The Sustainability of Rock Art: Preservation and Research
Abstract
:1. Introduction
2. The Fragility of the Rock Art Ecosystem and the Challenge of Sustainability
3. Processes Affecting Rock Art Stability
3.1. Natural Processes
3.2. Human-Related Processes
- Rock art sites are often places where people live or at least spend part of their life, conducting activities that can have long-term and cumulative negative impacts on rock art. The use of fire and the continuous touch or rubbing of humans and/or animals on rock art panels result in the formation of patination that may cover the original painting or contribute to their deterioration [94,95]. Additionally, the presence of domestic animals can disturb rock art, influencing the humidity and/or chemical composition of the atmosphere in correspondence with the rock wall.
- Many different processes related to economic development can negatively impact rock art sites with different degrees of damage. Oil exploitation, mining, building, and infrastructures are only a few examples of the anthropogenic processes that can accelerate the degradation or even cause the destruction of rock art contexts in the open air. The effects of oil prospections can accelerate the cracking of the host rock surfaces, whereas mining, buildings, and infrastructure can cause the removal, displacement, and destruction of rock art panels [96,97].
- The lack of adequate management of rock art sites associated with unsustainable tourism can also dramatically impact rock art. The absence of protections distancing visitors, visitor centers, or informative panels open the way to inappropriate site visits, increasing the risk of touching, wetting, and vandalism to the rock art (e.g., [86]).
- Improper recording and restoring/conservation processes can significantly impact rock art. Invasive techniques of recording by direct contact and rubbing of paintings and engravings surfaces conducted by researchers contribute to the fading and vanishing of painted motifs, the alteration of carvings, and the damage of rock surfaces [98,99]. These actions can also be combined with other processes, such as enhancing the contrast between a pictograph and its rock substrate by wetting the rock surface with water or other liquids [100] or inadequate attempts to obtain casts of the petroglyphs. The former causes the fading and vanishing of paintings, whereas the latter results in the deterioration of the rock surface, the partial removal of the original rock varnish, and possibly the permanent littering of the rock. Furthermore, the use of chemical products (e.g., Paraloid B-72) to consolidate rock and painting surfaces can result in a darker tone in the color of the painting and rock surface and a crust effect, increasing the risk of surface spalling [101].
4. Methods for Investigation of Rock Art
5. Non-Invasive or Micro-Invasive Methods?
6. Rock Art between Sustainability of Research and Responsible Tourism
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cremaschi, M.; Pizzi, C.; Zerboni, A. L’arte rupestre del Tadrart Acacus: Testimone e vittima dei cambiamenti climatici. In La Memoria dell’Arte. Le Pitture Rupestri Dell’Acacus Tra Passato e Futuro; di Lernia, S., Zampetti, D., Eds.; Edizioni All’Insegna del Giglio: Firenze, Italy, 2008; pp. 361–369. [Google Scholar]
- Zerboni, A.; Cremaschi, M. The role of climate and bio-geomorphology in the degradation and conservation of Saharan rock art. In Atlas of Rock Art of the Tadrart Acacus; di Lernia, S., Gallinaro, M., Eds.; Edizioni All’Insegna del Giglio: Firenze, Italy, 2022. [Google Scholar]
- Guagnin, M.; Jennings, R.; Eager, H.; Parton, A.; Stimpson, C.; Stepanek, C.; Pfeiffer, M.; Groucutt, H.S.; Drake, N.A.; Alsharekh, A.; et al. Rock art imagery as a proxy for Holocene environmental change: A view from Shuwaymis, NW Saudi Arabia. Holocene 2016, 26, 1822–1834. [Google Scholar] [CrossRef]
- David, B.; Geneste, J.M.; Petchey, F.; Delannoy, J.J.; Barker, B.; Eccleston, M. How old are Australia’s pictographs? A review of rock art dating. J. Archaeol. Sci. 2013, 40, 3–10. [Google Scholar] [CrossRef]
- Gallinaro, M.; Zerboni, A. Rock, pigments, and weathering. A preliminary assessment of the challenges and potential of physical and biochemical studies on rock art from southern Ethiopia. Quat. Int. 2021, 572, 41–51. [Google Scholar] [CrossRef]
- Richter, D.D.; Mobley, M.L. Monitoring Earth’s Critical Zone. Science 2009, 326, 1067–1068. [Google Scholar] [CrossRef]
- Clottes, J. Rock art: An endangered heritage worldwide. J. Anthropol. Res. 2008, 64, 1–18. [Google Scholar] [CrossRef]
- Agnew, N.; Deacon, J.; Hall, N.; Little, T.; Sullivan, S.; Taçon, P. A Cultural Treasure at Risk; Getty Conservation Institute: Los Angeles, CA, USA, 2015. [Google Scholar]
- Darvill, T.; Batarda Fernandes, A.P. Open-Air Rock-Art Preservation and Conservation: A Current State of Affairs; Routledge: New York, NY, USA, 2014. [Google Scholar]
- Liritzis, I. STEMAC (science, technology, engineering, mathematics for arts & culture): The emergence of a new pedagogical discipline. Sci. Cult. 2018, 4, 73–76. [Google Scholar] [CrossRef]
- Albertano, P.; Bruno, L. The importance of light in the conservation of hypogean monuments. In Molecular Biology and Cultural Heritage; Saiz-Jimenez, C., Ed.; Balkema: Lisse, The Netherlands, 2003; pp. 171–177. [Google Scholar]
- Bastian, F.; Alabouvette, C. Lights and shadows on the conservation of a rock art cave: The case of Lascaux Cave. Int. J. Speleol. 2009, 38, 55–60. [Google Scholar] [CrossRef]
- Hoyos, M.; Cañaveras, J.C.; Sánchez-Moral, S.; Sanz-Rubio, E.; Soler, V. Microclimatic characterization of a karstic cave: Human impact on microenvironmental parameters of a prehistoric rock art cave (Candamo Cave, northern Spain). Environ. Geol. 1998, 33, 231–242. [Google Scholar] [CrossRef]
- Mangin, A.; Bourges, F.; d’Hulst, D. La conservation des grottes ornées: Un problème de stabilité d’un système naturel (l’exemple de la grotte préhistorique de Gargas, Pyrénées françaises). Comptes Rendus l’Académie des Sci.-Ser. IIA-Earth Planet. Sci. 1999, 328, 295–301. [Google Scholar] [CrossRef]
- Denis, A.; Lastennet, R.; Huneau, F.; Malaurent, P. Identification of functional relationships between atmospheric pressure and CO2 in the cave of Lascaux using the concept of entropy of curves. Geophys. Res. Lett. 2005, 32, 1–4. [Google Scholar] [CrossRef]
- Saiz-Jimenez, C.; Cuezva, S.; Jurado, V.; Fernandez-Cortes, A.; Porca, E.; Benavente, D.; Cañaveras, J.C.; Sanchez-Moral, S. Paleolithic art in peril: Policy and science collide at altamira cave. Science 2011, 334, 42–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Grieken, R.; Delalieux, F.; Gysels, K. Cultural heritage and the environment. Pure Appl. Chem. 1998, 70, 2327–2331. [Google Scholar] [CrossRef] [Green Version]
- Dupont, J.; Jacquet, C.; Dennetière, B.; Lacoste, S.; Bousta, F.; Orial, G.; Cruaud, C.; Couloux, A.; Roquebert, M.-F. Invasion of the French Paleolithic painted cave of Lascaux by members of the Fusarium solani species complex. Mycologia 2007, 99, 526–533. [Google Scholar] [CrossRef] [PubMed]
- Lacanette, D.; Large, D.; Ferrier, C.; Aujoulat, N.; Bastian, F.; Denis, A.; Jurado, V.; Kervazo, B.; Konik, S.; Lastennet, R.; et al. A laboratory cave for the study of wall degradation in rock art caves: An implementation in the Vézère area. J. Archaeol. Sci. 2013, 40, 894–903. [Google Scholar] [CrossRef]
- Malaurent, P.; Brunet, J.; Lacanette, D.; Caltagirone, J.-P. Contribution of numerical modelling of environmental parameters to the conservation of prehistoric cave paintings: The example of Lascaux Cave. Conserv. Manag. Archaeol. Sites 2006, 8, 59–76. [Google Scholar] [CrossRef]
- Hong, C.-R. Study on Cave Environment Features and Preservation Methodologies. J. Korean Speleol. Soc. 2006, 71, 31–34. [Google Scholar]
- Moldovan, O.T.; Kováč, Ľ.; Stuart, H. (Eds.) Cave Ecology; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Hershey, O.S.; Barton, H.A. The Microbial Diversity of Caves; Moldovan, O.T., Kováč, Ľ., Stuart, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 69–90. [Google Scholar]
- Bastian, F.; Jurado, V.; Nováková, A.; Alabouvette, C.; Saiz-Jimenez, C. The microbiology of Lascaux Cave. Microbiology 2010, 156, 644–652. [Google Scholar] [CrossRef] [Green Version]
- Schabereiter-Gurtner, C.; Saiz-Jimenez, C.; Piñar, G.; Lubitz, W.; Rölleke, S. Altamira cave Paleolithic paintings harbor partly unknown bacterial communities. FEMS Microbiol. Lett. 2002, 211, 7–11. [Google Scholar] [CrossRef] [Green Version]
- Schabereiter-Gurtner, C.; Saiz-Jimenez, C.; Piñar, G.; Lubitz, W.; Rölleke, S. Phylogenetic diversity of bacteria associated with Paleolithic paintings and surrounding rock walls in two Spanish caves (Llonín and La Garma). FEMS Microbiol. Ecol. 2004, 47, 235–247. [Google Scholar] [CrossRef]
- Wu, Y.-L.; Villa, F.; Mugnai, G.; Gallinaro, M.; Spinapolice, E.E.; Zerboni, A. Geomicrobial Investigations of Colored Outer Coatings from an Ethiopian Rock Art Gallery. Coatings 2020, 10, 536. [Google Scholar] [CrossRef]
- Nir, I.; Barak, H.; Kramarsky-Winter, E.; Kushmaro, A.; de los Ríos, A. Microscopic and biomolecular complementary approaches to characterize bioweathering processes at petroglyph sites from the Negev Desert, Israel. Environ. Microbiol. 2021, 24, 967–980. [Google Scholar] [CrossRef] [PubMed]
- Aubert, M.; Brumm, A.; Taçon, P.S.C. The timing and nature of human colonization of southeast asia in the late pleistocene a rock art perspective. Curr. Anthropol. 2017, 58, S553–S566. [Google Scholar] [CrossRef] [Green Version]
- Zerboni, A. Rock art from the central Sahara (Libya): A geoarchaeological and palaeoenvironmental perspective. In The Signs of Which Times? Chronological and Palaeoenvironmental Issues in the Rock Art of Northern Africa; Huyge, D., van Noten, F., Swinne, D., Eds.; Royal Academy for Overseas Sciences: Brussels, Belgium, 2012; pp. 175–195. [Google Scholar]
- Guagnin, M. Animal engravings in the central Sahara: A proxy of a proxy. Environ. Archaeol. 2015, 20, 52–65. [Google Scholar] [CrossRef]
- McDonald, J. I must go down to the seas again: Or, what happens when the sea comes to you? Murujuga rock art as an environmental indicator for Australia’s north-west. Quat. Int. 2015, 385, 124–135. [Google Scholar] [CrossRef]
- Zerboni, A.; Esposti, M.D.; Wu, Y.-L.; Brandolini, F.; Mariani, G.S.; Villa, F.; Lotti, P.; Cappitelli, F.; Sasso, M.; Rizzi, A.; et al. Age, palaeoenvironment, and preservation of prehistoric petroglyphs on a boulder in the oasis of Salut (northern Sultanate of Oman). Quat. Int. 2021, 572, 106–119. [Google Scholar] [CrossRef]
- Dorn, R.I.; Whitley, D.S.; Cerveny, N.V.; Gordon, S.J.; Allen, C.D.; Gutbrod, E. The Rock Art Stability Index. Herit. Manag. 2008, 1, 37–70. [Google Scholar] [CrossRef]
- Huyge, D.; Vandenberghe, D.A.G.; De Dapper, M.; Mees, F.; Claes, W.; Darnell, J.C. First evidence of Pleistocene rock art in North Africa: Securing the age of the Qurta petroglyphs (Egypt) through OSL dating. Antiquity 2011, 85, 1184–1193. [Google Scholar] [CrossRef]
- Jennings, R.P.; Shipton, C.; Al-Omari, A.; Alsharekh, A.M.; Crassard, R.; Groucutt, H.; Petraglia, M.D. Rock art landscapes beside the Jubbah palaeolake, Saudi Arabia. Antiquity 2013, 87, 666–683. [Google Scholar] [CrossRef] [Green Version]
- Guagnin, M.; Jennings, R.P.; Clark-Balzan, L.; Groucutt, H.S.; Parton, A.; Petraglia, M.D. Hunters and herders: Exploring the Neolithic transition in the rock art of Shuwaymis, Saudi Arabia. Archaeol. Res. Asia 2015, 4, 3–16. [Google Scholar] [CrossRef]
- Guagnin, M.; Shipton, C.; Al-Rashid, M.; Moussa, F.; El-Dossary, S.; Sleimah, M.B.; Alsharekh, A.; Petraglia, M. An illustrated prehistory of the Jubbah oasis: Reconstructing Holocene occupation patterns in north-western Saudi Arabia from rock art and inscriptions. Arab. Archaeol. Epigr. 2017, 28, 138–152. [Google Scholar] [CrossRef]
- Guagnin, M.; Shipton, C.; el-Dossary, S.; al-Rashid, M.; Moussa, F.; Stewart, M.; Ott, F.; Alsharekh, A.; Petraglia, M.D. Rock art provides new evidence on the biogeography of kudu (Tragelaphus imberbis), wild dromedary, aurochs (Bos primigenius) and African wild ass (Equus africanus) in the early and middle Holocene of north-western Arabia. J. Biogeogr. 2018, 45, 727–740. [Google Scholar] [CrossRef]
- Mayewski, P.A.; Rohling, E.E.; Stager, J.C.; Karlén, W.; Maasch, K.A.; Meeker, L.D.; Meyerson, E.A.; Gasse, F.; van Kreveld, S.; Holmgren, K.; et al. Holocene climate variability. Quat. Res. 2004, 62, 243–255. [Google Scholar] [CrossRef]
- Slaymaker, O.; Spencer, T.; Embleton-Hamann, C. (Eds.) Geomorphology and Global Environmental Change; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Dorn, R.I.; Gordon, S.J.; Allen, C.D.; Cerveny, N.; Dixon, J.C.; Groom, K.M.; Hall, K.; Harrison, E.; Mol, L.; Paradise, T.R.; et al. The role of fieldwork in rock decay research: Case studies from the fringe. Geomorphology 2013, 200, 59–74. [Google Scholar] [CrossRef]
- Allen, P.A. Earth Surface Processes; John Wiley & Sons: Hoboken, NJ, USA, 1997. [Google Scholar]
- Erhart, H. Lagenèsedessolsentant quephénomènegéologique. Esquissed’Unethéoriegéologique Etgéochimique BiostasieetRhexistasie. ColLEvolution desSciences; MassonetCie: Paris, France, 1956. [Google Scholar]
- Peña-Monné, J.L.; Sampietro-Vattuone, M.M.; Báez, W.A.; García-Giménez, R.; Stábile, F.M.; Martínez Stagnaro, S.Y.; Tissera, L.E. Sandstone weathering processes in the painted rock shelters of Cerro Colorado (Córdoba, Argentina). Geoarchaeology 2022, 37, 332–349. [Google Scholar] [CrossRef]
- Vincente, M.A.; Garcia-Talegon, J.; Inigo, A.C.; Molina, E.; Rives, V. Weathering mechanisms of silicated rocks in continental environments. In Proceedings of the Conservation of Stone and Other Materials: Proceedings of the International RILEM/UNESCO, UNESCO Headquarters, Paris, France, 29 June–1 July 1993; E. & F.N. Spon Ltd.: London, UK, 1993. [Google Scholar]
- Zerboni, A.; Perego, A.; Cremaschi, M. Geomorphological Map of the Tadrart Acacus Massif and the Erg Uan Kasa (Libyan Central Sahara). J. Maps 2015, 11, 772–787. [Google Scholar] [CrossRef] [Green Version]
- di Lernia, S.; Bruni, S.; Cislaghi, I.; Cremaschi, M.; Gallinaro, M.; Gugliemi, V.; Mercuri, A.M.; Poggi, G.; Zerboni, A. Colour in context. Pigments and other coloured residues from the Early-Middle Holocene site of Takarkori (SW Libya). Archaeol. Anthropol. Sci. 2016, 8, 381–402. [Google Scholar] [CrossRef]
- Cremaschi, M.; Zerboni, A.; Mercuri, A.M.; Olmi, L.; Biagetti, S.; di Lernia, S. Takarkori rock shelter (SW Libya): An archive of holocene climate and environmental changes in the central sahara. Quat. Sci. Rev. 2014, 101, 36–60. [Google Scholar] [CrossRef]
- Hall, K.; Thorn, C.; Sumner, P. On the persistence of “weathering”. Geomorphology 2012, 149–150, 1–10. [Google Scholar] [CrossRef]
- Carroll, D. Rock Weathering; Plenum Press: New York, NY, USA; London, UK, 1970. [Google Scholar]
- Bland, W.J.; Rolls, D. Weathering: An Introduction to the Scientific Principles; Routledge: London, UK, 1998. [Google Scholar]
- Zerboni, A.; Nicoll, K. Enhanced zoogeomorphological processes in North Africa in thehuman-impacted landscapes of the Anthropocene. Geomorphology 2019, 331, 22–35. [Google Scholar] [CrossRef]
- Golubic, S.; Friedmann, E.I.; Schneider, J. The lithobiontic ecological niche, with special reference to microorganisms. J. Sediment. Res. 1981, 51, 475–478. [Google Scholar] [CrossRef]
- Villa, F.; Stewart, P.S.; Klapper, I.; Jacob, J.M.; Cappitelli, F. Subaerial Biofilms on Outdoor Stone Monuments: Changing the Perspective Toward an Ecological Framework. Bioscience 2016, 66, 285–294. [Google Scholar] [CrossRef] [Green Version]
- Villa, F.; Cappitelli, F. The ecology of subaerial biofilms in dry and inhospitable terrestrial environments. Microorganisms 2019, 7, 380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Negi, A.; Sarethy, I.P. Microbial Biodeterioration of Cultural Heritage: Events, Colonization, and Analyses. Microb. Ecol. 2019, 78, 1014–1029. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Koestler, R.J.; Warscheid, T.; Katayama, Y.; Gu, J.-D. Microbial deterioration and sustainable conservation of stone monuments and buildings. Nat. Sustain. 2020, 3, 991–1004. [Google Scholar] [CrossRef]
- Pinna, D. Biofilms and lichens on stone monuments: Do they damage or protect? Front. Microbiol. 2014, 5, 133. [Google Scholar] [CrossRef]
- Gadd, G.M.; Dyer, T.D. Bioprotection of the built environment and cultural heritage. Microb. Biotechnol. 2017, 10, 1152–1156. [Google Scholar] [CrossRef] [Green Version]
- Dorn, R.I.; Dorn, J.; Harrison, E.; Gutbrod, E.; Gibson, S.; Larson, P.; Cerveny, N.; Lopat, N.; Groom, K.M.; Allen, C.D. Case Hardening Vignettes from the Western USA: Convergence of Form as a Result of Divergent Hardening Processes. Yearb. Assoc. Pacific Coast Geogr. 2012, 74, 53–75. [Google Scholar] [CrossRef]
- Viles, H.A.; Goudie, A.S. Biofilms and case hardening on sandstones from Al-Quwayra, Jordan. Earth Surf. Process. Landforms 2004, 29, 1473–1485. [Google Scholar] [CrossRef]
- Viles, H.A.; Cutler, N.A. Global environmental change and the biology of heritage structures. Glob. Chang. Biol. 2012, 18, 2406–2418. [Google Scholar] [CrossRef]
- Coombes, M.A.; Viles, H.A.; Zhang, H. Thermal blanketing by ivy (Hedera helix L.) can protect building stone from damaging frosts. Sci. Rep. 2018, 8, 9834. [Google Scholar] [CrossRef] [Green Version]
- Gulotta, D.; Villa, F.; Cappitelli, F.; Toniolo, L. Biofilm colonization of metamorphic lithotypes of a renaissance cathedral exposed to urban atmosphere. Sci. Total Environ. 2018, 639, 1480–1490. [Google Scholar] [CrossRef] [PubMed]
- Sanmartín, P.; Villa, F.; Cappitelli, F.; Balboa, S.; Carballeira, R. Characterization of a biofilm and the pattern outlined by its growth on a granite-built cloister in the Monastery of San Martiño Pinario (Santiago de Compostela, NW Spain). Int. Biodeterior. Biodegrad. 2020, 147, 104871. [Google Scholar] [CrossRef]
- Rodriguez-Navarro, C.; Jroundi, F.; Gonzalez-Muñoz, M.T. Stone Consolidation by Bacterial Carbonatogenesis: Evaluation of in situ Applications. Restor. Build. Monum. 2015, 21, 9–20. [Google Scholar] [CrossRef]
- Jroundi, F.; Schiro, M.; Ruiz-Agudo, E.; Elert, K.; Martín-Sánchez, I.; González-Muñoz, M.T.; Rodriguez-Navarro, C. Protection and consolidation of stone heritage by self-inoculation with indigenous carbonatogenic bacterial communities. Nat. Commun. 2017, 8, 279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jroundi, F.; Elert, K.; Ruiz-Agudo, E.; Gonzalez-Muñoz, M.T.; Rodriguez-Navarro, C. Bacterial Diversity Evolution in Maya Plaster and Stone Following a Bio-Conservation Treatment. Front. Microbiol. 2020, 11, 2824. [Google Scholar] [CrossRef]
- Favero-Longo, S.E.; Viles, H.A. A review of the nature, role and control of lithobionts on stone cultural heritage: Weighing-up and managing biodeterioration and bioprotection. World J. Microbiol. Biotechnol. 2020, 36, 100. [Google Scholar] [CrossRef]
- Ortega-Morales, B.O.; Gaylarde, C.C. Bioconservation of historic stone buildings—An updated review. Appl. Sci. 2021, 11, 5695. [Google Scholar] [CrossRef]
- Chen, J.; Blume, H.-P.; Beyer, L. Weathering of rocks induced by lichen colonization—A review. Catena 2000, 39, 121–146. [Google Scholar] [CrossRef]
- Mergelov, N.S.; Goryachkin, S.V.; Shorkunov, I.G.; Zazovskaya, E.P.; Cherkinsky, A.E. Endolithic pedogenesis and rock varnish on massive crystalline rocks in East Antarctica. Eurasian Soil Sci. 2012, 45, 901–917. [Google Scholar] [CrossRef]
- Dorn, R.I. Rock Coatings; Elsevier Science, B.V.: Amsterdam, The Netherlands, 1998. [Google Scholar]
- Zerboni, A. Holocene rock varnish on the Messak plateau (Libyan Sahara): Chronology of weathering processes. Geomorphology 2008, 102, 640–651. [Google Scholar] [CrossRef]
- Cremaschi, M. The rock varnish in the Messak Settafet (Fezzan, Libyan Sahara), age, archaeological context, and palaeoenvironmental implication. Geoarchaeology 1996, 11, 393–421. [Google Scholar] [CrossRef]
- Potter, R.M.; Rossman, G.R. Desert varnish: The importance of clay minerals. Science 1979, 196, 1446–1448. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Pabello, P.U.; Villalobos, C.; Sedov, S.; Solleiro-Rebolledo, E.; Solé, J.; Pi-Puig, T.; Chávez-Vergara, B.; Díaz-Ortega, J.; Gubin, A. Rock varnish as a natural canvas for rock art in La Proveedora, northwestern Sonoran Desert (Mexico): Integrating archaeological and geological evidences. Quat. Int. 2021, 572, 74–87. [Google Scholar] [CrossRef]
- Eisenberg-Degen, D.; Rosen, S. Chronological Trends in Negev Rock Art: The Har Michia Petroglyphs as a Test Case. Arts 2013, 2, 225–252. [Google Scholar] [CrossRef] [Green Version]
- Macholdt, D.S.; Jochum, K.P.; Al-Amri, A.; Andreae, M.O. Rock varnish on petroglyphs from the Hima region, southwestern Saudi Arabia: Chemical composition, growth rates, and tentative ages. Holocene 2019, 29, 1377–1395. [Google Scholar] [CrossRef]
- Andreae, M.O.; Al-Amri, A.; Andreae, T.W.; Garfinkel, A.; Haug, G.; Jochum, K.P.; Stoll, B.; Weis, U. Geochemical Studies on Rock Varnish and Petroglyphs in the Owens and Rose Valleys, California. PLoS ONE 2020, 15, e0235421. [Google Scholar] [CrossRef]
- Andreae, M.O.; Al-Amri, A.; Al-Jibrin, F.H.; Alsharekh, A.M. Iconographic and archaeometric studies on the rock art at Musayqira, Al-Quwaiyah Governorate, central Saudi Arabia. Arab. Archaeol. Epigr. 2021, 32, 153–182. [Google Scholar] [CrossRef]
- Guagnin, M.; Charloux, G.; AlSharekh, A.M.; Crassard, R.; Hilbert, Y.H.; Andreae, M.O.; AlAmri, A.; Preusser, F.; Dubois, F.; Burgos, F.; et al. Life-sized Neolithic camel sculptures in Arabia: A scientific assessment of the craftsmanship and age of the Camel Site reliefs. J. Archaeol. Sci. Rep. 2022, 42, 103165. [Google Scholar] [CrossRef]
- Andreae, M.O.; Andreae, T.W. Archaeometric studies on rock art at four sites in the northeastern Great Basin of North America. PLoS ONE 2022, 17, e0263189. [Google Scholar] [CrossRef]
- Higgins, H.C. Rock art vandalism: Causes and prevention. Vandal. Res. Prev. Soc. Policy 1992, 293, 221–232. [Google Scholar]
- Di Lernia, S.; Gallinaro, M.; Zerboni, A. UNESCO World Heritage Site vandalised: Report on damages to Acacus rock art (SW Libya). Sahara. Preist. Stor. Sahara 2010, 21, 59–76. [Google Scholar]
- Taruvinga, P.; Ndoro, W. The vandalism of the Domboshava rock painting site, Zimbabwe: Some reflections on approaches to heritage management. Conserv. Manag. Archaeol. Sites 2003, 6, 3–10. [Google Scholar] [CrossRef]
- Hachid, M. Rock art in danger: The case of the Saharan Atlas. Museum Int. 1985, 37, 32–37. [Google Scholar] [CrossRef]
- Bednarik, R.G. More on Rock Art Removal. S. Afr. Archaeol. Bull. 2008, 63, 82–84. [Google Scholar] [CrossRef]
- Yates, D.; Bērziņa, D.; Wright, A. Protecting a Broken Window: Vandalism and Security at Rural Rock Art Sites. Prof. Geogr. 2022, 74, 384–390. [Google Scholar] [CrossRef]
- Červíček, P.; Kortler, F. Rock art discoveries in the northern Yemen. Paideuma 1979, 25, 225–250. [Google Scholar]
- Holtorf, C. Can less be more? Heritage in the age of terrorism. Public Archaeol. 2006, 5, 101–109. [Google Scholar] [CrossRef]
- Suková, L. Pictures in place: A case study from Korosko (Lower Nubia). In Hunter-Gatherer and Early Food Producing Societies in Northeastern Africa (Studies in African Archaeology); Poznán Archaeological Museum: Poznán, Poland, 2015; pp. 120–143. [Google Scholar]
- Smith, D.C.; Bouchard, M.; Lorblanchet, M. An initial Raman microscopic investigation of prehistoric rock art in caves of the Quercy District, S.W. France. J. Raman Spectrosc. 1999, 30, 347–354. [Google Scholar] [CrossRef]
- Gunn, R.G. The impact of bushfires and fuel reduction burning on the preservation of shelter rock art. Rock Art Res. 2011, 28, 53–69. [Google Scholar]
- Anag, G.; Cremaschi, M.; di Lernia, S.; Liverani, M. Environment, Archaeology, and Oil: The Messak Settafet Rescue Operation (Libyan Sahara). Afr. Archaeol. Rev. 2002, 19, 67–73. [Google Scholar] [CrossRef]
- Klemm, R.; Klemm, D. Gold and Gold Mining in Ancient Egypt and Nubia: Geoarchaeology of the Ancient Gold Mining Sites in the Egyptian and Sudanese Eastern Deserts; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Loendorf, L. Rock art recording. In Handbook of Rock Art Research; Whitley, D.S., Ed.; Altamira Press: Lanham, MD, USA, 2001; pp. 55–79. [Google Scholar]
- Di Lernia, S.; Gallinaro, M. The Rock Art of the Acacus Mountains (SW Libya), between originals and copies. Sahara. Preist. Stor. Sahara 2009, 20, 13–30. [Google Scholar]
- Chaffee, S.D.; Hyman, M.; Rowe, M.W. Vandalism of rock art for enhanced photography. Stud. Conserv. 1994, 39, 161–168. [Google Scholar] [CrossRef]
- MacLeod, I. Rock art conservation and management: The past, present and future options. Stud. Conserv. 2000, 45, 32–45. [Google Scholar] [CrossRef]
- Liritzis, I.; Korka, E. Archaeometry’s role in cultural heritage sustainability and development. Sustainability 2019, 11, 1972. [Google Scholar] [CrossRef] [Green Version]
- Dayet, L.; dErrico, F.; Diez, M.G.; Zilhão, J. Critical evaluation of in situ analyses for the characterisation of red pigments in rock paintings: A case study from El Castillo, Spain. PLoS ONE 2022, 17, e0262143. [Google Scholar] [CrossRef] [PubMed]
- Domingo, I.; Gallinaro, M. Impacts of scientific approaches on rock art research: Global perspectives. Quat. Int. 2021, 572, 1–4. [Google Scholar] [CrossRef]
- Martinon-Torres, M.; Killick, D. Archaeological Theories and Archaeological Sciences. In The Oxford Handbook of Archaeological Theory; Gardner, A., Lake, M., Sommer, U., Eds.; Oxford University Press: Oxford, UK, 2015. [Google Scholar] [CrossRef]
- Sillar, B.; Tite, M.S. The challenge of ‘technological choices’ for materials science approaches in archaeology*. Archaeometry 2000, 42, 2–20. [Google Scholar] [CrossRef]
- Domingo, I.; Chieli, A. Characterizing the pigments and paints of prehistoric artists. Archaeol. Anthropol. Sci. 2021, 13, 196. [Google Scholar] [CrossRef]
- Dorn, R.I. Petroglyphs in Petrified Forest National Park: Role of rock coatings as agents of sustainability and as indicators of antiquity. Bull. Museum North. Arizona 2006, 63, 52–63. [Google Scholar]
- Watchman, A. Perspectives and potentials for absolute dating prehistoric rock paintings. Antiquity 1993, 67, 58–65. [Google Scholar] [CrossRef]
- Bednarik, R.G. The dating of rock art: A critique. J. Archaeol. Sci. 2002, 29, 1213–1233. [Google Scholar] [CrossRef] [Green Version]
- Bednarik, R.G. Direct dating of chinese immovable cultural heritage. Quaternary 2021, 4, 42. [Google Scholar] [CrossRef]
- Jalandoni, A.; Domingo, I.; Taçon, P.S.C. Testing the value of low-cost Structure-from-Motion (SfM) photogrammetry for metric and visual analysis of rock art. J. Archaeol. Sci. Rep. 2018, 17, 605–616. [Google Scholar] [CrossRef]
- Peña-Villasenín, S.; Gil-Docampo, M.; Ortiz-Sanz, J. Professional SfM and TLS vs. a simple SfM photogrammetry for 3D modelling of rock art and radiance scaling shading in engraving detection. J. Cult. Herit. 2019, 37, 238–246. [Google Scholar] [CrossRef]
- Degli Esposti, M.; Brandolini, F.; Zerboni, A. 3D Digital Documentation of Archaeological Features, A Powerful Tool for Research and Dissemination. Case Studies from the Oasis of Salūt (Sultanate of Oman). J. Oman Stud. 2021, 22, 214–227. [Google Scholar]
- Mol, L.; Clarke, L. Integrating structure-from-motion photogrammetry into rock weathering field methodologies. Earth Surf. Process. Landforms 2019, 44, 2671–2684. [Google Scholar] [CrossRef]
- Groom, K.M.; Cerveny, N.V.; Allen, C.D.; Dorn, R.I.; Theuer, J. Protecting stone heritage in the painted desert: Employing the rock art stability index in the petrified forest national park, Arizona. Heritage 2019, 2, 2111–2123. [Google Scholar] [CrossRef] [Green Version]
- Cerveny, N.V.; Dorn, R.I.; Allen, C.D.; Whitley, D.S. Advances in rapid condition assessments of rock art sites: Rock Art Stability Index (RASI). J. Archaeol. Sci. Rep. 2016, 10, 871–877. [Google Scholar] [CrossRef] [Green Version]
- Cerveny, N. A Weathering-Based Perspective on Rock Art Conservation; Arizona State University: Tempe, AZ, USA, 2005. [Google Scholar]
- Popelka-Filcoff, R.S.; Zipkin, A.M. The archaeometry of ochre sensu lato: A review. J. Archaeol. Sci. 2022, 137, 105530. [Google Scholar] [CrossRef]
- Dayet, L. Invasive and Non-Invasive Analyses of Ochre and Iron-Based Pigment Raw Materials: A Methodological Perspective. Minerals 2021, 11, 210. [Google Scholar] [CrossRef]
- Domingo Sanz, I.; Vendrell, M.; Chieli, A. A critical assessment of the potential and limitations of physicochemical analysis to advance knowledge on Levantine rock art. Quat. Int. 2021, 572, 24–40. [Google Scholar] [CrossRef]
- Ruiz, J.F.; Pereira, J. The colours of rock art. Analysis of colour recording and communication systems in rock art research. J. Archaeol. Sci. 2014, 50, 338–349. [Google Scholar] [CrossRef]
- Molada Tebar, A. Colorimetric and Spectral Analysis of Rock Art by Means of the Characterization of Digital Sensors; Universitat Politècnica de València: Valencia, Spain, 2020. [Google Scholar]
- Molada-Tebar, A.; Marqués-Mateu, Á.; Lerma, J. Camera Characterisation Based on Skin-Tone Colours for Rock Art Recording. Proceedigns 2019, 19, 12. [Google Scholar] [CrossRef] [Green Version]
- Carrión-Ruiz, B.; Riutort-Mayol, G.; Molada-Tebar, A.; Lerma, J.L.; Villaverde, V. Color degradation mapping of rock art paintings using microfading spectrometry. J. Cult. Herit. 2021, 47, 100–108. [Google Scholar] [CrossRef]
- Bednarik, R.G. Experimental Colorimetric Analysis of Petroglyphs. Rock Art Res. 2009, 26, 55–64. [Google Scholar]
- Bonneau, A.; Staff, R.A.; Higham, T.; Brock, F.; Pearce, D.G.; Mitchell, P.J. Successfully Dating Rock Art in Southern Africa Using Improved Sampling Methods and New Characterization and Pretreatment Protocols. Radiocarbon 2017, 59, 659–677. [Google Scholar] [CrossRef] [Green Version]
- Bonneau, A.; Pearce, D.; Mitchell, P.; Staff, R.; Arthur, C.; Mallen, L.; Brock, F.; Higham, T. The earliest directly dated rock paintings from southern Africa: New AMS radiocarbon dates. Antiquity 2017, 91, 322–333. [Google Scholar] [CrossRef] [Green Version]
- Steelman, K.L.; Boyd, C.E.; Allen, T. Two independent methods for dating rock art: Age determination of paint and oxalate layers at Eagle Cave, TX. J. Archaeol. Sci. 2021, 126, 105315. [Google Scholar] [CrossRef]
- Hoffmann, D.L.; Pike, A.W.G.; García-Diez, M.; Pettitt, P.B.; Zilhão, J. Methods for U-series dating of CaCO3 crusts associated with Palaeolithic cave art and application to Iberian sites. Quat. Geochronol. 2016, 36, 104–119. [Google Scholar] [CrossRef]
- Pike, A.W.G.; Hoffmann, D.L.; García-Diez, M.; Pettitt, P.B.; Alcolea, J.; De Balbín, R.; González-Sainz, C.; de las Heras, C.; Lasheras, J.A.; Montes, R.; et al. U-Series Dating of Paleolithic Art in 11 Caves in Spain. Science 2012, 336, 1409–1413. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, D.L.; Standish, C.D.; Pike, A.W.G.; García-Diez, M.; Pettitt, P.B.; Angelucci, D.E.; Villaverde, V.; Zapata, J.; Milton, J.A.; Alcolea-González, J.; et al. Dates for Neanderthal art and symbolic behaviour are reliable. Nat. Ecol. Evol. 2018, 2, 1044–1045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoffmann, D.L.; Standish, C.D.; García-Diez, M.; Pettitt, P.B.; Milton, J.A.; Zilhão, J.; Alcolea-González, J.J.; Cantalejo-Duarte, P.; Collado, H.; de Balbín, R.; et al. U-Th dating of carbonate crusts reveals Neandertal origin of Iberian cave art. Science 2018, 359, 912–915. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aubert, M.; Setiawan, P.; Oktaviana, A.A.; Brumm, A.; Sulistyarto, P.H.; Saptomo, E.W.; Istiawan, B.; Ma’rifat, T.A.; Wahyuono, V.N.; Atmoko, F.T.; et al. Palaeolithic cave art in Borneo. Nature 2018, 564, 254–257. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Jiao, Y.; Ji, X.; Taçon, P.S.C.; Yang, Z.; He, S.; Jin, M.; Li, Y.; Shao, Q. High-precision U-series dating of the late Pleistocene—Early Holocene rock paintings at Tiger Leaping Gorge, Jinsha River valley, southwestern China. J. Archaeol. Sci. 2022, 138, 105535. [Google Scholar] [CrossRef]
- Liritzis, I.; Evangelia, P.; Mihalis, E. Novel approaches in surface luminescence dating of rock art: A brief review. Mediterr. Archaeol. Archaeom. 2017, 17, 89–102. [Google Scholar] [CrossRef]
- Liritzis, I.; Bednarik, R.G.; Kumar, G.; Polymeris, G.; Iliopoulos, I.; Xanthopoulou, V.; Zacharias, N.; Vafiadou, A.; Bratitsi, M. Daraki-Chattan Rock Art Constrained Osl Chronology and Multianalytical Techniques: A First Pilot Investigation. J. Cult. Herit. 2019, 37, 29–43. [Google Scholar] [CrossRef]
- Gonzalez, I.; Laiz, L.; Hermosin, B.; Caballero, B.; Incerti, C.; Saiz-Jimenez, C. Bacteria isolated from rock art paintings: The case of Atlanterra shelter (south Spain). J. Microbiol. Methods 1999, 36, 123–127. [Google Scholar] [CrossRef]
- Roldán, C.; Murcia-Mascarós, S.; López-Montalvo, E.; Vilanova, C.; Porcar, M. Proteomic and metagenomic insights into prehistoric Spanish Levantine Rock Art. Sci. Rep. 2018, 8, 10011. [Google Scholar] [CrossRef]
- Cappitelli, F.; Cattò, C.; Villa, F. The Control of Cultural Heritage Microbial Deterioration. Microorganisms 2020, 8, 1542. [Google Scholar] [CrossRef]
- Delegou, E.T.; Karapiperis, C. Metagenomics of the built cultural heritage: Microbiota characterization of the building materials of the holy aedicule of the holy sepulchre in Jerusalem. Sci. Cult. 2022, 8, 59–83. [Google Scholar] [CrossRef]
- Clauzade, G.; Roux, C.; Houmeau, J.; Raimbault, P. Likenoj de Okcidenta Europo: Ilustrita Determinlibro. Bulletin de la Société Botanique du Centre-Ouest, Nouvelle Série. Numéro Spécial, 7-1985; Société Botanique du Centre Ouest: Saint-Sulpice-de-Royan, France, 1985. [Google Scholar]
- Wirth, V. Die Flechten Baden-Württembergs. Verbreitungsatlas; E. Ulmer Verlag: Stuttgart, Germany, 1987. [Google Scholar]
- Smith, C.W.; Aptroot, A.; Coppins, B.J.; Fletcher, A.; Gilbert, O.L.; James, P.W.; Wolseley, P.A. (Eds.) The Lichens of Great Britain and Ireland; The British Lichen Society, Department of Botany, The Natural History Museum, Cromwell R: London, UK, 2009. [Google Scholar]
- Nimis, P.L.; Martellos, S. Towards a digital key to the lichens of Italy. Symbiosis 2020, 82, 149–155. [Google Scholar] [CrossRef]
- Huyge, D.; Watchman, A.; De Dapper, M.; Marchi, E. Dating Egypt’s oldest ‘art’: AMS 14C age determinations of rock varnishes covering petroglyphs at El-Hosh (Upper Egypt). Antiquity 2001, 75, 68–72. [Google Scholar] [CrossRef]
- Abd El-Hakim, A.; El-Badry Mona, F.A.; Badawi, M.I. Assessment of the Aging Treatments of Sandstone Greywacke Rock Art (Wadi Hammamat) By Petrography, SEM, XRD, EDX. Sci. Cult. 2019, 5, 37–48. [Google Scholar] [CrossRef]
- Villa, F.; Wu, Y.-L.; Zerboni, A.; Cappitelli, F. In living color: Pigments-based microbial ecology at the mineral/air interface. Bioscience. in press.
- Deacon, J. Rock art conservation and tourism. J. Archaeol. Method Theory 2006, 13, 376–396. [Google Scholar] [CrossRef]
- Duval, M.; Gauchon, C.; Smith, B. Rock Art Tourism. In The Oxford Handbook of the Archaeology and Anthropology of Rock Art; Bruno, D., McNiven, I.J., Eds.; Oxford University Press: Oxford, UK, 2019. [Google Scholar]
- Little, T.; Borona, G. Can Rock Art in Africa Reduce Poverty? Public Archaeol. 2014, 13, 178–186. [Google Scholar] [CrossRef]
- El Menshawy, S. Qatar rock arts: Re-consideration and prospectives of Qatar cultural heritage tourism map. Mediterr. Archaeol. Archaeom. 2017, 17, 33–42. [Google Scholar] [CrossRef]
- Bollati, I.; Reynard, E.; Cagnin, D.; Pelfini, M. The enhancement of cultural landscapes in mountain environments: An artificial channel history (Torrent-Neuf, Canton Valais, Switzerland) and the role of trees as natural archives of water flow changes. Acta Geogr. Slov. 2018, 58, 87–100. [Google Scholar] [CrossRef] [Green Version]
- Gallinaro, M.; Zerboni, A.; Solomon, T.; Spinapolice, E.E. Rock Art Between Preservation, Research and Sustainable Development—a Perspective from Southern Ethiopia. African Archaeol. Rev. 2018, 35, 211–223. [Google Scholar] [CrossRef]
- Filippo, B.; Cremaschi, M.; Manuela, P. Estimating the Potential of Archaeo-historical Data in the Definition of Geomorphosites and Geo-educational Itineraries in the Central Po Plain (N Italy). Geoheritage 2019, 11, 1371–1396. [Google Scholar] [CrossRef]
- Hadda, N.A.; Fakhoury, L.A.; Sakr, Y.M. critical anthology of international charters, conventions & principles on documentation of cultural heritage for conservation, monitoring & management. Mediterr. Archaeol. Archaeom. 2021, 21, 291–310. [Google Scholar] [CrossRef]
Process | Natural/Human | Scale | Location | Effect |
---|---|---|---|---|
Slope instability | Natural | Macro-scale | Rock shelter and open-air contexts | Destruction of rock substrate; slope deposit covers rock art sites |
Cryoclastism Thermoclastism Haloclastism | Natural | Meso-scale | Rock surface along rock shelter and open-air contexts | Exfoliation; granular disaggregation; breakage; spallation; surface rejuvenation |
Biological weathering | Natural | Meso-scale to macro-scale | Rock surface along rock shelter and open-air contexts | Rock surface desquamation and disruption; ecofacts (e.g., invertebrate nest) cover rock art |
SABs growth | Natural | Meso-scale to micro-scale | Rock interface along rock shelter and open-air contexts | Promoting desquamation and granular disaggegation; stabiliziation of rock surface; formation of case hardening |
Atmospheric agents | Natural | Micro-scale to meso-scale | Pigments | Decoloration, degradation, erosion |
Continuos human occupation | Human | Macro-scale to micro-scale | Rock shelter and open-air contexts | Deterioration of rock surface; decoloration; destruction; rubbung of surfaces; alteration of chemical composition |
Intensive land use | Human | Macro-scale to meso-scale | Rock shelter and open-air contexts | Destruction |
Uncontrolled tourism | Human | Meso-scale to micro-scale | Rock surface along rock shelter and open-air contexts | Destruction; deterioration of surfaces; alteration of chemical composition; decoloration; vandalism |
Inadequate investigation/restoration | Human | Meso-scale to micro-scale | Rock surface along rock shelter and open-air contexts | Destruction; decoloration; acceleration of the deterioration of surfaces |
Analytical Method | Sample Requirements | Research Question | Information Provided | Limits |
---|---|---|---|---|
Structure-from-motion photogrammetry | Non-invasive | Rock art recording | 3D models or rock art sites | |
Stability indexes | Non-invasive | Define the preservation of rock art | Quantitative data on rock surface stability | |
Optical microscopy | Enough sample to manufacture thin section | Mineral composition and texture | Identify minerals and their interaction | Difficult to identify organic constituents |
XRF | Portable: in situ, no sampling; benchtop: sampling required | Inorganic pigment, bed rock, crust, accretions | Qualitative elemental analysis | Detect elements heavier than Al or Si; only surface analyses |
Raman | Portable: in situ, no sampling; benchtop: sampling required | Organic and inorganic pigments, bed rock, crust, accretions | Identify minerals, organic and inorganic molecules | Background noise and fluorescence affect results in situ; only surface analyses |
XRD | Small sample to produce powder | Crystalline structure | Quantitative mineral analysis | Difficult to identify pristine and newly formed minerals |
FTIR | Small sample to produce KBr powder pellet or micro-sample | Mineral and organic residues | Identify minerals and organic molecules | More proficient with amorphous and organic materials |
SEM-EDX | Non-destructive to sample but requires carbon coating and sometimes polished surface; alternatively very small samples | Surface morphology, stratigraphy and composition of pigments | High resolution images and semi-quantitative elemental analysis | Analyses are semi-quantitative |
Confocal laser scanning microscopy | Non-invasive sampling procedure through adhesive tapes | SAB architecture and interaction with the mineral substrate | 3D images and semi-quantitative analyses of the SAB components | Analyses are semi-quantitative |
Molecular investigations | Small samples, destructive | Structure and function of the SAB community | Qualitative and quantitative data about the identified microorganisms and their activity. | Difficult to recover genetic materials from SABs on rock art. |
ICP-AES | Small samples, destructive | Concentration of elements | Quantitative analysis of major elements | |
NAA | Small samples, destructive | Concentration of elements, provenance studies | Quantitative analysis from major to trace elements | |
LA-ICP-MS | Small samples, micro-sample | Concentration of elements, provenance studies | Quantitative analysis from major to trace elements | |
GCMS | Small samples, destructive | Organic binder | Identify organic molecules | |
LC–MS/MS | Small samples, destructive | Organic binder | Identify proteins | |
AMS 14C | Small samples, destructive | Chronology | Age of painting | Require a preliminary assessment of organic content |
Uranium-series dating | Drilling microcores | Chronology | Relative age of painting (limit ante or post quem) | Possible gaps between carbonate deposition and rock art production |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zerboni, A.; Villa, F.; Wu, Y.-L.; Solomon, T.; Trentini, A.; Rizzi, A.; Cappitelli, F.; Gallinaro, M. The Sustainability of Rock Art: Preservation and Research. Sustainability 2022, 14, 6305. https://doi.org/10.3390/su14106305
Zerboni A, Villa F, Wu Y-L, Solomon T, Trentini A, Rizzi A, Cappitelli F, Gallinaro M. The Sustainability of Rock Art: Preservation and Research. Sustainability. 2022; 14(10):6305. https://doi.org/10.3390/su14106305
Chicago/Turabian StyleZerboni, Andrea, Federica Villa, Ying-Li Wu, Tadele Solomon, Andrea Trentini, Alessandro Rizzi, Francesca Cappitelli, and Marina Gallinaro. 2022. "The Sustainability of Rock Art: Preservation and Research" Sustainability 14, no. 10: 6305. https://doi.org/10.3390/su14106305
APA StyleZerboni, A., Villa, F., Wu, Y. -L., Solomon, T., Trentini, A., Rizzi, A., Cappitelli, F., & Gallinaro, M. (2022). The Sustainability of Rock Art: Preservation and Research. Sustainability, 14(10), 6305. https://doi.org/10.3390/su14106305