Factors Related to Cognitive Reasoning of Pre-Service Teachers’ Science Process Skills: Role of Experiments at Home on Meaningful Learning
Abstract
:1. Introduction
2. Theoretical Background
2.1. Science Process Skills and Meaningful Learning
2.2. Teaching for Conceptual Transformation
2.3. Research Questions
- To ascertain the level of pre-service science teachers’ science process skills;
- To understand pre-service science teachers’ reflections regarding their learning approach.
3. Materials and Methods
3.1. Document Analysis Sample
3.2. The Science Process Skills Test
Points Awarded for Science Process Skills
3.3. Data Collection Procedures
3.4. Factors Affecting Plant Growth Project Reports
3.5. Data Analysis
4. Results
4.1. Science Process Skills Test
4.2. Factors Affecting Plant Growth Project Reports
Participant 5: The student hypothesized that sunlight would boost the growth of the plant, placing it in sunlight and watering it regularly for 10 days. They then aimed to leave it in the dark for 10 days, while continuing to water it.
Participant 28: The student sought to investigate how much water and sunlight would be needed in order to boost the plant’s growth. They bought two plants identical in type to investigate the effect of watering in one and sunlight in the other. However, the student did not buy another plant to form a control group.
Participant 3: “What will be revealed by placing one of the plants in fertilizer containing minerals and another in fertilizer containing none.” (Incorrect hypothesis).
Participant 9: “The seeds placed in sunlight will germinate.” (Correct hypothesis)
Participant 13: “The plant placed in the sun and given regular water will grow faster.” (Correct hypothesis)
- Correct Independent Variable
- Participant 2: Dependent Variable: Plant length
- Independent Variable: Soil type
- Participant 12: Independent Variable: Water amount
- Dependent Variable: Growth amount
- Erroneous Independent Variable
- Participant 7: Independent Variable: Sunlight and water
- Dependent Variable: Growth
- Participant 14: Dependent Variable: Growth amount
- Independent Variable: Presence or absence of light
Participant 1: Conclusion: “… When I gave one of the plants a lesser amount of water than needed, it grew at a slower pace than the other plant.”
Deduction: “The plant should not be watered any more or less than needed, otherwise it may either grow slowly or wilt.”
Participant 6: Conclusion and Inference: “I considered that a plant placed in sunlight would grow faster and healthier. However, the plant that was placed in darkness appeared to grow faster than that placed in the light. However, it grew in a less healthy way, eventually dying. Meanwhile, the plant that was placed in the sunlight grew healthier, albeit slower, and continues to grow.”
Participant 19: “… The leaves have expanded to 5 cm. By June 18, the plant which received more water had grown in leaf size to an expanse of 5.8 cm, while those of that less watered had grown to 7 cm.”
Participant 10: “The plant placed in sunlight has grown to the height of 53 cm. Meanwhile, that which has remained out of the sun has grown to 47.7 cm.”
Participant 22: “The first plant has grown to 12.5 cm, the second 20 cm, and the third 23 cm”
Participant 4: The length of the plant has grown in line with the amount of water given.
Participant 15: Generally, I prefer more meaningful learning. This changes sometimes depending on the course, level of difficulty, whether the course is practical in nature, the expectations of myself or my teacher, whether I believe the information will benefit me in the future or other such factors. For this specific class, I opted to take a meaningful learning approach, as the topics dealt with, as well as SPSs in general, are those that I will constantly come across in my field. The skills I have learned in this class will allow me to offer students a more effective, productive, and lasting learning environment. I chose to take on a meaningful learning approach to better develop my students and to help them absorb SPSs and research skills.
Participant 21: Thanks to this class, I realized that nothing I had rote-memorized was … a waste of time. When I observed these experiments, I was able to make connections in my mind. I have since given up rote-memorizing. I now better understand the concept of meaningful learning. Aside from the information, the class was practical, offering the chance to observe and conduct experiments. As the use of SPSs allowed me to better understand the concepts taught, I selected the option for a meaningful learning approach. Indeed, I still made a number of mistakes. For instance, in the experiment aimed at finding the factors behind plant growth, I was mistaken in terms of manipulating and controlling variables. Although I’ve conducted the same experiment many times, I learned something in the end. For me, I found the easiest, most meaningful, and lasting means of learning and I thank you for offering me that gift and for all your hard work.
Participant 16: I choose to take a rote-learning approach to theory-based classes and a meaningful learning approach to more practical classes. For this particular class, I chose the latter, as the topic related to the internalization of knowledge and the skills students need in order to develop their thinking skills. This is not the kind of learning that can be memorized. As this was a very important class for teaching our students, with many practical applications, I opted to approach it with the meaningful learning style.
Participant 1: I’ve had classes where I’ve been forced to take the rote-memory approach, especially the day before an exam, and just want to save the day. It’s always such a strain and by the next day, everything I learned just vanishes into thin air. As you explained yourself, this isn’t the kind of class where such an approach can be taken. A number of topics are involved and the SPSs that we need to develop are those that can benefit us in our everyday lives–so why opt for rote learning? The course was not just theoretical, but practical too, making it a lot more fun. I had a great time.
Participant 6: Both for the experiments and preparing the study portfolio, I used a meaningful learning approach, I can still remember all the information taught and I think the class will have a positive effect on my work. I believe I have internalized the lessons learned and am now more aware of the meaningful learning approach. Thank you for all your help throughout this process.
Participant 22: I generally prefer the meaningful learning approach. This varies depending on how much the teacher asks questions. If they elicit the information by asking questions, I opt for the meaningful approach. In classes where we are asked about our method, analysis, synthesis, and evaluations, again, I try to learn in a meaningful way.
Participant 17: I definitely think that the meaningful learning approach is more effective, and I try to utilize as best I can, however, because most of our education is based on rote learning and a lot of our exams require one to memorize the answers, I may have to continue with the older method. I can confidentially say I used this method in the class in question, as the practical aspect of the class ensured I went through each step knowingly–thus, making the lesson more memorable.
Participant 10: I generally have to maintain a preference for the rote-learning approach. But my learning approach changes depending on the class, such as whether the teacher simply talks the whole time, classrooms, etc. For this class, we were encouraged to take on board a meaningful learning approach to develop our SPSs and it was of great benefit. Topics included how to transfer knowledge with examples and practical lessons and how this could improve student participation.
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Enger, S.G.; Yager, R.E. The Iowa Assessment Handbook; Science Education Center of The University of Iowa: Iowa, IA, USA, 1998. [Google Scholar]
- Heppner, P.; Wampold, B.; Kivlighan, D. Research Design in Counseling Psychology, 3rd ed.; Brooks/Cole: Belmont, CA, USA, 2008. [Google Scholar]
- Livermore, A.H. The process approach of the AAAS commission on science education. J. Res. Sci. Teach. 1964, 2, 271–282. [Google Scholar] [CrossRef]
- Temiz, B.K. Lise 1. Sınıf Fizik Dersi Programının Öğrencilerin Bilimsel Süreç Becerilerini Geliştirmeye Uygunluğunun İncelenmesi. Master’s Thesis, Gazi Üniversitesi, Ankara, Turkey, 2001. [Google Scholar]
- Aydoğdu, M.; Kesercioğlu, T. İlköğretimde Fen Ve Teknoloji Öğretimi; Anı Yayıncılık: Ankara, Turkey, 2005. [Google Scholar]
- Bağcı-Kılıç, G. Üçüncü uluslararası matematik ve fen araştırması (TIMMS): Fen öğretimi, bilimsel ve araştırma ve bilimin doğası. İlköğretim Online 2003, 2, 42–51. [Google Scholar]
- Alam, G.M.; Parvin, M. Can online higher education be an active agent for change?—Comparison of academic success and job-readiness before and during COVID-19. Technol. Forecast. Soc. Chang. 2021, 172, 121008. [Google Scholar] [CrossRef]
- Di Benedetto, C.A.; Myers, B.E. A conceptual model for the study of student readiness in the 21st century 1. NACTA J. 2016, 60, 28–35. Available online: http://search.proquest.com.ezproxy.gvsu.edu/docview/1791660471?accountid=39473 (accessed on 27 March 2022).
- Mobley, C.; Sharp, J.; Hammond, C.; Withington, C.; Stipanovic, N. The Influence of Career-Focused Education on Student Career Planning and Development: A Comparison of CTE and Non-CTE Students. Career Tech. Educ. Res. 2017, 42, 57–75. [Google Scholar] [CrossRef]
- Woolfolk, A.; Winne, P.H.; Perry, N.E. Educational Psychology; Pearson Allyn and Bacon: Toronto, ON, Canada, 2006. [Google Scholar]
- Yıldırım, M.; Çalık, M.; Özmen, H. A meta-synthesis of Turkish studies in science process skills. Int. J. Envi-Ronmental. Sci. Educ. 2016, 11, 6518–6539. [Google Scholar]
- Bell, S. Project-Based Learning for the 21st Century: Skills for the Future. Clear. House A J. Educ. Strat. Issues Ideas 2010, 83, 39–43. [Google Scholar] [CrossRef]
- Owens, A.D.; Hite, R.L. Enhancing student communication competencies in STEM using virtual global collaboration project based learning. Res. Sci. Technol. Educ. 2022, 40, 76–102. [Google Scholar] [CrossRef]
- Partnership for 21st Century Skills. 2014a. FAQ. Available online: http://www.p21.org/about-us/p21-faq (accessed on 26 March 2022).
- Partnership for 21st Century Skills. 2014b. Our History. Available online: http://www.p21.org/about-us/our-history (accessed on 26 March 2022).
- Partnership for 21st Century Skills. 2014c. Our Mission. Available online: http://www.p21.org/about-us/our-mission (accessed on 25 March 2022).
- Partnership for 21st Century Skills. 2014d. Resources for Educators. Available online: http://www.p21.org/our-work/resources/for-educators (accessed on 25 March 2022).
- 21st Century Skills Map, 2009. Science. Available online: http://marsed.mars.asu.edu/sites/default/files/pdfs_resources/21stCSkillsMapScience.pdf (accessed on 25 March 2022).
- Ananiadou, K.; Claro, M. 21st Century Skills and Competences for New Millennium Learners in OECD Countries. OECD Educ. Work. Pap. 2009, 41, 33. [Google Scholar] [CrossRef]
- Geisinger, K.F. 21st Century Skills: What Are They and How Do We Assess Them? Appl. Meas. Educ. 2016, 29, 245–249. [Google Scholar] [CrossRef]
- Metz, S. Editor’s Corner: 21st Century Skills. Sci. Teach. 2011, 78, 6. [Google Scholar]
- OECD. The Future of Education and Skills Education 2030. 2018. Available online: https://www.oecd.org/education/2030/E2030%20Position%20Paper%20(05.04.2018).pdf (accessed on 31 July 2020).
- Thrilling, B.; Fadel, C. 21st Century Skills: Learning for Life in Our Times; John Wiley and Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Özdoğru, A.A. Revisiting Effective Instructional Strategies for Twenty-First-Century Learners. In Educational Theory in the 21st Century; Alpaydın, Y., Demirli, C., Eds.; Palgrave Macmillan Singapore: Singapore, 2022; pp. 175–195. [Google Scholar] [CrossRef]
- McCormick, C.B.; Pressley, M. Educational Psychology: Learning, Instruction, Assessment; Longman Publishing/Addison Wesley L.: Harlow, UK, 1997. [Google Scholar]
- Harris, K.R.; Graham, S.E.; Urdan, T.E.; McCormick, C.B.; Sinatra, G.M.; Sweller, J.E. APA Educational Psychology Handbook, Vol 1: Theories, Constructs, and Critical Issues; American Psychological Association: Washington, DC, USA, 2012. [Google Scholar] [CrossRef]
- MacDermott, C.; Ortiz, L. Beyond the business communication course: A historical perspective of the where, why, and how of soft skills development and job readiness for business graduates. IUP J. Soft Ski. 2017, 11, 9–24. Available online: http://search.proquest.com.ezproxy.gvsu.edu/docview/1916950578?accountid=39473 (accessed on 28 March 2022).
- Chand, A.; Tipnis, J. The role of soft skills in the development of employee in an organization. Int. J. Eng. Res. Gen. Sci. 2016, 4, 437–452. [Google Scholar]
- Hestenes, D. Notes for a Modeling Theory of Science, Cognition and Instruction. In Proceedings of the GIREP Conference: Modelling in Physics and Physcis Education, Amsterdam, The Netherlands, 20–25 August 2006. [Google Scholar]
- Holland, J.H.; Holyoak, K.J.; Nisbett, R.E.; Thagard, P.R. Induction: Processes of Inference, Learning, and Discovery. Computational Models of Cognition and Perception, 1st ed.; MIT Press: Cambridge, MA, USA, 1986. [Google Scholar]
- Organisation for Economic Co-operation & Development. PISA 2015 Results (Volume V): Collaborative Problem Solving. OECD Publishing. 2016. Available online: https://www.oecd.org/education/pisa-2015-results-volume-v-9789264285521-en.htm (accessed on 27 March 2022).
- Johnson-Laird, P.N. Mental Models: Towards a Cognitive Science of Language, Inference, and Consciousness. Harvard Univ Press: Cambridge, MA, USA, 1983. [Google Scholar]
- Pressley, M.; McCormick, C.B. Cognition, Teaching, and Assessment; HarperCollins College: New York, NY, USA, 1997. [Google Scholar]
- Byrnes, J.P. The conceptual basis of procedural learning. Cogn. Dev. 1992, 7, 235–257. [Google Scholar] [CrossRef]
- Collins, A.; Brown, J.S.; Newman, S.E. Cognitive Apprenticeship: Teaching the Crafts of Reading, Writing, and Mathematics. In Knowing, Learning, and Instruction; Psychology Press: London, UK, 1989; pp. 453–494. [Google Scholar] [CrossRef]
- Brown, J.S.; Collins, A.; Duguid, P. Situated Cognition and the Culture of Learning. Educ. Res. 1989, 18, 32–42. [Google Scholar] [CrossRef]
- Michael, J. In pursuit of meaningful learning. Adv. Physiol. Educ. 2001, 25, 145–158. [Google Scholar] [CrossRef] [Green Version]
- Tobin, K.G.; Capie, W. Teaching Process Skills in the Middle School. Sch. Sci. Math. 1980, 80, 590–600. [Google Scholar] [CrossRef]
- Arı, Ü.; Pesman, H.; Baykara, O.; Sunar, Y. Fen bilimleri öğretmenlerinin bilimsel süreç becerilerinin gelişimi. Uluslararası Türk Eğitim Bilimleri Derg. 2016, 7, 44–52. [Google Scholar]
- Padilla, M.J.; Okey, J.R.; Garrard, K. The effects of instruction on integrated science process skill achievement. J. Res. Sci. Teach. 1984, 21, 277–287. [Google Scholar] [CrossRef]
- Güden, C.; Timur, B. Ortaokul Öğrencilerinin Bilimsel Süreç Becerilerinin İncelenmesi (Çanakkale örneği). Abant İzzet Baysal Üniversitesi Eğitim Fakültesi Dergisi 2016, 16, 163–182. [Google Scholar] [CrossRef] [Green Version]
- Barut, D.B. Kavram Ağlarıyla Desteklenmiş TGA Etkinliklerinin Fen Bilgisi Öğretmen Adaylarının Laboratuvar Tutumlarına, Kaygılarına ve Bilimsel Süreç Becerilerine Etkisi. Master’s Thesis, Gazi Üniversitesi Eğitim Bilimleri Enstitüsü, Ankara, Turkey, 2020. [Google Scholar]
- Bakaç, E. Öğretmen Adaylarının Bilimsel Süreç Becerilerini Anlama Düzeyleri ve Öğretim Elemanlarının Onların Cevapları Hakkında Tahminleri. Master’s Thesis, Atatürk Üniversitesi Eğitim Bilimleri Enstitüsü, Erzurum, Turkey, 2020. [Google Scholar]
- Lunt, I. The Implications of the “Bologna Process” for the Development of a European Qualification in Psychology. Eur. Psychol. 2005, 10, 86–92. [Google Scholar] [CrossRef]
- Hernández-Barco, M.; Sánchez-Martín, J.; Corbacho-Cuello, I.; Cañada-Cañada, F. Emotional Performance of a Low-Cost Eco-Friendly Project Based Learning Methodology for Science Education: An Approach in Prospective Teachers. Sustainability 2021, 13, 3385. [Google Scholar] [CrossRef]
- Brumann, S.; Ohl, U.; Schulz, J. Inquiry-Based Learning on Climate Change in Upper Secondary Education: A Design-Based Approach. Sustainability 2022, 14, 3544. [Google Scholar] [CrossRef]
- Ministry of National Education (MoNE). Science Course Curriculum: Primary and Secondary School 3, 4, 5, 6, 7 and 8th Grades; Ministry of National Education Board of Education and Discipline: Ankara, Turkey, 2018. [Google Scholar]
- Ministry of National Education (MoNE) STEM PD Net. Available online: https://stem-pd-net.eu/en/mone/ (accessed on 27 March 2022).
- Hlebowitsh, P.S. Foundations of American Education, 3rd ed.; Wadsworth, T., Ed.; Thomson Learning: Belmont, CA, USA, 2001. [Google Scholar]
- Bou Jaoude, S.B. The relationship between high school students’ learning strategies and the change in their misunderstandings during a high school chemistry course. J. Res. Sci. Teach. 1992, 2, 687–699. [Google Scholar] [CrossRef]
- Cavallo, A.M.L.; Rozman, M.; Blickenstaff, J.; Walker, N. Learning, reasoning, motivation, and epistemological beliefs. J. Coll. Sci. Teach. 2003, 33, 18–23. [Google Scholar]
- Ahmed, A.; Ahmad, N. Comparative Analysis of Rote Learning on High and Low Achievers in Graduate and Undergraduate Programs. J. Educ. Educ. Dev. 2017, 4, 111. [Google Scholar] [CrossRef] [Green Version]
- Ausubel, D.P. The Psychology of Meaningful Verbal Learning; Grune & Stratton: New York, NY, USA, 1963. [Google Scholar]
- Cavallo, A.M.L. Meaningful learning reasoning ability and student’s understanding and problem of genetics topics. J. Res. Sci. Teach. 1996, 38, 625–656. [Google Scholar] [CrossRef]
- Cavallo, A.M.; Potter, W.H.; Rozman, M. Gender Differences in Learning Constructs, Shifts in Learning Constructs, and Their Relationship to Course Achievement in a Structured Inquiry, Yearlong College Physics Course for Life Science Majors. Sch. Sci. Math. 2004, 104, 288–300. [Google Scholar] [CrossRef]
- Cavallo, A.M.L.; Rozman, M.; Larabee, T.; Ishikawa, C. Shifts in Male and Female Students’ Learning, Motivation, Beliefs, and Scientific Understanding in Inquiry-Based College Physics Course. In Proceedings of the Annual Conference of the National Association for Research in Science Teaching, St. Louis, MO, USA, 25–28 March 2001. [Google Scholar]
- Hacıeminoğlu, E. Factors Predicting Middle School Pupils’ Learning Orientations: A Multilevel Analysis. Educ. Q. Rev. 2021, 4, 40–423. [Google Scholar] [CrossRef]
- Duit, R. Students’ conceptual frameworks: Consequences for learning science. Psychol. Learn. Sci. 1991, 75, 649–672. [Google Scholar]
- Brotherton, P.N.; Preece, P.F.W. Science Process Skills: Their nature and interrelationships. Res. Sci. Technol. Educ. 1995, 13, 5–11. [Google Scholar] [CrossRef]
- Santrock, J.W. Life-Span Development; McGraw-Hill: New York, NY, USA, 2011. [Google Scholar]
- Rezba, R.J.; Sprague, C.S.; Fiel, R.L.; Funk, H.J.; Okey, J.R.; Jaus, H.H. Learning and Assessing Science Process Skills, 3rd ed.; Kendall/Hunt Publishing Company: Dubuque, IA, USA, 1995. [Google Scholar]
- Dewey, J. Democracy and education. Free Press 1916, 9, 1899–1924. [Google Scholar] [CrossRef]
- Corbin, J.; Strauss, A. Basic of Qualitative Research. In Techniques and Procedures for Developing Grounded Theory, 3rd ed.; SAGE Publications: Thousand Oaks, CA, USA, 2008. [Google Scholar]
- Kıral, B. Nitel bir veri analizi yöntemi olarak doküman analizi. J. Soc. Sci. Inst. 2020, 15, 1–20. [Google Scholar]
- Koray, Ö.; Köksal, M.S.; Özdemir, M.; Presley, A.Ġ. Yaratıcı ve eleştirel düşünme temelli fen laboratuarı uygulamalarının akademik başarı ve bilimsel süreç becerileri üzerine etkisi. İlköğretim Online 2007, 6, 377–389. [Google Scholar]
- Yıldırım, A.; Şimşek, H. Sosyal Bilimlerde Nitel Araştırma Yöntemleri (8. Baskı); Seçkin Yayıncılık: Ankara, Turkey, 2011. [Google Scholar]
- Mettl. Mettl Glossary. Available online: https://mettl.com/glossary/c/cognitive-reasoning/#:~:text=Cognitive%20reasoning%20is%20the%20ability,integral%20part%20of%20cognitive%20ability (accessed on 28 May 2022).
- Holstermann, N.; Grube, D.; Bögeholz, S. Hands-on Activities and Their Influence on Students’ Interest. Res. Sci. Educ. 2010, 40, 743–757. [Google Scholar] [CrossRef] [Green Version]
- Sheehy, S. Suzie Sheehy: The Power and Potential of Curiosity-Driven Research. Available online: https://tedxsydney.com/talk/the-power-and-potential-of-curiosity-driven-research-suzie-sheehy/ (accessed on 15 June 2018).
- Buschor, C.; Proyer, R.; Ruch, W. Self- and peer-rated character strengths: How do they relate to satisfaction with life and orientations to happiness? J. Posit. Psychol. 2013, 8, 116–127. [Google Scholar] [CrossRef] [Green Version]
- Park, N.; Peterson, C.; Seligman, M.E.P. Strengths of Character and Well-Being. J. Soc. Clin. Psychol. 2004, 23, 603–619. [Google Scholar] [CrossRef] [Green Version]
- Harlen, W. Purposes and Procedures for Assessing Science Process Skills. Assess. Educ. Princ. Policy Pr. 1999, 6, 129–144. [Google Scholar] [CrossRef]
- Çepni, S.; Ayas, A.; Johnson, D.; Turgut, M.F. Fizik Öğretimi: Milli Eğitimi Geliştirme Projesi Hizmet Öncesi Öğretmen Eğitimi; Deneme Basımı: Ankara, Turkey, 1996. [Google Scholar]
- Hacıeminoğlu, E. Fen Öğretiminde Temel Beceriler. Akçay, B.E. Fen Öğrenme Ve Öğretme Yaklaşımları (138-150); Nobel Akademik Yayıncılık: Ankara, Turkey, 2019. [Google Scholar]
- Johnson-Laird, P.N. Mental models and human reasoning. In Language, Brain, and Cognitive Development: Essays in Honor of Jacques Mehler; Dupoux, E., Ed.; The MIT Press: Cambridge, MA, USA; pp. 85–102.
- Tan, M.; Temiz, B.K. Fen öğretiminde bilimsel süreç becerilerinin yeri ve önemi. Pamukkale Üniversitesi. Eğitim Fakültesi Derg. 2003, 1, 89–101. [Google Scholar]
- Temiz, B.K.; Taşar, M.F.; Tan, M. Development and validation of a multiple format test of science process skills. Int. Educ. J. 2006, 7, 1007–1027. [Google Scholar]
- Aydoğdu, B. Identification of Variables Effecting Science Process Skills in Primary Science and Technology Course. Master’s Thesis, Dokuz Eylül University, İzmir, Turkey, 2006. [Google Scholar]
- Aydoğdu, B. Bilimsel Süreç Becerileri. In Fen Bilimleri Öğretimi İçinde (1. Baskı, s.87-113); Anagül, Ş.S., Duban, N., Eds.; Anı Yayıncılık: Ankara, Turkey, 2014. [Google Scholar]
- Renkl, A.; Mandl, H.; Gruber, H. Inert knowledge: Analyses and remedies. Educ. Psychol. 1996, 31, 115–121. [Google Scholar] [CrossRef]
- Ateş, S. Identification and control of the variables, inquiry method, demonstrative experimentation technique. Gazi Univ. J. Gazi Fac. Educ. Fac. 2005, 25, 21–39. [Google Scholar]
- Gultepe, N. High School Science Teachers’ Views on Science Process Skills. Int. J. Environ. Sci. Educ. 2016, 11, 779–800. [Google Scholar] [CrossRef] [Green Version]
- Aktaş, İ.; Ceylan, E. Determination of pre-service science teachers’ science process skills and investigating of relationship with general academic achievement. Mustafa Kemal Univ. J. Grad. Sch. Soc. Sci. 2016, 13, 123–136. [Google Scholar]
- Karapınar, A.; Şaşmaz Ören, F. Fen bilgisi öğretmen adaylarının bilimsel süreç becerilerinin belirlenerek cinsiyet ve sınıf düzeyi bakımından incelenmesi. Uluslararası Eğitim Bilimleri Derg. 2015, 2, 368–385. [Google Scholar]
- Ormancı, Ü.; Balım, A.G. Araştırma Sorgulamaya Dayalı Öğrenme Yaklaşımı. In Fen Öğretiminde Yenilikçi Yak-Laşımlar (1. Basım), (s. 9-44); Balım, A.G., Ed.; Anı: Ankara, Turkey, 2019. [Google Scholar]
- Seydioğlu, E.; Bariş, N. Bilimsel süreç becerileri uygulama örneği: Baloncuk araştirma laboratuvari. Anadolu Öğretmen Dergisi 2021, 5, 207–225. (In Turkish) [Google Scholar] [CrossRef]
- Şahintepe, S. Sorgulamaya dayalı Öğrenme Yaklaşımının Öğrencilerin Üstbiliş Farkındalıklarına Ve Bilimsel Süreç Becerilerine Etki-Si. Master’s Thesis, Afyon Kocatepe Üniversitesi, Afyonkarahisar, Turkey, 2018. [Google Scholar]
- Çelik, H.; Katrancı, M.; Çakır, E. Fen öğretiminde açık uçlu araştırmacı sorgulayıcı laboratuvar yaklaşımının yaratıcı düşünme becerisine etkisi. Turk. J. Prim. Educ. 2017, 2, 1–10. [Google Scholar]
- Sen, C.; Vekli, G. The Impact of Inquiry Based Instruction on Science Process Skills and Self-efficacy Perceptions of Pre-service Science Teachers at a University Level Biology Laboratory. Universal J. Educ. Res. 2016, 4, 603–612. [Google Scholar] [CrossRef] [Green Version]
- Şensoy, O.; Yildirim, H.I. Araştırma sorgulama tabanlı öğrenme yaklaşımının yaratıcı düşünme ve bilimsel süreç becerilerine etkisi. Cumhur. Int. J. Educ. 2017, 6, 34–46. [Google Scholar] [CrossRef] [Green Version]
- Yetişir, M.İ. Guided inquiry-based physics teaching: An analysis of prospective teachers’ academic achievements and views about the method. Ank. Univ. Egitim Bilim. Fak. Derg. 2016, 49, 159–182. [Google Scholar] [CrossRef]
- Alam, G.M.; Forhad, A.R. What makes a difference for further advancement of engineers: Socioeconomic background or education programs? High. Educ. 2022, 83, 1259–1278. [Google Scholar] [CrossRef] [PubMed]
- Zeren Özer, D.; Güngör, S.N.; Şimşekli, Y. Sınıf Öğretmenliği Öğrencilerinin Biyoloji Deneylerini Uygulayabilme ve Bilimsel Süreç Becerilerini Analiz Edebilme Yeterlilikleri. Uludağ Üniversitesi Eğitim Fakültesi Derg. 2011, 24, 563–580. [Google Scholar]
- Lloyd, J.K.; Braund, M.; Crebbin, C.; Phipps, R. Primary teachers’ confidence about and understanding of process skills. Teach. Dev. 2000, 4, 353–370. [Google Scholar] [CrossRef]
- Pekmez, E.Ş. Fen Öğretmenlerinin Bilimsel Süreçler Hakkındaki Bilgilerinin Saptanması. Maltepe Üniversitesi Eğitim Fakültesi; Yeni Binyılın Başında Türkiye’de Fen Bilimleri Eğitimi Sempozyumu: İstanbul, Turkey, 2001; pp. 543–549. [Google Scholar]
- Işık, A.; Nakipoğlu, C. Determining primary school and science and technology course teachers’ knowledge of science process skills (Sınıf öğretmenleri ile fen ve teknoloji dersi öğretmenlerinin bilimsel süreç becerileri ile ilgili durumlarının belirlenmesi). Abant İzzet Baysal Univ. J. Educ. Fac. 2011, 11, 145–160. [Google Scholar]
- Yıldırım, M.; Atila, M.E.; Özmen, H.; Sözbilir, M. The preservice science teachers’ views about the developing science process skills (Fen bilimleri öğretmen adaylarının bilimsel süreç becerilerinin geliştirilmesi hakkındaki görüşleri). Mersin Univ. J. Fac. Educ. 2013, 9, 27–40. [Google Scholar]
- Karslı, F.; Yaman, F.; Ayas, A. Prospective Chemistry Teachers’ Competency of Evaluation of Chemical Experiments in Term of Science Process Skills. In World Conference on Educational Sciences; Uzunboylu, H., Cavus, N., Eds.; Near East Üniversitesi: Nicosia, North Cyprus, 2010; pp. 778–781. [Google Scholar]
- Farsakoğlu, Ö.F.; Şahin, Ç.; Karsli, F.; Akpinar, M.; Ültay, N. A study on awareness levels of prospective science teachers on science process skills in science education. World Appl. Sci. J. 2008, 4, 174–182. [Google Scholar]
- Türkmen, H.; Kandemir, M. Öğretmenlerin Bilimsel Süreç Becerileri Öğrenme Algıları Üzerine Bir Durum Çalışması. J. Eur. Educ. 2011, 1, 15–24. [Google Scholar]
- Günsel, Z.; Azar, A. İlköğretim Fen Ve Teknoloji Dersinde Bilimsel Süreç Becerileri Yaklaşımına Dayalı Öğretimin Yaratıcı Düşünme, Problem Çözme ve Derse Karşı Tutuma Etkisi. In Proceedings of the Ulusal Fen Bilimleri ve Matematik Eğitimi Kongresi, Ankara, Turkey, 7–9 September 2006. [Google Scholar]
- Ünaldı, Ö. Bilimsel Süreç Becerilerine Dayalı Fen Eğitiminin Öğrencilerin Fen Ve Teknoloji Dersine Ilişkin Tutumlarına Ve Bilimsel Sü-Reç Becerilerine Etkisi. Master’s Thesis, Üniversitesi Eğitim Bilimleri Enstitüsü, Ankara, Turkey, 2012. [Google Scholar]
- Demirçalı, S. The Effects of Model Based Science Education on Students’ Academic Achievement, Scientific Process Skills and Mental Model Development: The Sample of 7th Grade Unit of “The Solar System and Beyond: The Puzzle of Space”. Ph.D. Thesis, Gazi University, Ankara, Turkey, 2016. [Google Scholar]
- Gülay, A. Effect of Self-Regulated Learning on 5th Grade Students’ Academic Achievement and Scientific Process Skills. Master’s Thesis, Recep Tayyip Erdoğan University, Rize, Turkey, 2012. [Google Scholar]
- Fansa, M. Araştırmaya Dayalı Öğrenme Yönteminin İlköğretim 5. Sınıf Öğrencilerinin Maddenin Değişimi ve Tanınması Ünitesindeki Akademik Başarı, Fen Dersine Karşı Tutum ve Bilimsel Süreç Becerilerine Etkisinin İncelenmesi. Master’s Thesis, Mustafa Kemal Üniversitesi Sosyal Bilimler Enstitüsü, Hatay, Turkey, 2012. [Google Scholar]
- Akben, N. Öğretmen Adayları Için Bilimsel Sorgulama Destekli Laboratuvar Dersi Geliştirilmesi. Ph.D. Thesis, Gazi Üniversitesi Eğitim Bilimleri Enstitüsü, Ankara, Turkey, 2011. [Google Scholar]
- Aksakal, Ş. Sorgulayıcı öğrenme yönteminin öğretmen adaylarının bilimsel süreç becerilerine, başarılarına, akademik ve öğret-men özyeterliklerine etkisi. Ph.D. Thesis, Fırat Üniversitesi Eğitim Bilimleri Enstitüsü, Elazığ, Turkey, 2020. [Google Scholar]
- Arı, E.; Bayram, H. Yapılandırmacı yaklaşıma dayalı kimya laboratuvar uygulamalarının öğrencilerin başarısına, bilimsel süreç becerilerine ve laboratuvar performanslarına etkisi. West. Anatolia J. Educ. Sci. 2012, 3, 1–18. [Google Scholar]
- Baykara, H. Araştırmaya Dayalı Fen Laboratuvarının Etkililiğinin İncelenmesi. Master’s Thesis, Pamukkale Üniversitesi Fen Bilimleri Enstitüsü, Denizli, Turkey, 2011. [Google Scholar]
- Duru, M.K.; Demir, S.; Önen, F.; Benzer, E. Sorgulamaya dayalı laboratuvar uygulamalarının öğretmen adaylarının laboratuvar algısına tutumuna ve bilimsel süreç becerilerine etkisi. Atatürk Eğitim Fakültesi Eğitim Bilimleri Dergisi. 2011, 33, 25–44. [Google Scholar]
- Şenyiğit, Ç. Sorgulama temelli Öğrenmenin Sınıf Öğretmeni Adaylarının Bilimsel Süreç Becerilerine Ve Kavramsal Anlamalarına Etkisi. Ph.D. Thesis, Dokuz Eylül Üniversitesi Eğitim Bilimleri Enstitüsü, İzmir, Turkey, 2020. [Google Scholar]
- Tatar, N. İlköğretim Fen Eğitiminde Araştırmaya Dayalı Öğrenme Yaklaşımının Bilimsel Süreç Becerilerine, Akademik Başarıya Ve Tutuma Etkisi. Ph.D. Thesis, Gazi Üniversitesi, Ankara, Turkey, 2006. [Google Scholar]
- Usta Gezer, S. Yansıtıcı Sorgulamaya Dayalı Genel Biyoloji Laboratuvarı Etkinliklerinin Fen Bilgisi Öğretmen Adaylarının La-Boratuvar Kullanımı Özyeterlik Algıları, Eleştirel Düşünme Eğilimleri Ve Bilimsel Süreç Becerileri. Üzerine Etkisi. Ph.D. Thesis, Marmara Üniversitesi Eğitim Bilimleri Enstitüsü, İstanbul, Turkey, 2014. [Google Scholar]
- Yaz, Ş. Tasarlanan laboratuvar etkinliklerinin fen bilgisi öğretmen adaylarının bilimsel süreç becerileri algılarına ve tutumlarına etkisi. Master’s Thesis, Kastamonu Üniversitesi Fen Bilimleri Enstitüsü, Kastamonu, Turkey, 2018. [Google Scholar]
- Coştu, F. Tahmin Et-Açıkla-Gözle-Tartış-Açıkla Destekli Laboratuvar Etkinliklerinin Fen Bilgisi Öğretmen Adaylarının Başarılarına, Kavramsal Anlamalarına ve Bilimsel Süreç Becerilerine Etkisinin İncelenmesi. Ph.D. Thesis, Marmara Üniversitesi Eğitim Bilimleri Enstitüsü, İstanbul, Turkey, 2021. [Google Scholar]
- Kanlı, U.; Yağbasan, R. 7E modeli merkezli laboratuvar yaklaşımının öğrencilerin bilimsel süreç becerilerini geliştirmedeki yeter-liliği. Gazi Üniversitesi. Gazi Eğitim Fakültesi Derg. 2008, 28, 91–125. [Google Scholar]
- Sağırekmekçi, H. “Tahmin-Gözlem-Açiklama” (Tga) Stratejisine Dayali Fen Ve Doğa Etkinliklerinin, Okul Öncesi Öğrencilerinin Bi-Limsel Süreç Becerilerine Ve Bilişsel Alan Yeteneklerine Etkisi. Master’s Thesis, Mustafa Kemal Üniversitesi, Fen Bilim-leri Enstitüsü, Hatay, Turkey, 2016. [Google Scholar]
- Tokur, F. TGA Stratejisinin Fen Bilgisi Öğretmen Adaylarının Bitkilerde Büyüme Gelişme Konusunu Anlamalarına Etkisi. Master’s Thesis, Adıyaman Üniversitesi Fen Bilimleri Enstirüsü, Adıyaman, Turkey, 2011. [Google Scholar]
- Öztürk, Z.D. Fen Bilimleri Dersinde Probleme Dayalı Öğrenme Yönteminin Öğrencilerin Akademik Başarılarına Ve Bilimsel Süreç Becerilerine Etkisi. Master’s Thesis, Pamukkale Üniversitesi/Eğitim Bilimleri Enstitüsü, Denizli, Turkey, 2019. [Google Scholar]
- Tekin, A.D. Probleme Dayali Öğrenme Yaklaşiminin 7. Sinif Öğrencilerinin Akademik Başarilari, Bilimsel Süreç Becerileri Ve Moti-Vasyonlari Üzerine Etkisi. Master’s Thesis, Marmara Üniversitesi Eğitim Bilimleri Enstitüsü, İstanbul, Turkey, 2019. [Google Scholar]
- Önol, M. The Impact of Creative Problem Solving Activities on Scientific Process Skills and Success. Master’s Thesis, Balıkesir University, Balıkesir, Turkey, 2013. [Google Scholar]
- Uysal, E. Tasarım Temelli Fetemm (Fen, Teknoloji, Matematik Ve Mühendislik) Etkinliklerinin Fen Bilgisi Öğretmen Adaylarının Bilgi Düzeylerine Bilimsel Süreç Becerilerine Ve Tutumlarına Etkisi. Yayımlanmamış. Master’s Thesis, Uşak Üniversitesi Fen Bilimleri En-stitüsü, Uşak, Turkey, 2018. [Google Scholar]
- Yıldız, N. The Effect of Experiment Applications on the Success, Attitude and Scientific Process Abilities of the Students in the Solution of the Learning Scenarios Based on Problems in Science Education. Master’s Thesis, Marmara University, İstanbul, Turkey, 2010. [Google Scholar]
- Akca, Ö.F. Bilim Merkezlerinde Sorgulamaya Dayalı Robotik Etkinliklerin Öğrencilerin Kavramsal Başarıları, Mantıksal Düşünme ve Bilimsel Süreç Becerilerinin Gelişimine Etkisi. Master’s Thesis, Gazi Üniversitesi Eğitim Bilimleri Enstitüsü, Ankara, Turkey, 2020. [Google Scholar]
- Roth, K.J. Elementary Science Teaching. In Handbook of Research on Science Education; Routledge: Oxfordshire, UK, 2014; Volume 2, pp. 361–394. [Google Scholar]
- Craik, F.I.M.; Lockhart, R.S. Levels of processing: A framework for memory research. J. Verbal Learn. Verbal Behav. 1972, 11, 671–684. [Google Scholar] [CrossRef]
- Alam, G.M. Does online technology provide sustainable HE or aggravate diploma disease? Evidence from Bangladesh—a comparison of conditions before and during COVID-19. Technol. Soc. 2021, 66, 101677. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, C.D.; Hardinge, G.B.; Rokutani, L.J. Expanding the School Counselor Repertoire Through STEM-Focused Career Development. Career Dev. Q. 2012, 60, 25–35. [Google Scholar] [CrossRef]
- Ferguson, R.; Lamback, S. Creating Pathways to Prosperity: A Blueprint for Action. 2014. Available online: https://www.hks.harvard.edu/publications/creating-pathways-prosperity-blueprint-action (accessed on 27 March 2022).
- Leahy, R.L. Introduction: Emotional Schemas and Emotional Schema Therapy. Int. J. Cogn. Ther. 2019, 12, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Leahy, R.L. A model of emotional schemas. Cogn. Behav. Pract. 2002, 9, 177–190. [Google Scholar] [CrossRef]
- Nomxolisi, M.; Chiphambo Shakespear, M.; Mabel-Wendy, M. Examining the support given to teachers to promote science learning and science literacy in selected South African schools. PONTE Int. Sci. Res. J. 2021, 77. [Google Scholar] [CrossRef]
- Boateng, S.; Mushayikwa, E. Teaching electricity and magnetism to high school physical science learners: The effectiveness of learning style-based instructions. Int. Sci. Res. J. 2022, 78. [Google Scholar] [CrossRef]
- Özdemir, B.; İlhan-Beyaztaş, D. Öğretmen Adaylarının Sınav Türüne Göre Kullandıkları Öğrenme Yaklaşımlarını Benimseme Nedenlerine İlişkin Görüşleri. Mehmet Akif Ersoy Üniversitesi Eğitim Fakültesi Dergisi. 2018, 46, 363–385. [Google Scholar] [CrossRef]
- Lotter, C.R.; Miller, C. Improving Inquiry Teaching through Reflection on Practice. Res. Sci. Educ. 2017, 47, 913–942. [Google Scholar] [CrossRef]
- Kaya, G.; Yılmaz, S. Açık Sorgulamaya Dayalı Öğrenmenin Öğrencilerin Başarısına ve Bilimsel Süreç Becerilerinin Gelişimine Etkisi. Hacet. Univ. J. Educ. 2016, 31, 300–318. [Google Scholar] [CrossRef]
- Silva, E. Measuring skills for 21st-century learning. The Phi Delta Kappan. 2009, 90, 630–634. [Google Scholar] [CrossRef]
- Guo, J.; Woulfin, S. Twenty-First Century Creativity: An Investigation of How the Partnership for 21st Century Instructional Framework Reflects the Principles of Creativity. Roeper Rev. 2016, 38, 153–161. [Google Scholar] [CrossRef]
- Greenlaw, J. Deconstructing the Metanarrative of the 21st Century Skills Movement. Educ. Philos. Theory 2015, 47, 894–903. [Google Scholar] [CrossRef]
- Chu, S.K.W.; Reynolds, R.B.; Tavares, N.J.; Notari, M.; Lee, C.W.Y. 21st Century Skills Development Through Inquiry-Based Learning: From Theory to Practice; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar] [CrossRef]
- Care, E.; Griffin, P.; McGaw, B. Assessment and Teaching of 21st Century Skills; Springer: Dordrecht, The Netherlands, 2012. [Google Scholar] [CrossRef]
Questions | Skill Measured | Success Rate (%) |
---|---|---|
1 and 2 | Observation | 77.75 |
3, 4 and 5 | Space/Time Connection | 75 |
6, 7 and 8 | Classification | 34.26 |
9, 10 and 11 | Recognizing Number Relations | 66.6 |
12, 13 and 14 | Measuring | 69.5 |
15, 16 and 17 | Communicating | 28.7 |
18, 19 and 20 | Predicting | 90.7 ** |
21, 22 and 23 | Controlling and Manipulating Variables | 52.8 |
24 and 25 | Interpreting Data | 41.7 |
26, 27 and 28 | Formulating Hypotheses | 79.6 |
29 | Proving through Practice | 13.9 * |
30 and 31 | Experimentation | 86.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hacıeminoğlu, E.; Yıldız, N.G.; Şeker, R. Factors Related to Cognitive Reasoning of Pre-Service Teachers’ Science Process Skills: Role of Experiments at Home on Meaningful Learning. Sustainability 2022, 14, 7703. https://doi.org/10.3390/su14137703
Hacıeminoğlu E, Yıldız NG, Şeker R. Factors Related to Cognitive Reasoning of Pre-Service Teachers’ Science Process Skills: Role of Experiments at Home on Meaningful Learning. Sustainability. 2022; 14(13):7703. https://doi.org/10.3390/su14137703
Chicago/Turabian StyleHacıeminoğlu, Esme, Nadire Gülçin Yıldız, and Renan Şeker. 2022. "Factors Related to Cognitive Reasoning of Pre-Service Teachers’ Science Process Skills: Role of Experiments at Home on Meaningful Learning" Sustainability 14, no. 13: 7703. https://doi.org/10.3390/su14137703