient switch migration for controller load balancing in elastic optical inter-datacenter networks. IEEE J. Sel. Areas Commun. 2021, 39, 2748–2761. [Google Scholar] [CrossRef]
- Jahid, A.; Alsharif, M.H.; Uthansakul, P.; Nebhen, J.; Aly, A.A. Energy efficient throughput aware traffic load balancing in green cellular networks. IEEE Access 2021, 9, 90587–90602. [Google Scholar] [CrossRef]
- Latif, Z.; Sharif, K.; Li, F.; Karim, M.M.; Biswas, S.; Shahzad, M.; Mohanty, S.P. Dolphin: Dynamically optimized and load balanced path for inter-domain SDN communication. IEEE Trans. Netw. Serv. Manag. 2020, 18, 331–346. [Google Scholar] [CrossRef]
- Zhang, W.-Z.; Elgendy, I.A.; Hammad, M.; Iliyasu, A.M.; Du, X.; Guizani, M.; Abd El-Latif, A.A. Secure and optimized load balancing for multitier IoT and edge-cloud computing systems. IEEE Internet Things J. 2020, 8, 8119–8132. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, X.; He, Q.; Zhang, C.; Huang, M. Plofr: An online flow route framework for power saving and load balance in SDN. IEEE Syst. J. 2020, 15, 526–537. [Google Scholar] [CrossRef]
- Attiya, I.; Abualigah, L.; Elsadek, D.; Chelloug, S.A.; Abd Elaziz, M. An Intelligent Chimp Optimizer for Scheduling of IoT Application Tasks in Fog Computing. Mathematics 2022, 10, 1100. [Google Scholar] [CrossRef]
- El Kafhali, S.; Salah, K. Performance modelling and analysis of Internet of Things enabled healthcare monitoring systems. IET Netw. 2019, 8, 48–58. [Google Scholar] [CrossRef]
- Dhankhar, A.; Juneja, S.; Juneja, A.; Bali, V. Kernel parameter tuning to tweak the performance of classifiers for identification of heart diseases. Int. J. E-Health Med. Commun. 2021, 12, 1–16. [Google Scholar] [CrossRef]
- Lakzaei, M.; Sattari-Naeini, V.; Sabbagh Molahosseini, A.; Javadpour, A. A joint computational and resource allocation model for fast parallel data processing in fog computing. J. Supercomput. 2022, 78, 12662–12685. [Google Scholar] [CrossRef]
- El Kafhali, S.; Salah, K.; Alla, B.S. Performance evaluation of IoT-fog-cloud deployment for healthcare services. In Proceedings of the 2018 4th International Conference on Cloud Computing Technologies and Applications (Cloudtech), Brussels, Belgium, 26–28 November 2018. [Google Scholar]
- Serdaroglu, K.C.; Baydere, S. An Efficient Multipriority Data Packet Traffic Scheduling Approach for Fog of Things. IEEE Internet Things J. 2021, 9, 525–534. [Google Scholar] [CrossRef]
- Mekala, M.S.; Dhiman, G.; Srivastava, G.; Nain, Z.; Zhang, H.; Viriyasitavat, W.; Varma, G.P.S. A DRL-Based Service Offloading Approach Using DAG for Edge Computational Orchestration. IEEE Trans. Comput. Soc. Syst. 2022. [Google Scholar] [CrossRef]
- Yadav, K.; Jain, A.; Ahmed, O.S.N.M.; Hamad, S.A.S.; Dhiman, G.; Alotaibi, S.D. Internet of Thing based Koch Fractal Curve Fractal Antennas for Wireless Applications. IETE J. Res. 2022, 1–10. [Google Scholar] [CrossRef]
- Sumathy, B.; Chakrabarty, A.; Gupta, S.; Hishan, S.S.; Raj, B.; Gulati, K.; Dhiman, G. Prediction of Diabetic Retinopathy Using Health Records with Machine Learning Classifiers and Data Science. Int. J. Reliab. Qual. E-Healthc. 2022, 11, 1–16. [Google Scholar] [CrossRef]
- Rashid, J.; Shah, S.M.A.; Irtaza, A. An efficient topic modeling approach for text mining and information retrieval through K-means clustering. Mehran Univ. Res. J. Eng. Technol. 2020, 39, 213–222. [Google Scholar] [CrossRef] [Green Version]
- Zeidabadi, F.A.; Dehghani, M.; Trojovský, P.; Hubálovský, Š.; Leiva, V.; Dhiman, G. Archery algorithm: A novel stochastic optimization algorithm for solving optimization problems. Comput. Mater. Contin. 2022, 72, 399–416. [Google Scholar] [CrossRef]
- Singh, N.; Houssein, E.H.; Singh, S.B.; Dhiman, G. HSSAHHO: A novel hybrid Salp swarm-Harris hawks optimization algorithm for complex engineering problems. J. Ambient Intell. Humaniz. Comput. 2022, 1–37. [Google Scholar] [CrossRef]
- Kanwal, S.; Rashid, J.; Kim, J.; Juneja, S.; Dhiman, G.; Hussain, A. Mitigating the Coexistence Technique in Wireless Body Area Networks by Using Superframe Interleaving. IETE J. Res. 2022, 1–15. [Google Scholar] [CrossRef]
- Juneja, S.; Dhiman, G.; Kautish, S.; Viriyasitavat, W.; Yadav, K. A Perspective Roadmap for IoMT-Based Early Detection and Care of the Neural Disorder, Dementia. J. Healthc. Eng. 2021, 2021, 6712424. [Google Scholar] [CrossRef]
- Dhiman, G.; Kaur, G.; Haq, M.A.; Shabaz, M. Requirements for the Optimal Design for the Metasystematic Sustainability of Digital Double-Form Systems. Math. Probl. Eng. 2021, 2021, 2423750. [Google Scholar] [CrossRef]
- Das, S.R.; Sahoo, A.K.; Dhiman, G.; Singh, K.K.; Singh, A. Photo voltaic integrated multilevel inverter based hybrid filter using spotted hyena optimizer. Comput. Electr. Eng. 2021, 96, 107510. [Google Scholar] [CrossRef]
- Kansal, L.; Gaba, G.S.; Sharma, A.; Dhiman, G.; Baz, M.; Masud, M. Performance Analysis of WOFDM-WiMAX Integrating Diverse Wavelets for 5G Applications. Wirel. Commun. Mob. Comput. 2021, 2021, 5835806. [Google Scholar] [CrossRef]
- Rashid, J.; Batool, S.; Kim, J.; Wasif Nisar, M.; Hussain, A.; Juneja, S.; Kushwaha, R. An Augmented Artificial Intelligence Approach for Chronic Diseases Prediction. Front. Public Health 2022, 10, 860396. [Google Scholar] [CrossRef] [PubMed]
- Bangare, S.L.; Prakash, S.; Gulati, K.; Veeru, B.; Dhiman, G.; Jaiswal, S. The Architecture, Classification, and Unsolved Research Issues of Big Data extraction as well as decomposing the Internet of Vehicles (IoV). In Proceedings of the 2021 6th International Conference on Signal Processing, Computing and Control (ISPCC), Solan, India, 7–9 October 2021; pp. 566–571. [Google Scholar]
- Dhiman, G.; Soni, M.; Pandey, H.M.; Slowik, A.; Kaur, H. A novel hybrid hypervolume indicator and reference vector adaptation strategies based evolutionary algorithm for many-objective optimization. Eng. Comput. 2021, 37, 3017–3035. [Google Scholar] [CrossRef]
- Oliva, D.; Esquivel-Torres, S.; Hinojosa, S.; Pérez-Cisneros, M.; Osuna-Enciso, V.; Ortega-Sánchez, N.; Dhiman, G.; Heidari, A.A. Opposition-based moth swarm algorithm. Expert Syst. Appl. 2021, 184, 115481. [Google Scholar] [CrossRef]
- Kumar, R.; Dhiman, G. A comparative study of fuzzy optimization through fuzzy number. Int. J. Mod. Res. 2021, 1, 1–14. [Google Scholar]
- Vaishnav, P.K.; Sharma, S.; Sharma, P. Analytical review analysis for screening COVID-19 disease. Int. J. Mod. Res. 2021, 1, 22–29. [Google Scholar]
- Chatterjee, I. Artificial intelligence and patentability: Review and discussions. Int. J. Mod. Res. 2021, 1, 15–21. [Google Scholar]
- Gupta, V.K.; Shukla, S.K.; Rawat, R.S. Crime tracking system and people’s safety in India using machine learning approaches. Int. J. Mod. Res. 2022, 2, 1–7. [Google Scholar]
- Sharma, T.; Nair, R.; Gomathi, S. Breast Cancer Image Classification using Transfer Learning and Convolutional Neural Network. Int. J. Mod. Res. 2022, 2, 8–16. [Google Scholar]
- Shukla, S.K.; Gupta, V.K.; Joshi, K.; Gupta, A.; Singh, M.K. Self-aware Execution Environment Model (SAE2) for the Performance Improvement of Multicore Systems. Int. J. Mod. Res. 2022, 2, 17–27. [Google Scholar]
- Shao, C.; Yang, Y.; Juneja, S.; GSeetharam, T. IoT data visualization for business intelligence in corporate finance. Inf. Process. Manag. 2022, 59, 102736. [Google Scholar] [CrossRef]
- Juneja, S.; Jain, S.; Suneja, A.; Kaur, G.; Alharbi, Y.; Alferaidi, A.; Alharbi, A.; Viriyasitavat, W.; Dhiman, G. Gender and Age Classification Enabled Blockschain Security Mechanism for Assisting Mobile Application. IETE J. Res. 2021. [Google Scholar] [CrossRef]
- Sharma, S.; Gupta, S.; Gupta, D.; Juneja, S.; Singal, G.; Dhiman, G.; Kautish, S. Recognition of Gurmukhi Handwritten City Names Using Deep Learning and Cloud Computing. Sci. Program. 2022, 2022, 5945117. [Google Scholar] [CrossRef]
- Juneja, S.; Juneja, A.; Dhiman, G.; Jain, S.; Dhankhar, A.; Kautish, S. Computer Vision-Enabled Character Recognition of Hand Gestures for Patients with Hearing and Speaking Disability. Mob. Inf. Syst. 2021, 2021, 4912486. [Google Scholar] [CrossRef]
- Gadekallu, T.R.; Pham, Q.V.; Nguyen, D.C.; Maddikunta, P.K.R.; Deepa, N.; Prabadevi, B.; Pathirana, P.N.; Zhao, J.; Hwang, W.J. Blockchain for edge of things: Applications, opportunities, and challenges. IEEE Internet Things J. 2021, 9, 964–988. [Google Scholar] [CrossRef]
- Priya RM, S.; Bhattacharya, S.; Maddikunta, P.K.R.; Somayaji, S.R.K.; Lakshmanna, K.; Kaluri, R.; Hussien, A.; Gadekallu, T.R. Load balancing of energy cloud using wind driven and firefly algorithms in internet of everything. J. Parallel Distrib. Comput. 2020, 142, 16–26. [Google Scholar]
- Pan, X.; Cai, X.; Song, K.; Baker, T.; Gadekallu, T.R.; Yuan, X. Location Recommendation Based on Mobility Graph with Individual and Group Influences. IEEE Trans. Intell. Transp. Syst. 2022. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, P.; Kaur, R.; Rashid, J.; Juneja, S.; Dhiman, G.; Kim, J.; Ouaissa, M. A Fog-Cluster Based Load-Balancing Technique. Sustainability 2022, 14, 7961. https://doi.org/10.3390/su14137961
Singh P, Kaur R, Rashid J, Juneja S, Dhiman G, Kim J, Ouaissa M. A Fog-Cluster Based Load-Balancing Technique. Sustainability. 2022; 14(13):7961. https://doi.org/10.3390/su14137961
Chicago/Turabian StyleSingh, Prabhdeep, Rajbir Kaur, Junaid Rashid, Sapna Juneja, Gaurav Dhiman, Jungeun Kim, and Mariya Ouaissa. 2022. "A Fog-Cluster Based Load-Balancing Technique" Sustainability 14, no. 13: 7961. https://doi.org/10.3390/su14137961