A Novel PV Maximum Power Point Tracking Based on Solar Irradiance and Circuit Parameters Estimation
Abstract
:1. Introduction
2. Modeling PV Panel
3. The PV I–V Characteristics
4. Description of the PV System
5. The Proposed Maximum Power Point Tracking (MPPT) Algorithm
6. Simulation Test and Results
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dehedkar, M.N.; Murkute, S.V. Optimization of PV system using distributed MPPT control. In Proceedings of the 2018 International Conference on System Modeling & Advancement in Research Trends (SMART), Moradabad, India, 23–24 November 2018; pp. 216–220. [Google Scholar]
- Dincer, I. Environmental impacts of energy. Energy Policy 1999, 27, 845–854. [Google Scholar] [CrossRef]
- Koutroulis, E.; Blaabjerg, F. Overview of maximum power point tracking techniques for photovoltaic energy production systems. Electr. Power Compon. Syst. 2015, 43, 1329–1351. [Google Scholar] [CrossRef]
- Liu, Y.; Tang, Y.; Shi, J.; Shi, X.; Deng, J.; Gong, K. Application of small-sized SMES in an EV charging station with DC bus and PV system. IEEE Trans. Appl. Supercond. 2014, 25, 5700406. [Google Scholar] [CrossRef]
- Kumar, R.; Singh, S.K. Solar photovoltaic modeling and simulation: As a renewable energy solution. Energy Rep. 2018, 4, 701–712. [Google Scholar]
- Motahhir, S.; El Hammoumi, A.; El Ghzizal, A. The most used MPPT algorithms: Review and the suitable low-cost embedded board for each algorithm. J. Clean. Prod. 2020, 246, 118983. [Google Scholar] [CrossRef]
- Mao, M.; Cui, L.; Zhang, Q.; Guo, K.; Zhou, L.; Huang, H. Classification and summarization of solar photovoltaic MPPT techniques: A review based on traditional and intelligent control strategies. Energy Rep. 2020, 6, 1312–1327. [Google Scholar] [CrossRef]
- Bendib, B.; Belmili, H.; Krim, F. A survey of the most used MPPT methods: Conventional and advanced algorithms applied for photovoltaic systems. Renew. Sustain. Energy Rev. 2015, 45, 637–648. [Google Scholar] [CrossRef]
- Malkawi, A.; Lopes, L. A novel seamless control algorithm for a single-stage photovoltaic interface employing DC bus signaling. Int. J. Electr. Power Energy Syst. 2019, 113, 90–103. [Google Scholar] [CrossRef]
- Moreira, H.S.; Oliveira, T.P.; Dos Reis, M.V.G.; Guerreiro, J.F.; Villalva, M.G.; De Siqueira, T.G. Modeling and simulation of photovoltaic systems under non-uniform conditions. In Proceedings of the 2017 IEEE 8th International Symposium on Power Electronics for Distributed Generation Systems (PEDG), Florianopolis, Brazil, 17–20 April 2017; pp. 1–6. [Google Scholar]
- Wang, Y.; Li, Y.; Ruan, X. High-accuracy and fast-speed MPPT methods for PV string under partially shaded conditions. IEEE Trans. Ind. Electron. 2015, 63, 235–245. [Google Scholar] [CrossRef]
- Spertino, F.; Ahmad, J.; Di Leo, P.; Ciocia, A. A method for obtaining the IV curve of photovoltaic arrays from module voltages and its applications for MPP tracking. Sol. Energy 2016, 139, 489–505. [Google Scholar] [CrossRef]
- Ashouri-Zadeh, A.; Toulabi, M.; Dobakhshari, A.S.; Taghipour-Broujeni, S.; Ranjbar, A.M. A novel technique to extract the maximum power of photovoltaic array in partial shading conditions. Int. J. Electr. Power Energy Syst. 2018, 101, 500–512. [Google Scholar] [CrossRef]
- Ahmad, J. A fractional open circuit voltage based maximum power point tracker for photovoltaic arrays. In Proceedings of the 2010 2nd International Conference on Software Technology and Engineering, San Juan, PR, USA, 3–5 October 2010; Volume 1, p. V1-247. [Google Scholar]
- Noguchi, T.; Togashi, S.; Nakamoto, R. Short-current pulse-based maximum-power-point tracking method for multiple photovoltaic-and-converter module system. IEEE Trans. Ind. Electron. 2002, 49, 217–223. [Google Scholar] [CrossRef]
- Sher, H.A.; Murtaza, A.F.; Noman, A.; Addoweesh, K.E.; Al-Haddad, K.; Chiaberge, M. A new sensorless hybrid MPPT algorithm based on fractional short-circuit current measurement and P&O MPPT. IEEE Trans. Sustain. Energy 2015, 6, 1426–1434. [Google Scholar]
- Nedumgatt, J.J.; Jayakrishnan, K.B.; Umashankar, S.; Vijayakumar, D.; Kothari, D.P. Perturb and observe MPPT algorithm for solar PV systems-modeling and simulation. In Proceedings of the 2011 Annual IEEE India Conference, Hyderabad, India, 16–18 December 2011; pp. 1–6. [Google Scholar]
- Ishaque, K.; Salam, Z.; Lauss, G. The performance of perturb and observe and incremental conductance maximum power point tracking method under dynamic weather conditions. Appl. Energy 2014, 119, 228–236. [Google Scholar] [CrossRef]
- Abdel-Salam, M.; El-Mohandes, M.T.; El-Ghazaly, M. An Efficient Tracking of MPP in PV Systems Using a Newly-Formulated P&O-MPPT Method Under Varying Irradiation Levels. J. Electr. Eng. Technol. 2020, 15, 501–513. [Google Scholar] [CrossRef]
- Sera, D.; Mathe, L.; Kerekes, T.; Spataru, S.V.; Teodorescu, R. On the perturb-and-observe and incremental conductance MPPT methods for PV systems. IEEE J. Photovolt. 2013, 3, 1070–1078. [Google Scholar] [CrossRef]
- Rezk, H.; Eltamaly, A.M. A comprehensive comparison of different MPPT techniques for photovoltaic systems. Sol. Energy 2015, 112, 1–11. [Google Scholar] [CrossRef]
- Belkaid, A.; Colak, I.; Isik, O. Photovoltaic maximum power point tracking under fast varying of solar radiation. Appl. Energy 2016, 179, 523–530. [Google Scholar] [CrossRef]
- Yilmaz, U.; Kircay, A.; Borekci, S. PV system fuzzy logic MPPT method and PI control as a charge controller. Renew. Sustain. Energy Rev. 2018, 81, 994–1001. [Google Scholar] [CrossRef]
- Al-Majidi, S.D.; Abbod, M.F.; Al-Raweshidy, H.S. A novel maximum power point tracking technique based on fuzzy logic for photovoltaic systems. Int. J. Hydrogen Energy 2018, 43, 14158–14171. [Google Scholar] [CrossRef]
- Rizzo, S.A.; Scelba, G. ANN based MPPT method for rapidly variable shading conditions. Appl. Energy 2015, 145, 124–132. [Google Scholar] [CrossRef]
- Lasheen, M.; Rahman, A.K.A.; Abdel-Salam, M.; Ookawara, S. Performance enhancement of constant voltage based MPPT for photovoltaic applications using genetic algorithm. Energy Procedia 2016, 100, 217–222. [Google Scholar] [CrossRef] [Green Version]
- Tajuddin, M.F.N.; Ayob, S.M.; Salam, Z.; Saad, M.S. Evolutionary based maximum power point tracking technique using differential evolution algorithm. Energy Build. 2013, 67, 245–252. [Google Scholar] [CrossRef]
- Liu, Y.-H.; Huang, S.-C.; Huang, J.-W.; Liang, W.-C. A particle swarm optimization-based maximum power point tracking algorithm for PV systems operating under partially shaded conditions. IEEE Trans. Energy Convers. 2012, 27, 1027–1035. [Google Scholar] [CrossRef]
- Blange, R.; Mahanta, C.; Gogoi, A.K. MPPT of solar photovoltaic cell using perturb & observe and fuzzy logic controller algorithm for buck-boost DC-DC converter. In Proceedings of the 2015 International Conference on Energy, Power and Environment: Towards Sustainable Growth (ICEPE), Shillong, India, 12–13 June 2015; pp. 1–5. [Google Scholar]
- Radjai, T.; Gaubert, J.P.; Rahmani, L.; Mekhilef, S. Experimental verification of P&O MPPT algorithm with direct control based on Fuzzy logic control using CUK converter. Int. Trans. Electr. Energy Syst. 2015, 25, 3492–3508. [Google Scholar]
- Radjai, T.; Rahmani, L.; Mekhilef, S.; Gaubert, J.P. Implementation of a modified incremental conductance MPPT algorithm with direct control based on a fuzzy duty cycle change estimator using dSPACE. Sol. Energy 2014, 110, 325–337. [Google Scholar] [CrossRef]
- Study of Characteristics of Single and Double Diode Electrical Equivalent Circuit Models of Solar PV Module|IEEE Conference Publication|IEEE Xplore. Available online: https://ieeexplore.ieee.org/abstract/document/7503362?casa_token=UATpLRGRfV4AAAAA:EVz6Gd35RDU6E6z5O5idPZW3UnX0Nkh74522Sl4yj239Z2C-F8sPOfJBIym9Oodo5CpFA7_vtGgB (accessed on 2 April 2022).
- Farahani, M.; Shamsi-nejad, M.A.; Najafi, H.R. Design and construction of a digital solar array simulator with fast dynamics and high performance. Sol. Energy 2020, 196, 319–326. [Google Scholar] [CrossRef]
- Yilmaz, U.; Turksoy, O.; Teke, A. Improved MPPT method to increase accuracy and speed in photovoltaic systems under variable atmospheric conditions. Int. J. Electr. Power Energy Syst. 2019, 113, 634–651. [Google Scholar] [CrossRef]
- Mutoh, N.; Ohno, M.; Inoue, T. A Method for MPPT Control While Searching for Parameters Corresponding to Weather Conditions for PV Generation Systems. IEEE Trans. Ind. Electron. 2006, 53, 1055–1065. [Google Scholar] [CrossRef]
- Bellia, H.; Youcef, R.; Fatima, M. A detailed modeling of photovoltaic module using MATLAB. NRIAG J. Astron. Geophys. 2014, 3, 53–61. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.-W.; Choi, H.-S.; Cho, B.H. A novel droop method for converter parallel operation. IEEE Trans. Power Electron. 2002, 17, 25–32. [Google Scholar]
- Dokić, B.L.; Blanuša, B. Power Electronics: Converters and Regulators; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
Parameter | Value |
---|---|
Maximum Power (PMP) | 212.86 W |
Voltage at MP (VMP) | 29 V |
Current at MP (IMP) | 7.34 A |
Open Circuit Voltage (VOC) | 36.3 V |
Short Circuit Current (ISC) | 8 A |
Temperature Coefficient of ISC | 0.027%/°C |
Temperature Coefficient of Power | −0.23107%/°C |
Parameter | Value |
---|---|
Switching frequency (fS) | 20 kHz |
Inductor | 1.5 mH |
Capacitor | 400 F |
Irr (W/m2) | Ir_es (W/m2) | Relative Error | ISC (A) | ISC_es (A) | VOC (V) | VOC_es (V) | IMP (A) | IMP_es (A) | VMP (V) | VMP_es (V) | PMP (W) | PMP_es (W) | Efficiency |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1000 | 1000 | 0 | 8.00 | 8.00 | 36.30 | 36.30 | 7.34 | 7.34 | 29.00 | 29.00 | 212.86 | 212.86 | 100% |
900 | 907.3 | 0.8% | 7.20 | 7.26 | 36.06 | 36.15 | 6.65 | 6.66 | 28.91 | 28.88 | 192.40 | 192.34 | 99.96% |
800 | 812.3 | 1.51% | 6.40 | 6.49 | 35.88 | 36.00 | 5.88 | 5.96 | 29.21 | 28.76 | 171.70 | 171.4 | 99.8% |
700 | 715.3 | 2.14% | 5.60 | 5.72 | 35.74 | 35.80 | 5.15 | 5.25 | 29.28 | 28.6 | 150.70 | 150.15 | 99.6% |
600 | 616.3 | 2.64% | 4.80 | 4.93 | 35.46 | 35.60 | 4.42 | 4.52 | 29.27 | 28.43 | 129.50 | 128.60 | 99.3% |
Irr (W/m2) | Ir_es (W/m2) | Accuracy | ISC (A) | ISC_es (A) | VOC (V) | VOC_es (V) | IMP (A) | IMP_es (A) | VMP (V) | VMP_es (V) | PMP (W) | PMP_es (W) | Efficiency |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1000 | 984.4 | 1.58% | 8.19 | 7.72 | 33.69 | 33.21 | 7.39 | 7.34 | 26.50 | 26.53 | 195.80 | 194.80 | 99.49% |
900 | 900 | 0 | 7.37 | 7.06 | 33.50 | 33.09 | 6.68 | 6.74 | 26.51 | 26.43 | 177.10 | 178.30 | 99.32% |
800 | 805.8 | 0.72% | 6.55 | 6.32 | 33.32 | 32.94 | 5.96 | 6.03 | 26.51 | 26.31 | 158.00 | 158.80 | 99.50% |
700 | 708.9 | 1.26% | 5.73 | 5.56 | 33.11 | 32.77 | 5.23 | 5.30 | 26.52 | 26.18 | 138.70 | 139.00 | 99.78% |
600 | 610.2 | 1.67% | 4.91 | 4.74 | 32.85 | 32.55 | 4.5 | 4.57 | 26.47 | 26.01 | 119.10 | 118.90 | 99.83% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malkawi, A.M.A.; Odat, A.; Bashaireh, A. A Novel PV Maximum Power Point Tracking Based on Solar Irradiance and Circuit Parameters Estimation. Sustainability 2022, 14, 7699. https://doi.org/10.3390/su14137699
Malkawi AMA, Odat A, Bashaireh A. A Novel PV Maximum Power Point Tracking Based on Solar Irradiance and Circuit Parameters Estimation. Sustainability. 2022; 14(13):7699. https://doi.org/10.3390/su14137699
Chicago/Turabian StyleMalkawi, Ahmad M. A., Abdallah Odat, and Ahmad Bashaireh. 2022. "A Novel PV Maximum Power Point Tracking Based on Solar Irradiance and Circuit Parameters Estimation" Sustainability 14, no. 13: 7699. https://doi.org/10.3390/su14137699