# Rhyolite as a Naturally Sustainable Thermoluminescence Material for Dose Assessment Applications

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

^{−1}mg

^{−1}with minimum detectable dosage of 976.221 µGy and a wide range of linearity, from 1.1 to 330 Gy in response to beta particle irradiation [22]. For the sake of retrospective dosimetry, thermoluminescence properties of natural tuff were investigated in the dose range 0.5–5 Gy, where linear dose-response is obtained [23].

## 2. Material and Methods

^{−1}. According to a qualitative XRF examination of the natural rhyolite sample, silicon was the predominant ingredient (53%), with lesser amounts of aluminum (15.8%), potassium (15.2%), calcium (2.5%), and a variety of other elements as impurities.

^{60}Co irradiation source (GC220), factory-made by the Canadian Atomic Energy Authority, was utilized to gamma irradiate the samples at 0.3 Gy/s. The source is provided by the Egyptian National Center for Radiation Research and Technology.

## 3. Results and Discussions

#### 3.1. Structural Analysis (XRD and FTIR)

^{−1}can be attributed to the OH group’s stretching and bending vibrations [31,32], while the those observed at 1093 cm

^{−1}and 661 cm

^{−1}are attributed to the stretching and bending vibrations of the Si-O in quartz, respectively. The most intense bands recorded at around 1100 cm

^{−1}and 460 cm

^{−1}, are associated with the asymmetric stretching vibrations Si-O(Si) and bending vibrations O-Si-O present in silicate tetrahedra, respectively. The doublet 800–780 cm

^{−1}is related to the symmetric stretching vibrations of Si-O-Si bridges [33]. This doublet is found in low-temperature quartz and is utilized as the analytical band for determining the phase’s quantitative properties [34]. The Al-O-Si vibration in aluminum silicate is shown by the absorption band at 1384.16 cm

^{−1}[35].

#### 3.2. Glow Curves

#### 3.3. The Effect of Heating Rate

#### 3.4. Dose Response

^{2}= 0.999) described by the formula I = (1.011 ± 0.026) D; followed by a supralinearity behavior up to 2000 Gy described by the formula I = (202.35 ± 20.98) D

^{1.28±0.02}, where I refers to the intensity of the TL signal and D is the irradiation dose. The strong value of R

^{2}suggested that the studied material possesses a homogeneous delivery of deep electron traps, providing a linear dose-response across the irradiation dosage range studied. The following formula can be used to compute the linearity index f(D) at a given dosage D [41]:

_{0}, S(D), D

_{1}, and S(D

_{1}) denote the TL response at zero dose, S(D), dosage in the linear area; and S(D

_{1}) denotes the TL response corresponding to dose D

_{1}; respectively. The value of f(D) equals one for linear behavior, higher than 1 for supralinearity, and lower than 1 for sublinearity.

#### 3.5. Thermal Fading

#### 3.6. Reproducibility

#### 3.7. Minimum Detectable Dose (MDD)

^{−1}, the average background signal B* = 0.40 nC g

^{−1}, and its standard deviation ${\mathsf{\sigma}}_{\mathrm{B}}$ = 0.06 nC g

^{−1}. The calculated values of the MDD based on the above equation are about 0.5 Gy. Thus, natural rhyolite can measure low gamma doses up to 0.5 Gy.

#### 3.8. Kinetic Parameters Determination

#### 3.8.1. Repeated Initial Rise (RIR) Method

_{stop}to acquire a large number of activation energies, and then the number of peaks in the glow curve can be determined if there are many peaks. The irradiation sample was heated at a continuous pace until it reached a certain cut-off temperature T

_{stop}, at which point a thermoluminescence decay was recorded. Several heating and cooling cycles have produced a set of data I(T) spanning the temperature range of 333–673 K.

_{stop}is shown in Figure 12. The obtained results displayed that the activation energies are nearly similar in five places (plateau region), indicating that the glow curve has five overlapping peaks with average activation energies of 0.77 ± 0.01, 0.86 ± 0.01, 1.01 ± 0.01, 0.99 ± 0.00, and 1.78 ± 0.01 eV, respectively.

#### 3.8.2. Computerized Glow Curve Deconvolution (CGCD) Method

^{−1}) is the frequency factor, E (eV) is the activation energy, n

_{0}is the initial concentration of trapped carriers, T (K) is the absolute temperature, k (eV K

^{−1}) is the Boltzmann constant, Δ = 2 kT/E, and β is the heating rate. The deconvolution process was carried out using the Korean atomic energy institute’s TL-ANAL tool [49]. As initial approximations, the number of peaks (five) and the corresponding values of their activation energies (obtained by the RIR method) were entered into the algorithm. The calculated value of the figure of merit (FOM) for all TL glow peaks determines the accuracy of the study [50]. The fit is satisfactory if the FOM values are between 0.0 and 2.5 percent, 2.5 and 3.5 percent is minor fit, and >3.5% is bad fit.

## 4. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Kron, T. Thermoluminescence dosimetry and its applications in medicine-Part 1: Physics, materials and equipment. Australas. Phys. Eng. Sci. Med.
**1994**, 17, 175–199. [Google Scholar] [PubMed] - Moscovitch, M.; John, T.J.; Cassata, J.R.; Blake, P.K.; Rotunda, J.E.; Ramlo, M.; Velbeck, K.J.; Luo, L.Z. The application of LiF:Mg,Cu,P to large scale personnel dosimetry: Current status and future directions. Radiat. Prot. Dosim.
**2006**, 119, 248–254. [Google Scholar] [CrossRef] - Chand, S.; Mehra, R.; Chopra, V. Recent developments in phosphate materials for their thermoluminescence dosimeter (TLD) applications. Luminescence
**2021**, 36, 1808–1817. [Google Scholar] [CrossRef] - Saleh, H.M.; Salman, A.A.; Faheim, A.A.; El-Sayed, A.M. Polymer and polymer waste composites in nuclear and industrial applications. J. Nucl. Energy Sci. Power Gener. Technol.
**2020**, 9, 1000199. [Google Scholar] - Saleh, H.M.; Salman, A.A.; Faheim, A.A.; El-Sayed, A.M. Sustainable composite of improved lightweight concrete from cement kiln dust with grated poly (styrene). J. Clean. Prod.
**2020**, 277, 123491. [Google Scholar] [CrossRef] - Dawoud, M.M.A.; Hegazi, M.M.; Saleh, H.M.; El Helew, W.K. Removal of stable and radio isotopes from wastewater by using modified microcrystalline cellulose based on Taguchi L16. Int. J. Environ. Sci. Technol.
**2022**, 1–12. [Google Scholar] [CrossRef] - Dawoud, M.M.A.; Hegazy, M.M.; Helew, W.K.; Saleh, H.M. Overview of Environmental Pollution and Clean Management of Heavy Metals and Radionuclides by using Microcrystalline Cellulose. J. Nucl. Ene. Sci. Power Gener. Technol.
**2021**, 3, 2. [Google Scholar] - Saleh, H.M.; Bondouk, I.I.; Salama, E.; Esawii, H.A. Consistency and shielding efficiency of cement-bitumen composite for use as gamma-radiation shielding material. Prog. Nucl. Energy
**2021**, 137, 103764. [Google Scholar] [CrossRef] - Reda, S.M.; Saleh, H.M. Calculation of the gamma radiation shielding efficiency of cement-bitumen portable container using MCNPX code. Prog. Nucl. Energy
**2021**, 142, 104012. [Google Scholar] [CrossRef] - Eid, M.S.; Bondouk, I.I.; Saleh, H.M.; Omar, K.M.; Sayyed, M.I.; El-Khatib, A.M.; Elsafi, M. Implementation of waste silicate glass into composition of ordinary cement for radiation shielding applications. Nucl. Eng. Technol.
**2021**, 54, 1456–1463. [Google Scholar] [CrossRef] - Eskander, S.B.; Saleh, H.M.; Tawfik, M.E.; Bayoumi, T.A. Towards potential applications of cement-polymer composites based on recycled polystyrene foam wastes on construction fields: Impact of exposure to water ecologies. Case Stud. Constr. Mater.
**2021**, 15, e00664. [Google Scholar] [CrossRef] - Saleh, H.M.; Eskander, S.B. Impact of water flooding on hard cement-recycled polystyrene composite immobilizing radioactive sulfate waste simulate. Constr. Build. Mater.
**2019**, 222, 522–530. [Google Scholar] [CrossRef] - Saleh, H.M.; El-Saied, F.A.; Salaheldin, T.A.; Hezo, A.A. Influence of severe climatic variability on the structural, mechanical and chemical stability of cement kiln dust-slag-nanosilica composite used for radwaste solidification. Constr. Build. Mater.
**2019**, 218, 556–567. [Google Scholar] [CrossRef] - Saleh, H.M.; El-Sheikh, S.M.; Elshereafy, E.E.; Essa, A.K. Performance of cement-slag-titanate nanofibers composite immobilized radioactive waste solution through frost and flooding events. Constr. Build. Mater.
**2019**, 223, 221–232. [Google Scholar] [CrossRef] - Saleh, H.M.; Salman, A.A.; Faheim, A.A.; El-Sayed, A.M. Influence of aggressive environmental impacts on clean, lightweight bricks made from cement kiln dust and grated polystyrene. Case Stud. Constr. Mater.
**2021**, 15, e00759. [Google Scholar] [CrossRef] - Preusser, F.; Chithambo, M.L.; Götte, T.; Martini, M.; Ramseyer, K.; Sendezera, E.J.; Susino, G.J.; Wintle, A.G. Quartz as a natural luminescence dosimeter. Earth Sci. Rev.
**2009**, 97, 184–214. [Google Scholar] [CrossRef] - Thamóné Bozsó, E.; Füri, J.; Kovács István, J.; Biró, T.; Király, E.; Nagy, A.; Törökné Sinka, M.; Kónya, P.; Mészárosné Turi, J.; Vígh, C. Characteristics of quartz separates of different formations in Hungary from the aspect of osl dating. Foldt. Kozlony
**2020**, 150, 61. [Google Scholar] [CrossRef] [Green Version] - Bailiff, I.K.; Stepanenko, V.F.; Göksu, H.Y.; Bøtter-Jensen, L.; Brodski, L.; Chumak, V.; Correcher, V.; Delgado, A.; Golikov, V.; Jungner, H.; et al. Comparison of retrospective luminescence dosimetry with computational modeling in two highly contaminated settlements downwind of the chernobyl NPP. Health Phys.
**2004**, 86, 25–41. [Google Scholar] [CrossRef] - Beneitez, P.; Correcher, V.; Millán, A.; Calderón, T. Thermoluminescence analysis for testing the irradiation of spices. J. Radioanal. Nucl. Chem. Artic.
**1994**, 185, 401–410. [Google Scholar] [CrossRef] - Soliman, C.; Salama, E. Investigation on the suitability of natural sandstone as a gamma dosimeter. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At.
**2009**, 267, 3323–3327. [Google Scholar] [CrossRef] - Salama, E. Egyptian limestone for gamma dosimetry: An electron paramagnetic resonance study. Radiat. Eff. Defects Solids
**2014**, 169, 325–333. [Google Scholar] [CrossRef] - El-Faramawy, N.; Alazab, H.A.; Gad, A.; Sabry, M. Study of the thermoluminescence kinetic parameters of a β-irradiated natural calcite. Radiat. Phys. Chem.
**2022**, 190, 109793. [Google Scholar] [CrossRef] - Almuqrin, A.; Soliman, C.; ELShokrof, K.; Aloraini, D. Tuff rock as a new thermoluminescent material for gamma dosimetry. Asian J. Sci. Res.
**2018**, 11, 126–133. [Google Scholar] [CrossRef] - DeMouthe, J.F. Natural materials: Sources, properties, and uses. Rocks Miner.
**2006**, 81, 3972006. [Google Scholar] - Aloraini, D.A. Sensitization of natural rhyolite rock using high gamma doses for thermoluminescence dosimetry. Luminescence
**2020**, 35, 1043–1047. [Google Scholar] [CrossRef] - Azorín, J.; Furetta, C.; Scacco, A. Preparation and properties of thermoluminescent materials. Phys. Stat. Solidi
**1993**, 138, 9–46. [Google Scholar] [CrossRef] - Lutterotti, L. Total pattern fitting for the combined size-strain-stress-texture determination in thin film diffraction. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At.
**2010**, 268, 334–340. [Google Scholar] [CrossRef] - Harlow, G.E. The anorthoclase structures: The effects of temperature and composition. Am. Mineral.
**1982**, 67, 975–996. [Google Scholar] - Bailey, S.W. Refinement of an intermediate microcline structure. Am. Mineral.
**1969**, 54, 1540–1545. [Google Scholar] - Levien, L.; Prewitt, C.T.; Weidner, D.J.; Prewir, C.T.; Weidner, D.J. Structure and Elastic Properties of Quartz at Pressure. Am. Mineral.
**1980**, 65, 920–930. [Google Scholar] - El Makhloufy, S.; Tridane, M.; Majdi, E.M.; Marouani, H.; Zerraf, S.; Belhabra, M.; Cherqaoui, A.; Belaaouad, S. Chemical preparation, thermal behavior and infrared studies of the new cyclotriphosphate tetrahydrate of manganese and distrontium, MnSr2(P3O9)2.4H2O. Mediterr. J. Chem.
**2019**, 9, 280–289. [Google Scholar] [CrossRef] [Green Version] - Liang, Y.; Ouyang, J.; Wang, H.; Wang, W.; Chui, P.; Sun, K. Synthesis and characterization of core-shell structured SiO
_{2}@YVO_{4}:Yb^{3+},Er^{3+}microspheres. Appl. Surf. Sci.**2012**, 58, 3689–3694. [Google Scholar] [CrossRef] - Mozgawa, W.; Król, M.; Dyczek, J.; Deja, J. Investigation of the coal fly ashes using IR spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc.
**2014**, 132, 889–894. [Google Scholar] [CrossRef] - Moenke, H.H.W. Silica, the Three-dimensional Silicates, Borosilicates and Beryllium Silicates. In The Infrared Spectra of Minerals; Mineralogical Society of Great Britain and Ireland: Oxford, UK, 2015. [Google Scholar]
- Treto-Suárez, M.A.; Prieto-García, J.O.; Mollineda-Trujillo, Á.; Lamazares, E.; Hidalgo-Rosa, Y.; Mena-Ulecia, K. Kinetic study of removal heavy metal from aqueous solution using the synthetic aluminum silicate. Sci. Rep.
**2020**, 10, 10836. [Google Scholar] [CrossRef] - Mandal, A.K.; Agrawal, D.; Sen, R. Preparation of homogeneous barium borosilicate glass using microwave energy. J. Non. Cryst. Solids
**2013**, 371, 41–46. [Google Scholar] [CrossRef] - Study, S.; Consumption, L.E.; Part, D.U.; Utilization, D.; Yoshizawa, N.; Harimoto, K.; Ichihara, M.; Miki, Y.; Takase, K.; Inoue, T. Synthesis, Characterization and Bioactive Study of Borosilicate Sol-Gel Glass Khairy. Nat. Sci.
**2015**, 13, 475–476. [Google Scholar] - Rada, S.; Dehelean, A.; Culea, E. FTIR and UV-VIS spectroscopy investigations on the structure of the europium-lead-tellurate glasses. J. Non. Cryst. Solids
**2011**, 357, 3070–3073. [Google Scholar] [CrossRef] - Bos, A.J.J.; Vijverberg, R.N.M.; Piters, T.M.; McKeever, S.W.S. Effects of Cooling and Heating Rate on Trapping Parameters in LiF: Mg, Ti Crystals. J. Phys. D Appl. Phys.
**1992**, 25, 1249–1257. [Google Scholar] [CrossRef] - Amer, H.A.; Elashmawy, M.M.; Alazab, H.A.; Ezz El-Din, M.R. Suitability of pure nano crystalline LiF as a TLD dosimeter for high dose gamma radiation. Nucl. Technol. Radiat. Prot.
**2018**, 33, 93–99. [Google Scholar] [CrossRef] [Green Version] - Chen, R.; McKeever, S.W.S. Characterization of nonlinearities in the dose dependence of thermoluminescence. Radiat. Meas.
**1994**, 23, 667–673. [Google Scholar] [CrossRef] - Horowitz, Y.S.; Oster, L.; Datz, H. The thermoluminescence dose-response and other characteristics of the high-temperature TL in LiF:Mg,Ti (TLD-100). Radiat. Prot. Dosim.
**2007**, 124, 191–205. [Google Scholar] [CrossRef] - Attix, F.H. Further consideration of the track-interaction model for thermoluminescence in LiF(TLD-100). J. Appl. Phys.
**1975**, 46, 81–88. [Google Scholar] [CrossRef] - Chen, R.; Pagonis, V.; Lawless, J.L. Evaluated thermoluminescence trapping parameters-What do they really mean? Radiat. Meas.
**2016**, 91, 21–27. [Google Scholar] [CrossRef] - Furetta, C.; Prokic, M.; Salamon, R.; Prokic, V.; Kitis, G. Dosimetric characteristics of tissue equivalent thermoluminescent solid TL detectors based on lithium borate. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip.
**2001**, 456, 411–417. [Google Scholar] [CrossRef] - Jose, M.T.; Anishia, S.R.; Annalakshmi, O.; Ramasamy, V. Determination of thermoluminescence kinetic parameters of thulium doped lithium calcium borate. Radiat. Meas.
**2011**, 46, 1026–1032. [Google Scholar] [CrossRef] - Garlick, G.F.J.; Gibson, A.F. The electron trap mechanism of luminescence in sulphide and silicate phosphors. Proc. Phys. Soc.
**1948**, 60, 574–590. [Google Scholar] [CrossRef] - Kitis, G.; Gomez-Ros, J.M.; Tuyn, J.W.N. Thermoluminescence glow-curve deconvolution functions for first, second and general orders of kinetics. J. Phys. D. Appl. Phys.
**1998**, 31, 2636–2641. [Google Scholar] [CrossRef] - Chung, K.S.; Choe, H.S.; Lee, J.I.; Kim, J.L.; Chang, S.Y. A computer program for the deconvolution of thermoluminescence glow curves. Radiat. Prot. Dosim.
**2005**, 115, 345–349. [Google Scholar] [CrossRef] - Balian, H.G.; Eddy, N.W. Figure-of-merit (FOM), an improved criterion over the normalized chi-squared test for assessing goodness-of-fit of gamma-ray spectral peaks. Nucl. Instrum. Methods
**1977**, 145, 389–395. [Google Scholar] [CrossRef]

**Figure 4.**Thermoluminescence glow curve of 50 Gy gamma irradiated natural rhyolite disk heated at 3 °C/s heating rate.

**Figure 5.**The effect of heating rate on the thermoluminescence glow curve of 50 Gy gamma irradiated natural rhyolite.

**Figure 13.**Glow curve deconvolution of natural rhyolite at 3 °C/s heating rate and irradiated by 50 Gy.

Peak Number | Peak Temperature | RIR Method | CGCD Method | ||
---|---|---|---|---|---|

(°C) | E (eV) | E (eV) | s (s^{−1}) | b | |

1 | 142 | 0.77 ± 0.01 | 0.78 ± 0.02 | 4.60 × 10^{8} | 1.07 |

2 | 176 | 0.86 ± 0.01 | 0.87 ± 0.02 | 8.29 × 10^{8} | 1.41 |

3 | 221 | 1.01 ± 0.01 | 1.02 ± 0.05 | 3.02 × 10^{9} | 2.04 |

4 | 298 | 0.99 ± 0.00 | 0.98 ± 0.01 | 4.46 × 10^{7} | 1.66 |

5 | 355 | 1.78 ± 0.01 | 1.76 ± 0.02 | 2.00 × 10^{13} | 2.02 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Salama, E.; Aloraini, D.A.; El-Khateeb, S.A.; Moustafa, M.
Rhyolite as a Naturally Sustainable Thermoluminescence Material for Dose Assessment Applications. *Sustainability* **2022**, *14*, 6918.
https://doi.org/10.3390/su14116918

**AMA Style**

Salama E, Aloraini DA, El-Khateeb SA, Moustafa M.
Rhyolite as a Naturally Sustainable Thermoluminescence Material for Dose Assessment Applications. *Sustainability*. 2022; 14(11):6918.
https://doi.org/10.3390/su14116918

**Chicago/Turabian Style**

Salama, Elsayed, Dalal A. Aloraini, Sara A. El-Khateeb, and Mohamed Moustafa.
2022. "Rhyolite as a Naturally Sustainable Thermoluminescence Material for Dose Assessment Applications" *Sustainability* 14, no. 11: 6918.
https://doi.org/10.3390/su14116918