A Model for Understanding the Mediating Association of Transparency between Emerging Technologies and Humanitarian Logistics Sustainability
Abstract
:1. Introduction
2. Literature Review
2.1. Humanitarian Logistics
2.2. Transparency in HL Sustainability
2.3. Technology for Transparency in HL
3. The Research Model and Hypothesis Development
3.1. The Internet of Things and Transparency
3.2. Blockchain Technology and Transparency
3.3. Artificial Intelligence and Transparency
3.4. Transparency and Effective Inventory Management
3.5. Transparency and Robust Information
3.6. Transparency and Effective Donation Management
4. Methods
4.1. Population and Sampling
4.2. Questionnaire Development and Data Collection
4.3. Descriptive Statistics
5. Analysis and Results
5.1. Assessment of the Measurement Model
5.1.1. Reliability of the Measurement Model
5.1.2. Model Validity
5.2. Predictive Validity
5.3. Hypothesis Testing
6. Discussion
6.1. Contributions to Theory
6.2. Practical Implications
6.3. Limitations
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
S/No | Constructs and Items | References |
---|---|---|
Internet of Things (IoT) | ||
1 | My organization utilizes the internet of things (IoT) for interorganization information transfer (IoT1). | [23] |
2 | My organization utilizes the IoT for intraorganization information transfer (IoT2). | |
3 | My organization utilizes the IoT to create and store information for future use (IoT3). | |
4 | My organization utilizes the IoT for management of relief materials (IoT4). | |
5 | I agree with the development of my organization’s clarity of information to the stakeholders through the IoT (IoT5). | |
Blockchain Technology (BCT) | ||
1 | We use distributed ledger technology to share information during disaster relief operations (BT1). | [23] |
2 | We use distributed ledger technology because it helps to maintain confidentiality, integrity, and availability of the data (BT2). | |
3 | We use distributed ledger technology to improve transparency in the disaster relief supply chain (BT3). | |
4 | We routinely use distributed ledger technology as a data platform that traces the origins, use, and destination of humanitarian supplies (BT4). | |
5 | We routinely use distributed ledger technology to avoid unreliable information and to avoid confusion among partners engaged in disaster relief operations (BT5). | |
6 | I feel safe in my information sharing with the organization’s blockchain technology (BT6). | |
Artificial Intelligence (AI) | ||
1 | Artificial intelligence can only be implemented to check human judgment and share information during disaster relief operations (AI1). | [108] |
2 | Artificial intelligence may prevent errors, and it helps to maintain confidentiality (AI2). | |
3 | Computers can deal with personal data more carefully than humans to improve transparency in the disaster relief supply chain (AI3). | |
4 | In my opinion, humans make more errors than computers (AI4). | |
5 | My organization uses artificial intelligence for disclosure in meeting humanitarian logistics sustainability (AI5). | |
Transparency (TR) | ||
1 | We routinely share our operational plans (i.e., distribution and storage plans) (TR1). | [17] |
2 | Our partners routinely gather strategic information related to disaster-affected areas (TR2). | |
Our partners routinely share strategic information (TR3). | ||
3 | These emerging technologies can provide me with updated information relevant to the unfortunate industry of disaster (TR4). | |
4 | The entire process of humanitarian logistics in my organization is accurately and transparently disclosed (TR5). | |
Effective Inventory Management (EIM) | ||
1 | Technology and transparency can overcome continuous and sustainable ambiguities in inventory with responsible authority (EIM1). | [40] |
2 | Through technology and transparency, management can control procurement and effectively plan inventory management (EIM2). | |
3 | My organization always favors the victims by its conscientiousness in inventory management (EIM3). | [17] |
4 | My organization performs its role effectively regarding inventory management (EIM4). | |
5 | Our inventory wastage rates are low (EIM5). | |
Robust Information (RI) | ||
1 | My organization facilitates stakeholders in getting the information they need (RI1). | [17] |
2 | My organization distributes the relief items transparently (RI2). | |
3 | Our local partners share their strategic information related to local culture, government regulations, and other useful information (TR3). | |
4 | We routinely share our operational plans (i.e., distribution and storage plans) (RI4). | |
5 | Our partners routinely gather strategic information related to disaster-affected areas (RI5). | |
6 | Our organization is open to sharing most information regularly and proactively with the stakeholders (RI6). | |
Effective Donation Management (EDM) | ||
1 | Through technology, management can familiarize itself with the processes involved in the relief of the needy after a disaster (EDM1). | [40] |
2 | Technology and transparency can help increase the number of donors (EDM2). | |
3 | The victims can clearly see the progress and situations of the donations of my organization (EDM3). | [17] |
4 | It is important for us to provide sincere aid to victims in time (EDM4). | |
5 | We constantly stay in touch with the victims until donations are delivered (EDM5). |
References
- Anjomshoae, A.; Hassan, A.; Wong, K.Y.; Banomyong, R. An integrated multi-stage fuzzy inference performance measurement scheme in humanitarian relief operations. Int. J. Disaster Risk Reduct. 2021, 61, 102298. [Google Scholar] [CrossRef]
- Khan, M.; Parvaiz, G.S.; Bashir, N.; Imtiaz, S.; Bae, J. Students’ key determinant structure towards educational technology acceptance at universities, during COVID 19 lockdown: Pakistani perspective. Cogent Educ. 2022, 9, 2039088. [Google Scholar] [CrossRef]
- Centre for Research on the Epidemiology of Disasters. CRED Crunch 58—Disaster Year in Review (2019); CRED: Brussels, Belgium, 2020; Volume 58. [Google Scholar]
- Haris, M.; Cheema, A.R.; Subasinghe, C. Why lessons learnt are lost. Disaster Prev. Manag. Int. J. 2019, 28, 677–690. [Google Scholar] [CrossRef]
- Cheema, A.R.; Mehmood, A.; Imran, M. Learning from the past: Analysis of disaster management structures, policies and institutions in Pakistan. Disaster Prev. Manage. 2016, 25, 449–463. [Google Scholar] [CrossRef]
- Debarati, G.-S.; Hoyois, P.; Below, R. Annual Disaster Statistical Review 2015 The Numbers and Trends; Universite Catholique de Loivain: Brussels, Belgium, 2016. [Google Scholar]
- Dube, N.; Van der Vaart, T.; Teunter, R.; Van Wassenhove, L. Host government impact on the logistics performance of international humanitarian organisations. J. Oper. Manag. 2016, 47, 44–57. [Google Scholar] [CrossRef] [Green Version]
- Carlson, C.E.; Isihara, P.A.; Sandberg, R.; Boan, D.; Phelps, K.; Lee, K.L.; Diedrichs, D.R.; Cuba, D.; Edman, J.; Gray, M. Introducing PEARL: A Gini-like index and reporting tool for public accountability and equity in disaster response. J. Humanit. Logist. Supply Chain Manag. 2016, 6, 202–221. [Google Scholar] [CrossRef]
- Maxwell, D.; Walker, P.; Church, C.; Harvey, P.; Savage, K.; Bailey, S.; Hees, R.; Ahlendorf, M.-L. Preventing Corruption in Humanitarian Assistance; Research Report; Transparency International: Berlin, Germany; Feinstein International Center: Boston, MA, USA, 2008. [Google Scholar]
- Chen, S.; Zhang, Q.; Zhou, Y.P. Impact of supply chain transparency on sustainability under NGO scrutiny. Prod. Oper. Manag. 2019, 28, 3002–3022. [Google Scholar] [CrossRef]
- Egels-Zandén, N.; Hulthén, K.; Wulff, G. Trade-offs in supply chain transparency: The case of Nudie Jeans Co. J. Clean. Prod. 2015, 107, 95–104. [Google Scholar] [CrossRef]
- Sodhi, M.S.; Tang, C.S. Research opportunities in supply chain transparency. Prod. Oper. Manag. 2019, 28, 2946–2959. [Google Scholar] [CrossRef] [Green Version]
- Altay, N.; Pal, R. Information diffusion among agents: Implications for humanitarian operations. Prod. Oper. Manag. 2014, 23, 1015–1027. [Google Scholar] [CrossRef] [Green Version]
- Dubey, R.; Gunasekaran, A.; Childe, S.J.; Papadopoulos, T. Skills needed in supply chain-human agency and social capital analysis in third party logistics. Manag. Decis. 2018, 56, 143–159. [Google Scholar] [CrossRef] [Green Version]
- Dubey, R.; Gunasekaran, A.; Bryde, D.J.; Dwivedi, Y.K.; Papadopoulos, T. Blockchain technology for enhancing swift-trust, collaboration and resilience within a humanitarian supply chain setting. Int. J. Prod. Res. 2020, 11, 1–18. [Google Scholar] [CrossRef]
- Dubey, R.; Bryde, D.J.; Foropon, C.; Tiwari, M.; Dwivedi, Y.; Schiffling, S. An investigation of information alignment and collaboration as complements to supply chain agility in humanitarian supply chain. Int. J. Prod. Res. 2021, 59, 1586–1605. [Google Scholar] [CrossRef]
- Khan, M.; Lee, H.Y.; Bae, J.H. The Role of Transparency in Humanitarian Logistics. Sustainability 2019, 11, 2078. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, T.; Ahmad, S. Transparency in humanitarian logistics and supply chain: The moderating role of digitalisation. J. Humanit. Logist. Supply Chain Manag. 2022. ahead of print. [Google Scholar] [CrossRef]
- Aranda, D.A.; Fernández, L.M.M.; Stantchev, V. Integration of Internet of Things (IoT) and Blockchain to increase humanitarian aid supply chains performance. In Proceedings of the 2019 5th International Conference on Transportation Information and Safety (ICTIS), IEEE, Liverpool, UK, 14–17 June 2019; pp. 140–145. [Google Scholar]
- Min, H. Blockchain technology for enhancing supply chain resilience. Bus. Horiz. 2019, 62, 35–45. [Google Scholar] [CrossRef]
- Chen, C. Blockchain for Humanitarian Aid: Problem or Panacea? 2018. Available online: https://think-asia.org/bitstream/handle/11540/8955/CO18162.pdf?sequence=1 (accessed on 26 March 2022).
- Ramadurai, K.W.; Bhatia, S.K. Disruptive technologies and innovations in humanitarian aid and disaster relief: An integrative approach. In Reimagining Innovation in Humanitarian Medicine; Springer: Berlin/Heidelberg, Germany, 2019; pp. 75–91. [Google Scholar]
- Khan, M.; Imtiaz, S.; Parvaiz, G.S.; Hussain, A.; Bae, J. Integration of Internet-of-Things With Blockchain Technology to Enhance Humanitarian Logistics Performance. IEEE Access 2021, 9, 25422–25436. [Google Scholar] [CrossRef]
- Rodríguez-Espíndola, O.; Chowdhury, S.; Beltagui, A.; Albores, P. The potential of emergent disruptive technologies for humanitarian supply chains: The integration of blockchain, Artificial Intelligence and 3D printing. Int. J. Prod. Res. 2020, 58, 4610–4630. [Google Scholar] [CrossRef]
- Anjomshoae, A.; Banomyong, R.; Mohammed, F.; Kunz, N. A systematic review of humanitarian supply chains performance measurement literature from 2007 to 2021. Int. J. Disaster Risk Reduct. 2022, 72, 102852. [Google Scholar] [CrossRef]
- Schnackenberg, A.K.; Tomlinson, E.C. Organizational transparency: A new perspective on managing trust in organization-stakeholder relationships. J. Manag. 2016, 42, 1784–1810. [Google Scholar] [CrossRef]
- Altay, N.; Labonte, M. Challenges in humanitarian information management and exchange: Evidence from Haiti. Disasters 2014, 38, S50–S72. [Google Scholar] [CrossRef]
- Haavisto, I.; Kovács, G. Perspectives on sustainability in humanitarian supply chains. Disaster Prev. Manage. 2014, 23, 610–631. [Google Scholar] [CrossRef]
- Kassinis, G.; Vafeas, N. Stakeholder pressures and environmental performance. Acad. Manag. J. 2006, 49, 145–159. [Google Scholar] [CrossRef]
- Correia, M.S. Sustainability: An Overview of the Triple Bottom Line and Sustainability Implementation. Int. J. Strateg. Eng. (IJoSE) 2019, 2, 29–38. [Google Scholar] [CrossRef]
- Willard, B. The New Sustainability Advantage: Seven Business Case Benefits of a Triple Bottom Line; New Society Publishers: Gabriola Island, BC, Canada, 2012. [Google Scholar]
- Kovács, G.; Spens, K.M. Humanitarian logistics in disaster relief operations. Int. J. Phys. Distrib. Logist. Manag. 2007, 37, 99–114. [Google Scholar] [CrossRef]
- Rabta, B.; Wankmüller, C.; Reiner, G. A drone fleet model for last-mile distribution in disaster relief operations. Int. J. Disaster Risk Reduct. 2018, 28, 107–112. [Google Scholar] [CrossRef]
- Bealt, J.; Fernández Barrera, J.C.; Mansouri, S.A. Collaborative relationships between logistics service providers and humanitarian organizations during disaster relief operations. J. Humanit. Logist. Supply Chain Manag. 2016, 6, 118–144. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.; Hussain, A.; Farooq, N.; Sahibzada, S.; Khattak, A.; Malik, S. Applying Interpretive Structural Modeling and MICMAC Analysis to Evaluate Inhibitors to Transparency in Humanitarian Logistics. Utopía Y Prax. Latinoam. 2020, 25, 325–337. [Google Scholar]
- Khan, M.; Yong, L.H.; Han, B.J. Emerging Techniques for Enhancing the Performance of Humanitarian Logistics. Int. J. Supply Chain Manag. 2019, 8, 450. [Google Scholar]
- Khan, M.; Yong, L.H.; Han, B.J. A Systematic Review of Performance Enhancement of Humanitarian Logistics through Transparency: Current Status and Perspectives. Int. J. Supply Chain Manag. 2019, 8, 549. [Google Scholar]
- Nurmala, N.; de Leeuw, S.; Dullaert, W. Humanitarian–business partnerships in managing humanitarian logistics. Supply Chain Manag. Int. J. 2017, 22, 82–94. [Google Scholar] [CrossRef]
- Van Wassenhove, L.N. Humanitarian aid logistics: Supply chain management in high gear. J. Oper. Res. Soc. 2006, 57, 475–489. [Google Scholar] [CrossRef]
- Khan, M.; Sarmad, M.; Ullah, S.; Bae, J. Education for sustainable development in humanitarian logistics. J. Humanit. Logist. Supply Chain Manag. 2020, 10, 573–602. [Google Scholar] [CrossRef]
- Weerawardena, J.; McDonald, R.E.; Mort, G.S. Sustainability of nonprofit organizations: An empirical investigation. J. World Bus. 2010, 45, 346–356. [Google Scholar] [CrossRef]
- Haavisto, I.; Kovacs, G. Sustainability in humanitarian operations. In Sustainable Value Chain Management: Analyzing, Designing, Implementing, and Monitoring for Social and Environmental Responsibility; Gower: Memphis, TN, USA, 2013. [Google Scholar]
- ALNAP—Active Learning Network for Accountability and Performance in Humanitarian Action. An Introduction to Evaluation of Humanitarian Action (EHA): Course Manual; ALNAP: London, UK, 2007. [Google Scholar]
- Delmas, M.; Toffel, M.W. Organisational responses to environmental demands. Strateg. Manag. J. 2008, 29, 1027–1055. [Google Scholar] [CrossRef]
- Choi, S.; Ng, A. Environmental and economic dimensions of sustainability and price effects on consumer responses. J. Bus. Ethics 2011, 104, 269–282. [Google Scholar] [CrossRef]
- Cronin, J.J.; Smith, J.S.; Gleim, M.R.; Ramirez, E.; Martinez, J.D. Green marketing strategies: An examination of stakeholders and the opportunities they present. J. Acad. Mark. Sci. 2011, 39, 158–174. [Google Scholar] [CrossRef]
- Yu, W.; Ramanathan, R.; Nath, P. Environmental pressures and performance: An analysis of the roles of environmental innovation strategy and marketing capability. Technol. Forecast. Soc. Change 2017, 117, 160–169. [Google Scholar] [CrossRef]
- Larrea, O. Key performance indicators in humanitarian logistics in Colombia. IFAC Proc. Vol. 2013, 46, 211–216. [Google Scholar] [CrossRef]
- Baraibar-Diez, E.; Odriozola, M.D.; Sánchez, J.L.F. Transparency through European corporate governance codes. Int. J. Discl. Gov. 2016, 13, 244–261. [Google Scholar] [CrossRef]
- Park, H.; Blenkinsopp, J. The roles of transparency and trust in the relationship between corruption and citizen satisfaction. Int. Rev. Adm. Sci. 2011, 77, 254–274. [Google Scholar] [CrossRef] [Green Version]
- Anjomshoae, A.; Hassan, A.; Kunz, N.; Wong, K.Y.; de Leeuw, S. Toward a dynamic balanced scorecard model for humanitarian relief organizations’ performance management. J. Humanit. Logist. Supply Chain Manag. 2017, 7, 194–218. [Google Scholar] [CrossRef]
- Burkart, C.; Besiou, M.; Wakolbinger, T. The funding—Humanitarian supply chain interface. Surv. Oper. Res. Manag. Sci. 2016, 21, 31–45. [Google Scholar] [CrossRef]
- Beamon, B.M.; Balcik, B. Performance measurement in humanitarian relief chains. Int. J. Public Sect. Manag. 2008, 21, 4–25. [Google Scholar] [CrossRef] [Green Version]
- Lu, Q.; Goh, M.; De Souza, R. A SCOR framework to measure logistics performance of humanitarian organizations. J. Humanit. Logist. Supply Chain Manag. 2016, 6, 222–239. [Google Scholar] [CrossRef]
- Medina, C.; Rufín, R. Transparency policy and students’ satisfaction and trust. Transform. Gov. People Process Policy 2015, 9, 309–323. [Google Scholar] [CrossRef]
- Najib Razali, M.; Mohd Adnan, Y. Transparency in Malaysian property companies. Prop. Manag. 2012, 30, 398–415. [Google Scholar] [CrossRef]
- Gershwin, S.B. The future of manufacturing systems engineering. Int. J. Prod. Res. 2018, 56, 224–237. [Google Scholar] [CrossRef]
- Winkelhaus, S.; Grosse, E.H. Logistics 4.0: A systematic review towards a new logistics system. Int. J. Prod. Res. 2020, 58, 18–43. [Google Scholar] [CrossRef]
- Roy, P.; Albores, P.; Brewster, C. Logistical framework for last mile relief distribution in humanitarian supply chains: Considerations from the field. In Proceedings of the International Conference on Manufacturing Research, Birmingham, UK, 11–13 September 2012; pp. 11–13. [Google Scholar]
- Jung, H.; Chung, K. Ontology-driven slope modeling for disaster management service. Clust. Comput. 2015, 18, 677–692. [Google Scholar] [CrossRef]
- Sinha, A.; Kumar, P.; Rana, N.P.; Islam, R.; Dwivedi, Y.K. Impact of internet of things (IoT) in disaster management: A task-technology fit perspective. Ann. Oper. Res. 2019, 283, 759–794. [Google Scholar] [CrossRef] [Green Version]
- Westlund, S. The use of geospatial technology in disaster management. In Geospatial Technologies and Advancing Geographic Decision Making: Issues and Trends; IGI Global: Hershey, PA, USA, 2012; pp. 21–34. [Google Scholar]
- Khan, M.; Sarmad, M.; Shah, S.F.A.; Han, B.J. Extent of Employee Turnover in Humanitarian Logistics: An Interpretive Structural Modelling Approach. Int. J Supply Chain Manag. 2020, 9, 107. [Google Scholar]
- Prusty, A.R.; Mohanty, A. Prospect of Low Power Sensor Network Technology in Disaster Management for Sustainable Future. In Emergency and Disaster Management: Concepts, Methodologies, Tools, and Applications; IGI Global: Hershey, PA, USA, 2019; pp. 834–856. [Google Scholar]
- Wu, Y.C.J.; Lirn, T.C. RFID technology in emergency logistics: An exploratory study. Int. J. Manag. Enterp. Dev. 2011, 11, 163–181. [Google Scholar] [CrossRef]
- Xu, L.D.; Xu, E.L.; Li, L. Industry 4.0: State of the art and future trends. Int. J. Prod. Res. 2018, 56, 2941–2962. [Google Scholar] [CrossRef] [Green Version]
- Cichosz, M. Digitalization and competitiveness in the logistics service industry. e-Mentor 2018, 77, 73–82. [Google Scholar] [CrossRef] [Green Version]
- Dinh, T.N.; Thai, M.T. AI and Blockchain: A Disruptive Integration. Computer 2018, 51, 48–53. [Google Scholar] [CrossRef]
- Mandolla, C.; Petruzzelli, A.M.; Percoco, G.; Urbinati, A. Building a digital twin for additive manufacturing through the exploitation of blockchain: A case analysis of the aircraft industry. Comput. Ind. 2019, 109, 134–152. [Google Scholar] [CrossRef]
- Xu, H.; Liu, W.; Wang, C.; Chen, H. Service-oriented management for internet of things. Int. J. Inf. Netw. Secur. 2013, 2, 54. [Google Scholar] [CrossRef]
- Tzezana, R. High-probability and wild-card scenarios for future crimes and terror attacks using the Internet of Things. Foresight 2017, 19, 1–14. [Google Scholar] [CrossRef]
- Day, J.M.; Junglas, I.; Silva, L. Information flow impediments in disaster relief supply chains. J. Assoc. Inf. Syst. 2009, 10, 1. [Google Scholar] [CrossRef] [Green Version]
- Huckle, S.; Bhattacharya, R.; White, M.; Beloff, N. Internet of things, blockchain and shared economy applications. Procedia Comput. Sci. 2016, 98, 461–466. [Google Scholar] [CrossRef] [Green Version]
- Schatsky, D.; Muraskin, C. Beyond Bitcoin: Blockchain Is Coming to Disrupt Your Industry. Deloitte Insight 2015. Available online: https://www2.deloitte.com/us/en/insights/focus/signals-for-strategists/trends-blockchain-bitcoin-security-transparency.html (accessed on 26 March 2022).
- Saberi, S.; Kouhizadeh, M.; Sarkis, J.; Shen, L. Blockchain technology and its relationships to sustainable supply chain management. Int. J. Prod. Res. 2019, 57, 2117–2135. [Google Scholar] [CrossRef] [Green Version]
- Cartier, L.E.; Ali, S.H.; Krzemnicki, M.S. Blockchain, Chain of Custody and Trace Elements: An Overview of Tracking and Traceability Opportunities in the Gem Industry. J. Gemmol. 2018, 36, 212–227. [Google Scholar] [CrossRef]
- Woodside, J.M.; Augustine, F.K., Jr.; Giberson, W. Blockchain technology adoption status and strategies. J. Int. Technol. Inf. Manag. 2017, 26, 65–93. [Google Scholar]
- Lal, R.; Johnson, S. Maersk: Betting on Blockchain; Harvard Business School: Boston, MA, USA, 2018. [Google Scholar]
- Yadav, S.; Singh, S.P. Blockchain critical success factors for sustainable supply chain. Resour. Conserv. Recycl. 2020, 152, 104505. [Google Scholar] [CrossRef]
- Marr, D. Artificial intelligence—A personal view. Artif. Intell. 1977, 9, 37–48. [Google Scholar] [CrossRef] [Green Version]
- Deparday, V.; Gevaert, C.M.; Molinario, G.; Soden, R.; Balog-Way, S. Machine Learning for Disaster Risk Management; GFDRR: Washington, DC, USA, 2019. [Google Scholar]
- Radianti, J.; Dokas, I.; Boersma, K.; Noori, N.S.; Belbachir, N.; Stieglitz, S. Enhancing Disaster Response for Hazardous Materials Using Emerging Technologies: The Role of AI and a Research Agenda. In Engineering Applications of Neural Networks. Proceedings of International Conference on Engineering Applications of Neural Networks, Hersonissos, Greece, 24–25 May 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 368–376. [Google Scholar]
- Baryannis, G.; Validi, S.; Dani, S.; Antoniou, G. Supply chain risk management and artificial intelligence: State of the art and future research directions. Int. J. Prod. Res. 2019, 57, 2179–2202. [Google Scholar] [CrossRef]
- Roh, S.-Y.; Jang, H.-M.; Han, C.-H. Warehouse location decision factors in humanitarian relief logistics. Asian J. Shipp. Logist. 2013, 29, 103–120. [Google Scholar] [CrossRef] [Green Version]
- Maharjan, R.; Hanaoka, S. Warehouse location determination for humanitarian relief distribution in Nepal. Transp. Res. Procedia 2017, 25, 1151–1163. [Google Scholar] [CrossRef]
- Lee, H.L.; Padmanabhan, V.; Whang, S. Information distortion in a supply chain: The bullwhip effect. Manag. Sci. 1997, 43, 546–558. [Google Scholar] [CrossRef]
- Yigitbasioglu, O.M. Information sharing with key suppliers: A transaction cost theory perspective. Int. J. Phys. Distrib. Logist. Manag. 2010, 40, 550–578. [Google Scholar] [CrossRef] [Green Version]
- Ataseven, C.; Nair, A.; Ferguson, M. The role of supply chain integration in strengthening the performance of not-for-profit organizations: Evidence from the food banking industry. J. Humanit. Logist. Supply Chain Manag. 2020, 10, 101–123. [Google Scholar] [CrossRef]
- Galbraith, J.R. Designing Complex Organizations; Addison-Wesley Longman Publishing Co., Inc.: Boston, MA, USA, 1973. [Google Scholar]
- Thompson, J. Organizations in Action; McGraw Hill: New York, NY, USA, 1967. [Google Scholar]
- Heaslip, G.; Kovács, G.; Haavisto, I. Cash-based response in relief: The impact for humanitarian logistics. J. Humanit. Logist. Supply Chain Manag. 2018, 8, 87–106. [Google Scholar] [CrossRef]
- Ahmeda, Z. Disaster risks and disaster management policies and practices in Pakistan: Acritical analysis of Disaster Management Act 2010 of Pakistan. Int. J. Disaster Risk Manag. 2013, 4, 15–20. [Google Scholar] [CrossRef]
- Gavidia, J.V. A model for enterprise resource planning in emergency humanitarian logistics. J. Humanit. Logist. Supply Chain Manag. 2017, 7, 246–265. [Google Scholar] [CrossRef]
- Abidi, H.; de Leeuw, S.; Klumpp, M. Humanitarian supply chain performance management: A systematic literature review. Supply Chain Manag. Int. J. 2014, 19, 592–608. [Google Scholar] [CrossRef] [Green Version]
- Hair, J.F., Jr.; Hult, G.T.M.; Ringle, C.M.; Sarstedt, M. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM); Sage Publications: Thousands Oaks, CA, USA, 2021. [Google Scholar]
- Saunders, M.; Lewis, P.; Thornhill, A. Research Methods for Business Students, 7th ed.; Pearson: London, UK, 2015. [Google Scholar]
- Armstrong, J.S.; Overton, T.S. Estimating nonresponse bias in mail surveys. J. Mark. Res. 1977, 14, 396–402. [Google Scholar] [CrossRef] [Green Version]
- Hair, J.F., Jr.; Matthews, L.M.; Matthews, R.L.; Sarstedt, M. PLS-SEM or CB-SEM: Updated guidelines on which method to use. Int. J. Multivar. Data Anal. 2017, 1, 107–123. [Google Scholar] [CrossRef]
- George, D. SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update, 10/e; Pearson Education India: Delhi, India, 2011. [Google Scholar]
- Neter, J.; Wasserman, W.; Kutner, M.H. Applied Regression Models; Richard D. Irwin Inc.: Homewood, IL, USA, 1983. [Google Scholar]
- Ringle, C.M.; Da Silva, D.; Bido, D.d.S. Modelagem de equações estruturais com utilização do SmartPLS. Rev. Bras. De Mark. 2014, 13, 56–73. [Google Scholar] [CrossRef]
- Chin, W.W. The partial least squares approach to structural equation modeling. Mod. Methods Bus. Res. 1998, 295, 295–336. [Google Scholar]
- Neuman, S.P. Generalized scaling of permeabilities: Validation and effect of support scale. Geophys. Res. Lett. 1994, 21, 349–352. [Google Scholar] [CrossRef] [Green Version]
- Fornell, C.; Larcker, D.F. Evaluating structural equation models with unobservable variables and measurement error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Voorhees, C.M.; Brady, M.K.; Calantone, R.; Ramirez, E. Discriminant validity testing in marketing: An analysis, causes for concern, and proposed remedies. J. Acad. Mark. Sci. 2016, 44, 119–134. [Google Scholar] [CrossRef]
- Henseler, J.; Ringle, C.M.; Sarstedt, M. A new criterion for assessing discriminant validity in variance-based structural equation modeling. J. Acad. Mark. Sci. 2015, 43, 115–135. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Erlbaum Associates: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Ongena, Y.P.; Haan, M.; Yakar, D.; Kwee, T.C. Patients’ views on the implementation of artificial intelligence in radiology: Development and validation of a standardized questionnaire. Eur. Radiol. 2020, 30, 1033–1040. [Google Scholar] [CrossRef] [Green Version]
Variable | Classification of Variables | Valid | Freq. | % | Mean | Std. Dev. | Var. | Skew. | Kurt. |
---|---|---|---|---|---|---|---|---|---|
Gender | Male Female | 434 | 388 52 | 88 12 | 1.12 | 0.325 | 0.106 | 2.35 | 3.537 |
Age | 18 to 24 years 25 to 34 years 35 to 44 years 45 years or older | 434 | 2 189 190 51 | 0.5 43.5 43.8 11.8 | 2.66 | 0.686 | 0.471 | 0.478 | −0.695 |
Qualifications | PhD Master’s Degree Bachelor’s Degree Diploma Secondary school and below | 434 | 28 294 106 2 4 | 6.5 67.7 24.4 0.5 0.9 | 2.22 | 0.603 | 0.364 | 1.00 | 3.379 |
Experience | Less than 1 year 1–3 years 4–6 years 7–9 years 10–12 years 13 and above | 434 | 110 106 64 76 50 28 | 25.3 24.4 14.7 17.5 11.5 6.5 | 2.85 | 1.568 | 2.457 | 0.44 | −0.962 |
Function | Health Logistics Food Security Water, Sanitation, and Hygiene Camp Co-ordination Other | 434 | 76 106 31 14 10 197 | 17.5 24.4 7.1 3.2 2.3 45.4 | 3.85 | 2.109 | 4.450 | −0.112 | −1.780 |
Position | CEO Manager Supervisor Logistician Field Officer | 434 | 94 99 130 48 63 | 21.7 22.8 30.0 11.1 14.5 | 2.74 | 1.312 | 1.722 | 0.299 | −0.923 |
IoT | BCT | AI | TR | EIM | RI | EDM | |
---|---|---|---|---|---|---|---|
Valid | 434 | 434 | 434 | 434 | 434 | 434 | 434 |
Missing | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Mean | 2.85 | 2.85 | 2.98 | 2.73 | 3.05 | 2.89 | 2.90 |
Median | 2.80 | 2.80 | 2.92 | 2.73 | 3.06 | 2.88 | 2.90 |
Std. Deviation | 0.599 | 0.599 | 0.781 | 0.578 | 0.676 | 0.618 | 0.628 |
Variance | 0.358 | 0.358 | 0.610 | 0.334 | 0.457 | 0.382 | 0.395 |
Skewness | 0.045 | 0.045 | 0.059 | 0.082 | 0.062 | 0.066 | 0.071 |
Std. Error of Skewness | 0.117 | 0.117 | 0.117 | 0.117 | 0.117 | 0.117 | 0.117 |
Kurtosis | −0.948 | −0.948 | −1.055 | −0.702 | −0.722 | −0.879 | −0.834 |
Std. Error of Kurtosis | 0.234 | 0.234 | 0.234 | 0.234 | 0.234 | 0.234 | 0.234 |
VIF | 1.64 | 1.79 | 1.56 | 1.62 | 2.19 | 1.62 | 1.94 |
R-Squared | Adjusted R-Squared | Cronbach’s Alpha | Composite Reliability | Average Variance Extracted | |
---|---|---|---|---|---|
Internet of Things | 0.774 | 0.847 | 0.526 | ||
Blockchain Technology | 0.819 | 0.870 | 0.529 | ||
Artificial Intelligence | 0.799 | 0.862 | 0.553 | ||
Transparency | 0.571 | 0.568 | 0.695 | 0.805 | 0.557 |
Effective Inventory Management | 0.152 | 0.150 | 0.872 | 0.907 | 0.661 |
Robust Information | 0.200 | 0.198 | 0.806 | 0.866 | 0.562 |
Effective Donation Management | 0.151 | 0.149 | 0.813 | 0.873 | 0.585 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
---|---|---|---|---|---|---|---|
1. Internet of Things | 1 | ||||||
2. Blockchain Technology | 1.000 ** | 1 | |||||
3. Artificial Intelligence | 0.920 ** | 0.920 ** | 1 | ||||
4. Transparency | 0.817 ** | 0.817 ** | 0.891 ** | 1 | |||
5. Effective Inventory Management | 0.829 ** | 0.829 ** | 0.896 ** | 0.995 ** | 1 | ||
6. Robust Information | 0.954 ** | 0.954 ** | 0.972 ** | 0.946 ** | 0.952 ** | 1 | |
7. Effective Donation Management | 0.935 ** | 0.935 ** | 0.971 ** | 0.961 ** | 0.966 ** | 0.998 ** | 1 |
AI | BCT | EDM | EIM | IoT | RI | TR | |
---|---|---|---|---|---|---|---|
Artificial Intelligence (AI) | |||||||
Blockchain Technology (BCT) | 0.34 | ||||||
Effective Donation Management (EDM) | 0.77 | 0.30 | |||||
Effective Inventory Management (EIM) | 0.74 | 0.29 | 1.13 | ||||
Internet of Things (IoT) | 0.27 | 0.58 | 0.17 | 0.15 | |||
Robust Information (RI) | 0.90 | 0.36 | 0.91 | 0.91 | 0.23 | ||
Transparency (TR) | 0.47 | 0.89 | 0.37 | 0.35 | 0.61 | 0.45 |
SSO | SSE | Q2 (=1 − SSE/SSO) | |
---|---|---|---|
Internet of Things | 2170.000 | 2170.000 | - |
Blockchain Technology | 2604.000 | 2604.000 | - |
Artificial Intelligence | 2170.000 | 2170.000 | - |
Transparency | 2170.000 | 1614.578 | 0.26 |
Effective Inventory Management | 2170.000 | 1962.974 | 0.10 |
Robust Information | 2170.000 | 1933.018 | 0.11 |
Effective Donation Management | 2170.000 | 1989.696 | 0.08 |
Path Coefficient | Sample Mean | Std. Deviation | T Statistics | p Values | Supported? | |
---|---|---|---|---|---|---|
Internet of Things → Transparency (HI) | 0.122 | 0.125 | 0.038 | 3.895 | 0.000 | Yes |
Blockchain Technology → Transparency (H2) | 0.511 | 0.511 | 0.038 | 15.292 | 0.000 | Yes |
Artificial Intelligence → Transparency (H3) | 0.345 | 0.346 | 0.040 | 5.174 | 0.000 | Yes |
Transparency → Effective Inventory Management (H4) | 0.390 | 0.397 | 0.048 | 6.099 | 0.000 | Yes |
Transparency → Robust Information (H5) | 0.447 | 0.453 | 0.047 | 7.014 | 0.000 | Yes |
Transparency → Effective Donation Management (H6) | 0.389 | 0.395 | 0.051 | 6.197 | 0.000 | Yes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, M.; Parvaiz, G.S.; Ali, A.; Jehangir, M.; Hassan, N.; Bae, J. A Model for Understanding the Mediating Association of Transparency between Emerging Technologies and Humanitarian Logistics Sustainability. Sustainability 2022, 14, 6917. https://doi.org/10.3390/su14116917
Khan M, Parvaiz GS, Ali A, Jehangir M, Hassan N, Bae J. A Model for Understanding the Mediating Association of Transparency between Emerging Technologies and Humanitarian Logistics Sustainability. Sustainability. 2022; 14(11):6917. https://doi.org/10.3390/su14116917
Chicago/Turabian StyleKhan, Muhammad, Gohar Saleem Parvaiz, Abbas Ali, Majid Jehangir, Noor Hassan, and Junghan Bae. 2022. "A Model for Understanding the Mediating Association of Transparency between Emerging Technologies and Humanitarian Logistics Sustainability" Sustainability 14, no. 11: 6917. https://doi.org/10.3390/su14116917
APA StyleKhan, M., Parvaiz, G. S., Ali, A., Jehangir, M., Hassan, N., & Bae, J. (2022). A Model for Understanding the Mediating Association of Transparency between Emerging Technologies and Humanitarian Logistics Sustainability. Sustainability, 14(11), 6917. https://doi.org/10.3390/su14116917