Developing Transdisciplinary Approaches to Sustainability Challenges: The Need to Model Socio-Environmental Systems in the Longue Durée
Abstract
:1. Introduction
2. The Importance of the Longue Durée
3. The Knotty Problem of Humans
4. Transdisciplinary Integration through Computational Modelling
4.1. Modelling as a Platform
4.2. Data Challenges
4.3. The Question of Scale
5. The (Im)practicalities of Transdisciplinarity
6. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Roberts, P.; Stewart, B.A. Defining the ‘generalist specialist’ niche for Pleistocene Homo sapiens. Nat. Hum. Behav. 2018, 5, 542–550. [Google Scholar] [CrossRef] [PubMed]
- Ellis, E.C. Land Use and Ecological Change: A 12,000-Year History. Annu. Rev. Environ. Resour. 2001, 46, 1–33. [Google Scholar] [CrossRef]
- Scheffer, M. Critical Transitions in Nature and Society; Princeton University Press: Princeton, NJ, USA, 2009. [Google Scholar]
- Hegmon, M. The Give and Take of Sustainability: Archaeological and Anthropological Perspectives on Tradeoffs; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Waters, C.N.; Zalasiewicz, J.; Summerhayes, C.; Barnosky, A.D.; Poirier, C.; Gałuszka, A.; Cearreta, A.; Edgeworth, M.; Ellis, E.C.; Ellis, M.; et al. The Anthropocene is functionally and stratigraphically distinct from the Holocene. Science 2016, 351, aad2622. [Google Scholar] [CrossRef] [PubMed]
- Ellis, E.C.; Magliocca, N.R.; Stevens, C.J.; Fuller, D.Q. Evolving the Anthropocene: Linking multi-level selection with long-term social–ecological change. Sustain. Sci. 2018, 13, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Edgeworth, M. Transgressing Time: Archaeological Evidence in/of the Anthropocene. Ann. Rev. Anthropol. 2021, 50, 93–108. [Google Scholar] [CrossRef]
- Boivin, N.; Crowther, A. Mobilizing the past to shape a better Anthropocene. Nat. Ecol. Evol. 2021, 5, 273–284. [Google Scholar] [CrossRef] [PubMed]
- Ruddiman, W.F. The Anthropocene. Ann. Rev. Earth Planet. Sci. 2013, 41, 45–68. [Google Scholar] [CrossRef]
- Dearing, J.A.; Acma, B.; Bub, S.; Chambers, F.; Chen, X.; Cooper, J.; Crook, D.; Dong, X.; Dotterweich, M.; Edwards, M.; et al. Social-ecological systems in the Anthropocene: The need for integrating social and biophysical records at regional scales. Anthr. Rev. 2015, 2, 220–246. [Google Scholar] [CrossRef]
- Crabtree, S.A.; Dunne, J.A.; Wood, S.A. Ecological networks and archaeology. Antiquity 2021, 85, 812–825. [Google Scholar] [CrossRef]
- Crabtree, S.A.; Dunne, J.A. Towards a Science of Archaeoecology. Trends Ecol. Evol. 2022, 30, 36. [Google Scholar] [CrossRef]
- Swanson, H.A.; Svenning, J.-C.; Saxena, A.; Muscarella, R.; Franklin, J.; Garbelotto, M.; Mathews, A.S.; Saito, O.; Schnitzler, A.E.; Serra-Diaz, J.M.; et al. History as grounds for interdisciplinarity: Promoting sustainable woodlands via an integrative ecological and socio-cultural perspective. One Earth 2021, 4, 226–237. [Google Scholar] [CrossRef]
- Seddon, A.W.R.; Mackay, A.W.; Baker, A.G.; Birks, H.J.B.; Breman, E.; Buck, C.E.; Ellis, E.C.; Froyd, C.A.; Gill, J.L.; Gillson, L.; et al. Looking forward through the past: Identification of 50 priority research questions in palaeoecology. J. ECol. 2014, 102, 256–267. [Google Scholar] [CrossRef]
- Kintigh, K.W.; Altschul, J.H.; Beaudry, M.C.; Drennan, R.D.; Kinzig, A.P.; Kohler, T.A.; Limp, W.F.; Maschner, H.D.G.; Michener, W.K.; Pauketat, T.R.; et al. Grand Challenges for Archaeology. Am. Antiq. 2014, 79, 5–24. [Google Scholar] [CrossRef]
- Singh, S.J.; Haberl, H.; Chertow, M.; Mirtl, M.; Schmid, M. Long Term Socio-Ecological Research: Studies in Society-Nature Interactions across Spatial and Temporal Scales; Springer: Dordrecht, The Netherlands, 2013. [Google Scholar]
- Mihoub, J.-B.; Henle, K.; Titeux, N.; Brotons, L.; Brummitt, N.A.; Schmeller, D.S. Setting temporal baselines for biodiversity: The limits of available monitoring data for capturing the full impact of anthropogenic pressures. Sci. Rep. 2017, 7, 41591. [Google Scholar] [CrossRef] [PubMed]
- Marchant, R.; Lane, P. Past perspectives for the future: Foundations for sustainable development in East Africa. J. Archaeol. Sci. 2014, 51, 12–21. [Google Scholar] [CrossRef]
- Jeffers, E.S.; Nogué, S.; Willis, K.J. The role of palaeoecological records in assessing ecosystem services. Quat. Sci. Rev. 2015, 112, 17–32. [Google Scholar] [CrossRef]
- Roberts, P.; Hunt, C.; Arroyo-Kalin, M.; Evans, D.; Boivin, N. The deep human prehistory of global tropical forests and its relevance for modern conservation. Nat. Plants 2017, 3, 17093. [Google Scholar] [CrossRef] [PubMed]
- Fitzhugh, B.; Butler, V.L.; Bovy, K.M.; Etnier, M.A. Human ecodynamics: A perspective for the study of long-term change in socioecological systems. J. Archaeol. Sci. Rep. 2019, 23, 1077–1094. [Google Scholar] [CrossRef]
- Turvey, S.T.; Saupe, E.E. Insights from the past: Unique opportunity or foreign country? Phil. Trans. R. Soc. B 2019, 374, 20190208. [Google Scholar] [CrossRef]
- Crumley, C.L. Historical Ecology: A Robust Bridge between Archaeology and Ecology. Sustain. Sci. Pract. Pol. 2021, 13, 8210. [Google Scholar] [CrossRef]
- Hegmon, M.; Peeples, M.A.; Kinzig, A.P.; Kulow, S.; Meegan, C.M.; Nelson, M.C. Social Transformation and its Human Costs in the Prehispanic, U.S. Southwest. Am. Anthropol. 2008, 110, 313–324. [Google Scholar] [CrossRef]
- Green, A.S.; Dixit, S.; Garg, K.K.; Sandya, N.R.; Singh, G.; Vatta, K.; Whitbread, A.M.; Jones, M.K.; Singh, R.N.; Petrie, C.A. An interdisciplinary framework for using archaeology, history and collective action to enhance India’s agricultural resilience and sustainability. Environ. Res. Lett. 2020, 15, 105021. [Google Scholar] [CrossRef]
- Rockman, M. An NPS Framework for Addressing Climate Change with Cultural Resources. Georg. Wright Forum 2015, 32, 37–50. [Google Scholar]
- Cordeiro, R.C.; Turcq, B.; Moreira, L.S.; Rodrigues, R.D.A.R.; Simões Filho, F.F.L.; Martins, G.S.; Santos, A.B.; Barbosa, M.; da Conceição, M.C.G.; de Carvalho Rodrigues, R.; et al. Palaeofires in Amazon: Interplay between land use change and palaeoclimatic events. Palaeogeogr. Palaeoclim. Palaeoecol. 2014, 415, 137–151. [Google Scholar] [CrossRef]
- Sandom, C.; Faurby, S.; Sandel, B.; Svenning, J.-C. Global late Quaternary megafauna extinctions linked to humans, not climate change. Proc. R Soc. B 2014, 281, 20133254. [Google Scholar] [CrossRef]
- Zeder, M.A. Core questions in domestication research. Proc. Natl. Acad. Sci. USA 2015, 112, 3191–3198. [Google Scholar] [CrossRef]
- Boivin, N.L.; Zeder, M.A.; Fuller, D.Q.; Crowther, A.; Larson, G.; Erlandson, J.M.; Denham, T.; Petraglia, M.D. Ecological consequences of human niche construction: Examining long-term anthropogenic shaping of global species distributions. Proc. Natl. Acad. Sci. USA 2016, 113, 6388–6396. [Google Scholar] [CrossRef] [PubMed]
- Lancelotti, C.; Zurro, D.; Whitehouse, N.J.; Kramer, K.L.; Madella, M.; García-Granero, J.J.; Greaves, R.D. Resilience of small-scale societies’ livelihoods: A framework for studying the transition from food gathering to food production. Ecol. Soc. 2016, 21, 8. [Google Scholar] [CrossRef]
- Whitehouse, N.J. The Holocene British and Irish ancient woodland fossil beetle fauna: Implications for woodland history, biodiversity and faunal colonisation. Quat. Sci. Rev. 2006, 25, 1755–1789. [Google Scholar] [CrossRef]
- Kaptijn, E. Learning from ancient water management: Archeolog’s role in modern-day climate change adaptations. Wiley Interdiscip. Rev. Water 2018, 5, e1256. [Google Scholar] [CrossRef]
- Marchant, R.; Richer, S.; Boles, O.; Capitani, C.; Courtney-Mustaphi, C.J.; Lane, P.; Prendergast, M.E.; Stump, D.; De Cort, G.; Kaplan, J.O.; et al. Drivers and trajectories of land cover change in East Africa: Human and environmental interactions from 6000 years ago to present. Earth-Sci. Rev. 2018, 178, 322–378. [Google Scholar] [CrossRef]
- De Souza, J.G.; Robinson, M.; Maezumi, S.Y.; Capriles, J.; Hoggarth, J.A.; Lombardo, U.; Novello, V.F.; Apaéstegui, J.; Whitney, B.; Urrego, D.; et al. Climate change and cultural resilience in late pre-Columbian Amazonia. Nat. Ecol. Evol. 2019, 3, 1007–1017. [Google Scholar] [CrossRef] [PubMed]
- Neves, E.G.; Heckenberger, M.J. The call of the wild: Rethinking food production in ancient Amazonia. Ann. Rev. Anthropol. 2019, 48, 371–388. [Google Scholar] [CrossRef]
- Roberts, P.; Hamilton, R.; Piperno, D.R. Tropical forests as key sites of the “Anthropocene”: Past and present perspectives. Proc. Natl. Acad. Sci. USA 2021, 118, e2109243118. [Google Scholar] [CrossRef]
- Maezumi, S.Y.; Elliott, S.; Robinson, M.; Betancourt, C.J.; de Souza, J.G.; Alves, D.; Grosvenor, M.; Hilbert, L.; Urrego, D.H.; Gosling, W.D.; et al. Legacies of Indigenous land use and cultural burning in the Bolivian Amazon rainforest ecotone. Phil. Trans. R Soc. B 2022, 377, 20200499. [Google Scholar] [CrossRef]
- Napier, J.D.; Chipman, M.L. Emerging palaeoecological frameworks for elucidating plant dynamics in response to fire and other disturbance. Global Ecol. Biogeogr. 2022, 31, 138–154. [Google Scholar] [CrossRef]
- Snitker, G.; Roos, C.I.; Sullivan, A.P., III; Maezumi, S.Y.; Bird, D.W.; Coughlan, M.R.; Derr, K.M.; Gassaway, L.; Klimaszewski-Patterson, A.; Loehman, R.A. A collaborative agenda for archaeology and fire science. Nat. Ecol. Evol. 2022, 6, 835–839. [Google Scholar] [CrossRef]
- Crabtree, S.A.; Kohler, T. Modeling Across Millenia: Interdisciplinary paths to Ancient socio-ecological Systems. Ecol. Model 2012, 241, 1–64. [Google Scholar] [CrossRef]
- Barton, C.M.; Tortosa, J.E.A.; Garcia-Puchol, O.; Riel-Salvatore, J.G.; Gauthier, N.; Conesa, M.V.; Bouchard, G.P. Risk and resilience in the late glacial: A case study from the western Mediterranean. Quat. Sci. Rev. 2018, 184, 68–84. [Google Scholar] [CrossRef]
- Ryo, M.; Aguilar-Trigueros, C.A.; Pinek, L.; Muller, L.A.H.; Rillig, M.C. Basic Principles of Temporal Dynamics. Trends Ecol. Evol. 2019, 34, 723–733. [Google Scholar] [CrossRef]
- Freeman, J.; Anderies, J.M.; Beckman, N.G.; Robinson, E.; Baggio, J.A.; Bird, D.; Nicholson, C.; Finley, J.B.; Capriles, J.M.; Gil, A.F.; et al. Landscape Engineering Impacts the Long-Term Stability of Agricultural Populations. Hum. Ecol. 2021, 49, 369–382. [Google Scholar] [CrossRef]
- Scheffer, M. Foreseeing tipping points. Nature 2010, 467, 411–412. [Google Scholar] [CrossRef] [PubMed]
- Scheffer, M.; van Nes, E.H.; Bird, D.; Bocinsky, R.K.; Kohler, T.A. Loss of resilience preceded transformations of pre-Hispanic Pueblo societies. Proc. Natl. Acad. Sci. USA 2021, 118, e2024397118. [Google Scholar] [CrossRef] [PubMed]
- Bird, R.B.; Nimmo, D. Restore the lost ecological functions of people. Nat. Ecol. Evol. 2018, 2, 1050–1052. [Google Scholar] [CrossRef]
- Crabtree, S.A.; Bird, D.W.; Bird, R.B. Subsistence Transitions and the Simplification of Ecological Networks in the Western Desert of Australia. Hum. Ecol. 2019, 47, 165–177. [Google Scholar] [CrossRef]
- Ellis, E.C. Ecology in an anthropogenic biosphere. Ecol. Monogr. 2015, 85, 287–331. [Google Scholar] [CrossRef]
- Crumley, C.; Laparidou, S.; Ramsey, M.; Rosen, A.M. A view from the past to the future: Concluding remarks on the ‘The Anthropocene in the Longue Durée’. Holocene 2015, 25, 1721–1723. [Google Scholar] [CrossRef]
- Doncaster, C.P.; Chávez, V.A.; Viguier, C.; Wang, R.; Zhang, E.; Dong, X.; Dearing, J.; Langdon, P.; Dyke, J.G. Early warning of critical transitions in biodiversity from compositional disorder. Ecology 2016, 97, 3079–3090. [Google Scholar] [CrossRef]
- Rocha, J.C.; Peterson, G.; Bodin, Ö.; Levin, S. Cascading regime shifts within and across scales. Science 2018, 362, 1379–1383. [Google Scholar] [CrossRef]
- Newton, A. Ecosystem Collapse and Recovery; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Brander, J.A.; Taylor, M.S. The simple economics of Easter Island: A Ricardo-Malthus model of renewable resource use. Am. Econ. Rev. 1988, 88, 119–138. [Google Scholar]
- Anderies, J.M. Robustness, institutions, and large-scale change in social-ecological systems: The Hohokam of the Phoenix Basin. J. Inst. Econ. 2006, 2, 133–155. [Google Scholar] [CrossRef]
- Janssen, M.A.; Kohler, T.A.; Scheffer, M. Sunk-cost effects and vulnerability to collapse in ancient societies. Curr. Anthropol. 2003, 44, 722–728. [Google Scholar] [CrossRef]
- Freeman, J.; Anderies, J.M.; Torvinen, A.; Nelson, B.A. Crop specialization, exchange and robustness in a semi-arid environment. Hum. Ecol. 2014, 42, 297–310. [Google Scholar] [CrossRef]
- Freeman, J.; Peeples, M.A.; Anderies, J.M. Toward a theory of non-linear transitions from foraging to farming. J. Anthropol. Archaeol. 2015, 40, 109–122. [Google Scholar] [CrossRef]
- Freeman, J.; Anderies, J.M.; Mauldin, R.P.; Hard, R.J. Should I stay or should I go? The emergence of partitioned land use among human foragers. PLoS ONE 2019, 14, e0218440. [Google Scholar] [CrossRef] [PubMed]
- Rockstrom, J.; Steffen, W.; Noone, K.; Persson, Å.; Chapin, F.S., III; Lambin, E.; Lenton, T.M.; Scheffer, M.; Folke, C.; Schellnhuber, H.J.; et al. Planetary Boundaries: Exploring the Safe Operating Space for Humanity. Ecol. Soc. 2009, 14, 32. [Google Scholar] [CrossRef]
- Steffen, W.; Richardson, K.; Rockström, J.; Cornell, S.E.; Fetzer, I.; Bennett, E.M.; Biggs, R.; Carpenter, S.R.; De Vries, W.; De Wit, C.A.; et al. Planetary Boundaries: Guiding human development on a changing planet. Science 2015, 247. [Google Scholar] [CrossRef] [PubMed]
- Huston, M. A general hypothesis of species diversity. Am. Nat. 1979, 113, 81–101. [Google Scholar] [CrossRef]
- Denslow, J.S. Disturbance-mediated coexistence of species. In The Ecology of Natural Disturbance and Patch Dynamics; Picket, S.T.A., White, P.S., Eds.; Academic Press, Inc.: Cambridge, MA, USA, 1985; pp. 307–323. [Google Scholar]
- Sharma, N.; Johnson, F.A.; Hutton, C.W.; Hazard, C.M. Vulnerability and Risk on the Brahmaputra Basin: A Case Study of River Bank Erosion. Open Hyd. J. 2010, 4, 211–226. [Google Scholar] [CrossRef]
- Díaz, S.; Demissew, S.; Joly, C.; Lonsdale, W.M.; Larigauderie, A. A Rosetta Stone for Nature’s Benefits to People. PLoS Biol. 2015, 13, e1002040. [Google Scholar] [CrossRef]
- Fluck, H.; Holyoak, V. Natural Capital, Ecosystem Services and the Historic Environment; Research Report Series No. 19; Historic England: Swindon, UK, 2017. [Google Scholar]
- Smith, E.A.; Winterhalder, B. Evolutionary Ecology and Human Behaviour; Transaction Publishers: London, UK; New York, NY, USA, 1992. [Google Scholar]
- Winterhalder, B.; Smith, E.A. Analyzing Adaptive Strategies: Human Behavioral Ecology at Twenty-Five. Evol. Anthropol. 2000, 9, 51–72. [Google Scholar] [CrossRef]
- Bird, D.W.; Codding, B. Human behavioral ecology and the use of ancient landscapes. In Handbook of Landscape Archaeology; David, B., Thomas, J., Eds.; Routledge: London, UK, 2016; pp. 396–408. [Google Scholar]
- Cavalli-Sforza, L.L.; Feldman, M. Cultural Transmission and Evolution: A Quantitative Approach; Princeton University Press: Princeton, NJ, USA, 1981. [Google Scholar]
- Boyd, R.; Richerson, P.J. Culture and the Evolutionary Process; The University of Chicago Press: Chicago, IL, USA; London, UK, 1985. [Google Scholar]
- Odling-Smee, F.J.; Laland, K.N.; Feldman, M.W. Niche Construction: The Neglected Process in Evolution; Princeton University Press: Princeton, NJ, USA; Oxford, UK, 2013. [Google Scholar]
- Scott-Phillips, T.C.; Laland, K.N.; Shuker, D.M.; Dickins, T.E.; West, S.A. The niche construction perspective: A critical appraisal. Evolution 2014, 68, 1231–1243. [Google Scholar] [CrossRef] [PubMed]
- Ingold, T. The Appropriation of Nature: Essays on Human Ecology and Social Relations; University of Iowa Press: Iowa City, IA, USA, 1987. [Google Scholar]
- Latour, B. Science in Action: How to Follow Scientists and Engineers through Society; Harvard University Press: Cambridge, MA, USA, 1987. [Google Scholar]
- Bird-David, N. “Animism” revisited: Personhood, environment, and relational epistemology. Curr. Anthr. 1999, 40, S67–S91. [Google Scholar] [CrossRef]
- Ingold, T. The Perception of the Environment: Essays on Livelihood, Dwelling and Skill; Routledge: London, UK; New York, NY, USA, 2000. [Google Scholar]
- Descola, P. Beyond Nature and Culture; The University of Chicago Press: Chicago, IL, USA; London, UK, 2013. [Google Scholar]
- Kohn, E. How Forests Think: Towards and Anthropology Beyond the Human; University of California Press: Berkeley, NJ, USA, 2013. [Google Scholar]
- Viveiros de Castro, E. The Relative Native: Essays on Indigenous Conceptual Worlds; Hau Press: Chicago, IL, USA, 2015. [Google Scholar]
- Goumas, M.; Lee, V.E.; Boogert, N.J.; Kelley, L.A.; Thornton, A. The role of animal cognition in human-wildlife interactions. Front. Psychol. 2020, 11, 3019. [Google Scholar] [CrossRef] [PubMed]
- Cronon, W. Changes in the Land: Indians, Colonists, and the Ecology of New England; Hill and Wang: New York, NY, USA, 1983. [Google Scholar]
- Daugstad, K.; Grytli, E. How to study and manage a multihistoric landscape. Norw. J. Geogr. 1999, 53, 85–92. [Google Scholar] [CrossRef]
- Edwards, M.E. Land-use history in the uplands of Norway and Britain: Comparisons and contradictions. In Mountains of Northern Europe: Conservation, Management, People and Nature; Thompson, D.B.A., Price, M.F., Galbraith, C.A., Eds.; The Stationery Office Limited: Edinburgh, UK, 2005; pp. 163–178. [Google Scholar]
- Balée, W. The Research Program of Historical Ecology. Ann. Rev. Anthropol. 2006, 35, 75–98. [Google Scholar] [CrossRef]
- Driver, F. Research in historical geography and in the history and philosophy of geography in the UK, 2001–2011: An overview. J. Hist. Geogr. 2011, 42, 203–211. [Google Scholar] [CrossRef]
- Szabó, P. Historical ecology: Past, present and future. Biol. Rev. Camb. Philos. Soc. 2015, 90, 997–1014. [Google Scholar] [CrossRef]
- Balée, W. Brief Review of Historical Ecology. Les Nouv. L’archéologie 2018, 152, 7–10. [Google Scholar] [CrossRef]
- Wolf, E. Ownership and Political Ecology. Anthropol. Quart. 1972, 45, 201–205. [Google Scholar] [CrossRef]
- Rappaport, R. Pigs for the Ancestors: Ritual in the Ecology of a New Guinea People; Waveland Press, Inc: Long Grove, IL, USA, 2000. [Google Scholar]
- Steward, J. The Concept and Method of Cultural Ecology. In The Environment in Anthropology; Haenn, N., Wilk, R.R., Eds.; New York University Press: New York, NY, USA; London, UK, 2006; pp. 5–9. [Google Scholar]
- Lander, B. The King’s Harvest: A Political Ecology of China from the First Farmers to the First Empire; Yale University Press: New Haven, CT, USA; London, UK, 2022. [Google Scholar]
- Darwin, C. On the Origin of Species; John Murray: London, UK, 1859. [Google Scholar]
- Huxley, J. Evolution: The Modern Synthesis; George Alien and Unwin Ltd.: London, UK, 1942. [Google Scholar]
- Von Humboldt, A.; Bonpland, A. Essay on the Geography of Plants; Chicago University Press: Chicago, IL, USA; London, UK, 2009. [Google Scholar]
- Whittaker, R.J.; Araújo, M.B.; Jepson, P.; Ladle, R.J.; Watson, J.; Willis, K. Conservation Biogeography: Assessment and prospect. Divers. Distrib. 2005, 11, 3–23. [Google Scholar] [CrossRef]
- Posadas, P.; Crisci, J.V.; Katinas, L. Historical biogeography: A review of its basic concepts and critical issues. J. Arid. Environ. 2006, 66, 389–403. [Google Scholar] [CrossRef]
- Elvin, M. The Retreat of the Elephants: An Environmental History of China; Yale University Press: New Haven, CT, USA; London, UK, 2004. [Google Scholar]
- Degroot, D.; Anchukaitis, K.; Bauch, M.; Burnham, J.; Carnegy, F.; Cui, J.; de Luna, K.; Guzowski, P.; Hambrecht, G.; Huhtamaa, H.; et al. Towards a rigorous understanding of societal responses to climate change. Nature 2021, 591, 539–550. [Google Scholar] [CrossRef] [PubMed]
- Urbanik, J. Placing Animals: An Introduction to the Geography of Human-Animal Relations; Rowman & Littlefield Publishers: Lanham, MD, USA, 2012. [Google Scholar]
- Whatmore, S. Hybrid Geographies: Rethinking the ‘Human’ in Human Geographies. In Environment: Critical Essays in Human Geography; Anderson, K., Braun, B., Eds.; Routledge: New York, NY, USA; London, UK, 2008. [Google Scholar]
- Turner, N.J.; Cuerrier, A.; Joseph, L. Well grounded: Indigenous Peoples’ knowledge, ethnobiology and sustainability. People Nat. 2022, 4, 627–651. [Google Scholar] [CrossRef]
- Hammel, E.A. Chayanov revisited: A model for the economics of complex kin units. Proc. Natl. Acad. Sci. USA 2015, 102, 7043–7046. [Google Scholar] [CrossRef]
- Saqalli, M.; Salavert, A.; Bréhard, S.; Bendrey, R.; Vigne, J.-D.; Tresset, A. Revisiting and modelling the woodland farming system of the early Neolithic Linear Pottery Culture (LBK), 5600–4900 b.c. Veg. Hist. Archaeobot. 2014, 23, 37–50. [Google Scholar] [CrossRef]
- Boogaard, A.; Filipović, D.; Fairbairn, A.; Green, L.; Stroud, E.; Fuller, D.; Charles, M. Agricultural innovation and resilience in a long-lived early farming community: The 1,500-year sequence at Neolithic to early Chalcolithic Çatalhöyük, central Anatolia. Anatol. Stud. 2017, 67, 1–28. [Google Scholar] [CrossRef]
- Ford, J.D.; King, N.; Galappaththi, E.K.; Pearce, T.; McDowell, G.; Harper, S.L. The Resilience of Indigenous Peoples to Environmental Change. One Earth 2020, 2, 532–543. [Google Scholar] [CrossRef]
- Jackson, S.T. Transformational ecology and climate change. Science 2021, 373, 1085–1086. [Google Scholar] [CrossRef]
- Reyes-García, V.; Fernández-Llamazares, A.; Aumeeruddy-Thomas, Y.; Benyei, P.; Bussmann, R.W.; Diamond, S.K.; García-Del-Amo, D.; Guadilla-Sáez, S.; Hanazaki, N.; Kosoy, N.; et al. Recognizing Indigenous peoples’ and local communities’ rights and agency in the post-2020 Biodiversity Agenda. Ambio 2022, 51, 84–92. [Google Scholar] [CrossRef]
- Sutherland, W.J.; Freckleton, R.P.; Godfray, H.C.J.; Beissinger, S.R.; Benton, T.; Cameron, D.D.; Carmel, Y.; Coomes, D.A.; Coulson, T.; Emmerson, M.C.; et al. Identification of 100 fundamental ecological questions. J. Ecol. 2013, 101, 58–67. [Google Scholar] [CrossRef]
- Peek, L.; Guikema, S. Interdisciplinary Theory, Methods, and Approaches for Hazards and Disaster Research: An Introduction to the Special Issue. Risk Anal. 2021, 41, 1047–1058. [Google Scholar] [CrossRef] [PubMed]
- Lake, M.W. Trends in Archaeological Simulation. J. Archaeol. Method Theory 2014, 21, 258–287. [Google Scholar] [CrossRef]
- Cegielski, W.H.; Rogers, J.D. Rethinking the role of Agent-Based Modeling in archaeology. J. Antropol. Archaeol. 2016, 41, 283–298. [Google Scholar] [CrossRef]
- D’Alpoim Guedes, J.; Crabtree, S.A.; Bocinsky, R.K.; Kohler, T.A. Twenty-first century approaches to ancient problems: Climate and society. Proc. Natl. Acad. Sci. USA 2016, 113, 14483–14491. [Google Scholar] [CrossRef]
- Saqalli, M.; Vander Linden, M. Integrating Qualitative and Social Science Factors in Archaeological Modelling; Springer Nature: Cham, Switzerland, 2019. [Google Scholar]
- Nikulina, A.; MacDonald, K.; Scherjon, F.; Pearce, E.A.; Davoli, M.; Svenning, J.-C.; Vella, E.; Gaillard, M.-J.; Zapolska, A.; Arthur, F.; et al. Tracking Hunter-Gatherer Impact on Vegetation in Last Interglacial and Holocene Europe: Proxies and Challenges. J. Archaeol. Method Theory 2022. [Google Scholar] [CrossRef]
- Potochnik, A. Feminist implications of model-based science. Stud. Hist. Philos. Sci. 2012, 43, 383–389. [Google Scholar] [CrossRef]
- Düring, M. The Potential of Agent-Based Modelling for Historical Research. In Complexity and the Human Experience: Modeling Complexity in the Humanities and Social Sciences; Youngman, P.A., Hadzikadic, M., Eds.; Routledge: New York, NY, USA; London, UK, 2014; pp. 121–140. [Google Scholar]
- Giere, R.N. Explaining Science: A Cognitive Approach; The University of Chicago Press: Chicago, IL, USA, 1988. [Google Scholar]
- Crabtree, S.A.; Davies, B.; Romanowska, I.; Harris, K. Outreach in Archaeology with Agent-based Modeling. Adv. Archaeol. Pract. 2019, 7, 194–202. [Google Scholar] [CrossRef]
- Marwick, B. Computational Reproducibility in Archaeological Research: Basic Principles and a Case Study of Their Implementation. J. Archaeol. Method Theory 2017, 24, 424–450. [Google Scholar] [CrossRef]
- Powers, S.M.; Hampton, S.E. Open science, reproducibility, and transparency in ecology. Ecol. Appl. 2019, 29, e01822. [Google Scholar] [CrossRef]
- Hammond, R.A. 2015 Considerations and Best Practices in Agent-Based Modeling to Inform Policy. In Assessment of Agent-Based Models to Inform Tobacco Policy: Institute of Medicine; Wallace, R., Geller, A., Ogawa, V.A., Eds.; National Academies Press: Washington, DC, USA, 2015; pp. A1–A27. [Google Scholar]
- Romanowska, I. So You Think You Can Model? A Guide to Building and Evaluating Archaeological Simulation Models of Dispersals. Hum. Biol. 2015, 87, 169–192. [Google Scholar] [CrossRef]
- Pearl, J. Causal inference in statistics: An overview. Stat. Surv. 2009, 3, 96–146. [Google Scholar] [CrossRef]
- Wiegand, T.; Moloney, K.A. Handbook of Spatial Point-Pattern Analysis in Ecology; CRC Press: Boca Raton, FL, USA; London, UK; New York, NY, USA, 2020. [Google Scholar]
- Efron, B.; Hastie, T. Computer Age Statistical Inference: Algorithms, Evidence, and Data Science; Cambridge University Press: Cambridge, UK, 2016. [Google Scholar]
- French, J.C.; Riris, P.; Fernandéz-López de Pablo, J.; Lozano, S.; Silva, F. Cross-disciplinary approaches to prehistoric demography (themed issue). Phil. Trans. R Soc. B 2020, 376, 20190707. Available online: https://royalsocietypublishing.org/toc/rstb/2021/376/1816 (accessed on 1 June 2022). [CrossRef] [PubMed]
- Gillings, M.; Hacigüzeller, P.; Lock, G. Archaeological Spatial Analysis: A Methodological Guide; Routledge: London, UK; New York, NY, USA, 2020. [Google Scholar]
- Humphries, G.R.W.; Magness, D.R.; Huettmann, F. Machine Learning for Ecology and Sustainable Natural Resource Management; Springer Nature: Cham, Switzerland, 2018. [Google Scholar]
- Kearney, M.; Porter, W. Mechanistic niche modelling: Combining physiological and spatial data to predict species’ range. Ecol. Lett. 2009, 12, 334–350. [Google Scholar] [CrossRef] [PubMed]
- Franklin, J. Mapping Species Distributions: Spatial Inference and Prediction; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Svenning, J.-C.; Fløjgaard, C.; Marske, K.A.; Nógues-Bravo, D.; Normand, S. Applications of species distribution modeling to paleobiology. Quat. Sci. Rev. 2011, 30, 2930–2947. [Google Scholar] [CrossRef]
- Franklin, J.; Potts, A.J.; Fisher, E.C.; Cowling, R.M.; Marean, C.W. Paleodistribution modelling in archaeology and paleoanthropology. Quat. Sci. Rev. 2015, 110, 1–14. [Google Scholar] [CrossRef]
- Ovaskainen, O.; Abrego, N. Joint Distribution Modelling with Applications in R; Cambridge University Press: Cambridge, UK, 2020. [Google Scholar]
- Prentice, I.C.; Cramer, W.; Harrison, S.P.; Leemans, R.; Monserud, R.A.; Solomon, A.M. A global biome model based on plant physiology and dominance, soil properties and climate. J. Biogeogr. 1992, 19, 117–134. [Google Scholar] [CrossRef]
- Prentice, I.C.; Webb, T., III. BIOME 6000: Reconstructing global mid-Holocene vegetation patterns from palaeoecological records. J. Biogeogr. 1998, 25, 997–1005. [Google Scholar] [CrossRef]
- Brooks, S.J.; Birks, H.J.B. Chironomid-inferred late-glacial air temperatures at Whitrig Bog, south-east Scotland. J. Quat. Sci. 2000, 15, 759–764. [Google Scholar] [CrossRef]
- Sugita, S. Theory of quantitative reconstruction of vegetation I: Pollen from large sites REVEALS regional vegetation composition. Holocene 2007, 17, 229–241. [Google Scholar] [CrossRef]
- Bunting, M.J.; Middleton, R. Equifinality and uncertainty in the interpretation of pollen data: The Multiple Scenario Approach to reconstruction of past vegetation mosaics. Holocene 2009, 19, 799–803. [Google Scholar] [CrossRef]
- Kay, A.U.; Fuller, D.Q.; Neumann, K.; Wichhorn, B.; Höhn, A.; Morin-Rivat, J.; Champion, L.; Linseele, V.; Huysecom, E.; Ozainne, S.; et al. Diversification, Intensification and Specialization: Changing Land Use in Western Africa from 1800 BC to AD 1500. J. World Prehist. 2019, 32, 179–228. [Google Scholar] [CrossRef]
- Strandberg, G.; Lindström, J.; Posla, A.; Zhang, Q.; Fyfe, R.; Githumbi, E.; Kjellström, E.; Mazier, F.; Nielsen, A.B.; Sugita, S.; et al. Mid-Holocene European climate revisited: New high-resolution regional climate model simulations using pollen-based land-cover. Quat. Sci. Rev. 2022, 281, 107431. [Google Scholar] [CrossRef]
- Clark, J.K.; Crabtree, S.A. Examining Social Adaptations in a Volatile Landscape in Northern Mongolia via the Agent-Based Model. Land 2015, 4, 157–181. [Google Scholar] [CrossRef]
- Davies, B.; Holdaway, S.J.; Fanning, P.C. Modelling the palimpsest: An exploratory agent-based model of surface archaeological deposit formation in a fluvial arid Australian landscape. Holocene 2016, 26, 450–463. [Google Scholar] [CrossRef]
- Railsback, S.F.; Grimm, V. Agent-Based and Individual-Based Modeling: A Practical Introduction, 2nd ed.; Princeton University Press: Princeton, NJ, USA; Oxford, UK, 2019. [Google Scholar]
- Graham, S. An Enchantment of Digital Archaeology: Raising the Dead with Agent-Based Models, Archaeogaming and Artificial Intelligence; Berghahn Books: New York, NY, USA, 2020. [Google Scholar]
- Romanowska, I.; Wren, C.D.; Crabtree, S.A. Agent-Based Modeling for Archaeology: Simulating the Complexity of Societies; The Santa Fe Institute Press: Santa Fe, NM, USA, 2021. [Google Scholar]
- Steele, J. Human Dispersals: Mathematical Models and the Archaeological Record. Hum. Biol. 2009, 81, 121–140. [Google Scholar] [CrossRef]
- Harfroot, M.B.; Newbold, T.; Tittensor, D.P.; Emmott, S.; Hutton, J.; Lyutsarev, V.; Smith, M.J.; Scharlemann, J.P.W.; Purves, D.W. Emergent Global Patterns of Ecosystem Structure and Function from a Mechanistic General Ecosystem Model. PLoS Biol. 2014, 12, e1001841. [Google Scholar] [CrossRef]
- Wilkinson, M.D.; Dumontier, M.; Aalbersberg, I.J.; Appleton, G.; Axton, M.; Baak, A.; Blomberg, N.; Boiten, J.-W.; da Silva Santos, L.B.; Bourne, P.E.; et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 2016, 3, 160018. [Google Scholar] [CrossRef]
- St Amand, F.; Childs, S.T.; Reitz, E.J.; Heller, S.; Newsom, B.; Rick, T.C.; Sandweiss, D.H.; Wheeler, R. Leveraging legacy archaeological collections as proxies for climate and environmental research. Proc. Natl. Acad. Sci. USA 2020, 117, 8287–8294. [Google Scholar] [CrossRef]
- Zurell, D.; Franklin, J.; König, C.; Bouchet, P.J.; Dormann, C.F.; Elith, J.; Fandos, G.; Feng, X.; Guillera-Arroita, G.; Guisan, A.; et al. A standard protocol for reporting species distribution models. Ecography 2020, 1, 93. [Google Scholar] [CrossRef]
- Feng, X.; Enquist, B.J.; Park, D.S.; Boyle, B.; Breshears, D.D.; Gallagher, R.V.; Lien, A.; Newman, E.A.; Burger, J.R.; Maitner, B.S.; et al. A review of the heterogeneous landscape of biodiversity databases: Opportunities and challenges for a synthesized biodiversity knowledge base. Global Ecol. Biogeogr. 2022, 31, 1242–1260. [Google Scholar] [CrossRef]
- Williams, J.; Grimm, E.; Blois, J.; Charles, D.; Davis, E.; Goring, S.; Takahara, H. The Neotoma Paleoecology Database, a multiproxy, international, community-curated data resource. Quat. Res. 2018, 89, 156–177. [Google Scholar] [CrossRef]
- Turchin, P.; Brennan, R.; Currie, T.; Feeney, K.; Francois, P.; Hoyer, D.; Manning, J.; Marciniak, A.; Mullins, D.; Palmisano, A.; et al. Seshat: The Global History Databank. Cliodyn 2015, 6, 77–107. [Google Scholar] [CrossRef]
- Flantua, S.G.A.; Hooghiemstra, H.; Grimm, E.C.; Behling, H.; Bush, M.B.; González-Arango, C.; Gosling, W.D.; Ledru, M.-P.; Lozano-García, S.; Maldonado, A.; et al. Updated site compilation of the Latin American Pollen Database. Rev. Palaeobot. Palyn. 2015, 233, 104–115. [Google Scholar] [CrossRef]
- Goring, S.; Dawson, A.; Simpson, G.; Ram, K.; Graham, R.; Grimm, E.; Williams, J. neotoma: A Programmatic Interface to the Neotoma Paleoecological Database. Open Quat. 2015, 1, 2. [Google Scholar] [CrossRef]
- Runge, J.; Gosling, W.D.; Leeine, A.-M.; Scott, L. Quaternary Vegetation Dynamics: The African Pollen Database; CRC Press: Leiden, The Netherland, 2022. [Google Scholar]
- Stephens, L.; Fuller, D.; Boivin, N.; Rick, T.; Gauthier, N.; Kay, A.; Marwick, B.; Armstrong, C.G.; Barton, C.M.; Denham, T.; et al. Archaeological assessment reveals Earth’s early transformation through land use. Science 2019, 365, 897–902. [Google Scholar] [CrossRef]
- Morrison, K.D.; Hammer, E.; Boles, O.; Madella, M.; Whitehouse, N.; Gaillard, M.-J.; Bates, J.; Vander Linden, M.; Merlo, S.; Yao, A.; et al. Mapping past human land use using archaeological data: A new classification for global land use synthesis and data harmonization. PloS ONE 2021, 16, e0246662. [Google Scholar] [CrossRef] [PubMed]
- Bird, D.; Miranda, L.; Vander Linden, M.; Robinson, E.; Bocinsky, R.K.; Nicholson, C.; Capriles, J.M.; Finley, J.B.; Gayo, E.M.; Gil, A.; et al. p3k14c, a synthetic global database of archaeological radiocarbon dates. Sci. Data 2022, 9, 27. [Google Scholar] [CrossRef]
- Goldewijk, K.K.; Beusen, A.; Doelman, J.; Stehfest, E. Anthropogenic land use estimates for the Holocene; HYDE 3.2. Earth Syst. Sci. Data 2017, 9, 927–953. [Google Scholar] [CrossRef]
- Jaffe, Y.Y.; Castellano, L.; Shelach-Levi, G.; Campbell, R.B. Mismatches of scales in the application of paleoclimatic research to Chinese archaeology. Quat. Res. 2020, 99, 14–33. [Google Scholar] [CrossRef]
- Shyrock, A.; Smail, D.L. Deep History: The Architecture of Past and Present; University of California Press: Berkeley, CA, USA, 2011. [Google Scholar]
- Perreault, C. The Quality of the Archaeological Record; The University of Chicago Press: Chicago, IL, USA; London, UK, 2019. [Google Scholar]
- McGill, B.J. The what, how and why of doing macroecology. Global. Ecol. Biogeogr. 2018, 28, 6–17. [Google Scholar] [CrossRef]
- Turchin, P. Arise ‘cliodynamics’. Nature 2008, 454, 34–35. [Google Scholar] [CrossRef]
- Riede, F. Towards a science of past disasters. Nat. Hazards 2014, 71, 335–362. [Google Scholar] [CrossRef]
- DeAngelis, D.L.; Mooij, W.M. Individual-Based Modeling of Ecological and Evolutionary Processes. Ann. Rev. Ecol. Evol. Syst. 2005, 36, 147–168. [Google Scholar] [CrossRef]
- Axtell, R.L.; Epstein, J.M.; Dean, J.S.; Gumerman, G.J.; Swedlund, A.C.; Harburger, J.; Chakravarty, S.; Hammond, R.; Parker, J.; Parker, M. Population growth and collapse in a multiagent model of the Kayenta Anasazi in Long House Valley. Proc. Natl. Acad. Sci. USA 2002, 99, 7275–7279. [Google Scholar] [CrossRef] [PubMed]
- Kohler, T.A.; Bocinsky, R.K.; Cockburn, D.; Crabtree, S.A.; Varien, M.D.; Kolm, K.E.; Smith, S.; Ortman, S.G.; Kobti, Z. Modelling prehispanic Pueblo societies in their ecosystems. Ecol. Model. 2012, 241, 30–41. [Google Scholar] [CrossRef]
- Cockburn, D.; Crabtree, S.A.; Kobti, Z.; Kohler, T.A.; Bocinsky, R.K. Simulating Social and Economic Specialization in Small-Scale Agricultural Societies. J. Artific. Soc. Soc. Sim. 2013, 16, 4. [Google Scholar] [CrossRef]
- Barton, C.M. Complexity, Social Complexity, and Modeling. J. Archaeol. Method Theory 2014, 21, 306–324. [Google Scholar] [CrossRef]
- Crabtree, S.A. Inferring Ancestral Pueblo Social Networks from Simulation in the Central Mesa Verde. J. Archaeol. Method Theory 2015, 22, 144–181. [Google Scholar] [CrossRef]
- Crabtree, S.A.; Bocinsky, R.K.; Hooper, P.L.; Ryan, S.C.; Kohler, T.A. How to make a polity (in the Central Mesa Verde region). Am. Antiq. 2017, 82, 71–95. [Google Scholar] [CrossRef]
- Davies, B.; Romanowska, I.; Harris, K.; Crabtree, S.A. Combining Geographic Information Systems and Agent-Based Models in Archaeology: Part 2 of 3. Adv. Archaeol. Pract. 2019, 7, 185–193. [Google Scholar] [CrossRef]
- Pires, M.M. Rewilding ecological communities and rewiring ecological networks. Perspect. Ecol. Conserv. 2017, 15, 257–265. [Google Scholar] [CrossRef]
- Janssen, M.A.; Hill, K. An Agent-Based Model of Resource Distribution on Hunter-Gatherer Foraging Strategies: Clumped Habitats Favor Lower Mobility, but Result in Higher Foraging Return. In Simulating Prehistoric and Ancient Worlds; Barcelo, J.A., Castillo, F.D., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 159–174. [Google Scholar]
- Riris, P. Assessing the impact and legacy of swidden farming in neotropical interfluvial environments through exploratory modelling of post-contact Piaroa land use (Upper Orinoco, Venezuela). Holocene 2018, 28, 945–954. [Google Scholar] [CrossRef]
- Wren, C.D.; Botha, S.; Vynck, J.D.; Janssen, M.A.; Hill, K.; Shook, E.; Harris, J.A.; Wood, B.M.; Venter, J.; Cowling, R.; et al. The Foraging Potential of the Holocene Cape South Coast of South Africa without the Palaeo-Agulhas Plain. Quat. Sci. Rev. 2020, 235, 105789. [Google Scholar] [CrossRef]
- Wren, C.D.; Burke, A. Habitat suitability and the genetic structure of human populations during the Last Glacial Maximum (LGM) in Western Europe. PLoS ONE 2019, 14, e0217996. [Google Scholar] [CrossRef]
- Van Dyke Parunak, H.; Savit, R.; Riolo, R.L. Agent-Based Modeling vs. Equation-Based Modeling: A Case Study and Users’ Guide. In Multi-Agent Systems and Agent-Based Simulation; Sichman, J.S., Conte, R., Gilbert, N., Eds.; Springer: Berlin/Heidelberg, Germany, 1998. [Google Scholar]
- Delmas, E.; Besson, M.; Brice, M.-H.; Burkle, L.A.; Dalla Riva, G.V.; Fortin, M.-J.; Gravel, D.; Guimarães, P.R., Jr.; Hembry, D.H.; Newman, E.A.; et al. Analysing ecological networks of species interactions. Biol. Rev. Camb. Philos. Soc. 2018, 94, 16–36. [Google Scholar] [CrossRef]
- Soga, M.; Gaston, K.J. Shifting baseline syndrome: Causes, consequences, and implications. Front. Ecol. Environ. 2018, 16, 222–230. [Google Scholar] [CrossRef]
- Lemoine, R.T.; Svenning, J.-C. Nativeness is not binary—A graduated terminology for native and non-native species in the Anthropocene. Restor. Ecol. 2022, e13636. [Google Scholar] [CrossRef]
- Etienne, M.; Du Toit, D.R.; Pollard, S. ARDI: A Co-construction Method for Participatory Modelling in Natural Resources Management. Ecol. Soc. 2011, 16, 44. [Google Scholar] [CrossRef]
- Bromham, L.; Dinnage, R.; Hua, X. Interdisciplinary research has consistently lower funding success. Nature 2016, 534, 684–687. [Google Scholar] [CrossRef]
- Rockman, M.; Hritz, C. Expanding use of archaeology in climate change response by changing its social environment. Proc. Natl. Acad. Sci. USA 2020, 117, 8295–8302. [Google Scholar] [CrossRef] [PubMed]
Theoretical or Analytical Frameworks | Key Features | Example References |
---|---|---|
Dynamical systems theory, and associated theories of alternative stable states and Complex Adaptive Systems (CAS) | Strong mathematical basis, originating from physics. Relates to key concepts such as resilience, hysteresis, tipping points, and regime shifts. | [3,51,52,53] |
Dynamics of socio-ecological systems | Involves the application of dynamical systems theory to the analysis of coupled socio-ecological systems. | [54,55,56,57,58,59] |
Planetary boundaries, and concept of Safe Operating Space | Informed by dynamical systems theory, concepts of critical loads, and ecological thresholds. Developed originally for application at the global scale but now being operationalized at the ecosystem scale. | [60,61] |
Disturbance theory | An unconsolidated body of theoretical ideas relating to the impacts of disturbance on ecosystems | [62,63] |
Driver-Pressure-State-Impact-Response (DPSIR) | A causal framework for describing the interactions between society and the environment, widely used to monitor effectiveness of policy implementation. | [64] |
Natural capital and ecosystem services; ecological economics | A framework for considering the benefits provided by ecosystems to people, the flows of which are dependent on the status of natural capital (i.e., ecosystems). | [65,66] |
Behavioral ecology; human, behavioral and cultural ecology | Human cultural and physiological adaptation to local environments. Model behavioural interactions between individuals within a population from evolutionary and ecological standpoints. Themes include, but are not limited to, resource competition, mate choice, foraging strategies, etc. | [67,68,69] |
Gene-Culture Coevolution Theory, Niche Construction Theory, Cultural Evolutionary Science; Cultural transmission theory | Model changes in behavior (often in archaeology/anthropology, in material culture) as a result of interplay between genetic, cultural, and ecological inheritance, each with its own distinct mechanism of transmission. Niche construction theory: animals alter their local selective environments to suit their preferences and lead to evolutionary response to other incumbent populations. Dual/triple inheritance: emphasizes coupling of physiological evolution and cultural transmission; alongside individuals’ genetic inheritance, animals capable of cultural transmission also gain a ‘cultural inheritance’ of knowledge transmitted intergenerationally. In some triple-inheritance formulations, the landscape/ecosystem itself and human modifications to it also ‘store’ knowledge for future generations. | [70,71,72,73] |
Ethnography/social anthropology/human (and animal) geography | Culture-specific ontologies of human–animal–landscape interactions. Often (particularly among small-scale and forager societies) challenges hierarchization between humans and non-humans and emphasizes an ontology of connectivity and relationality. | [74,75,76,77,78,79,80,81] |
Historical Ecology; historical geography | Landscape and ecosystem transformation over time, often influenced by human activity. | [82,83,84,85,86,87,88] |
Human Cultural/Behavioral anthropology, especially what can broadly be construed as environmental anthropology, e.g., cultural ecology, ecological anthropology, political ecology | Early integrations of ecological systems theory, human ecology and anthropology, emphasizing human interactions with the environment. | [89,90,91,92] |
(Neo) Evolutionary theory | Genetic variability, mutation, etc., subject to natural selection leads to genotypic and phenotypic change over time. | [93,94] |
Physical geography and earth sciences | Physical earth processes and change in physical environments over time (and secondarily their impact on animal communities). | [95] |
Biogeography | Ecology at population, community, and ecosystem scales. | [96,97] |
Environmental History | Partially documented temporally and geographically specific human behavior, environmental impact, and perceptions | [13,98,99] |
Discipline/Field | Relevant Data Types (Not Exhaustive) | Notes |
---|---|---|
Biology, ecology, zoology, ethology, botany | Ecological surveys; ecosystem models; genetic and taxonomic data on population dynamics and adaptive processes and pressures | Can have relatively short time-depth for empirically based, but fine detail possible; longer-term perspectives available |
Earth Sciences; physical geography; paleoecology | Core samples; sedimentology; microfossil analysis; geochemistry; radiometric dating; raster and vector geographical data, e.g., survey; LIDAR etc. data; DEMs; geological data; earth systems models; ancient DNA; stable isotopes | Long temporal depth of records; often broad geographical coverage though perhaps at spatial lower resolution |
Archaeology | Excavation, survey, and geophysics data; material culture and chronometric distributions in space and time; material evidence of human activity; some models on human–environment interactions; ancient DNA; stable isotopes; faunal and botanical remains | Extends back 3.3 m years though some datasets may be much more recent |
History | Census data; quantitative and qualitative description of past SES; evidence of changing human perceptions of environment over time | Variable time depth; may be partial, biased, or simply incorrect; foregrounds humans |
Anthropology, human geography | Qualitative and quantitative data on human societies, ideologies, behavior, demography and ecology; cultural transmission and material culture patterning in time and space, including some models | Can be relatively restricted temporally and geographically, though temporal range can extend back hundreds of years (some oral traditions perhaps even further); may be quite culture-specific; often foregrounds humans |
Economics | Resource allocation models; capital flow models | Often focused on industrial and post-industrial last two centuries |
Modelling Approach | Key Features | Strengths | Weaknesses | Example References |
---|---|---|---|---|
Statistical Modelling/Data Analysis | Identifies significant patterns in datasets; identifies correlations across different datasets/variables | Variety of algorithms, including bespoke ones; diversity of approaches (e.g., frequentist, Bayesian, likelihood-based); closer to the data; works at multiple scales | Not process driven; mostly identifies correlation, not causation (but see [124]) | [125,126,127,128] |
Machine Learning/Artificial Intelligence | Makes predictions based on a training dataset | Very powerful prediction toolbox, given a large enough training dataset | Inferred causation chain is often hidden (blackbox), hence not always good to understand underlying mechanisms | [129] |
Species Distribution Modelling (SDM) | Model habitat suitability in space and potentially over time by correlating occurrence records or physiological data with spatial environmental data. | Numerous algorithms; interactivity; interpolation; receptive to different data | Arbitrary variable selection; human versatility and behavioral plasticity; difficult differentiation between potential and realized niche | [130,131,132,133,134] |
Paleoenvironmental reconstruction (PER) and Land-use Modelling | Employs micro- and macrofossils, eDNA, isotopic data, geochemical and molecular proxies to reconstruct climatic and environmental attributes, biomes, land cover and land use over time | Data-driven; potentially multiproxy (pollen, spores, chironomids, beetles, diatoms, biomarkers etc.); low to (sub) annual temporal resolution; physical and biological components of systems; large-scale spatial summaries; evaluation of paleosimulations | Time-consuming and expensive laboratory procedures involved; cost of dating sediments | [135,136,137,138,139,140,141] |
Agent-based modelling (ABM) | Model agent–agent and agent–environment interaction with algorithmic procedures, which can be probabilistic | Free choice of appropriate scale; highly expandable; captures global patterns from local behavior | Potential complexity; misspecification of interactions; ‘begging the question’; computational intensity | [142,143,144,145,146] |
Dynamical systems modelling | Typically constructed from linked differential equations | Strong theoretical basis and already applied in a wide range of disciplines | Top-down initialization; formalism; often difficult to test empirically | [3,71,72,147,148] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, F.; Coward, F.; Davies, K.; Elliott, S.; Jenkins, E.; Newton, A.C.; Riris, P.; Vander Linden, M.; Bates, J.; Cantarello, E.; et al. Developing Transdisciplinary Approaches to Sustainability Challenges: The Need to Model Socio-Environmental Systems in the Longue Durée. Sustainability 2022, 14, 10234. https://doi.org/10.3390/su141610234
Silva F, Coward F, Davies K, Elliott S, Jenkins E, Newton AC, Riris P, Vander Linden M, Bates J, Cantarello E, et al. Developing Transdisciplinary Approaches to Sustainability Challenges: The Need to Model Socio-Environmental Systems in the Longue Durée. Sustainability. 2022; 14(16):10234. https://doi.org/10.3390/su141610234
Chicago/Turabian StyleSilva, Fabio, Fiona Coward, Kimberley Davies, Sarah Elliott, Emma Jenkins, Adrian C. Newton, Philip Riris, Marc Vander Linden, Jennifer Bates, Elena Cantarello, and et al. 2022. "Developing Transdisciplinary Approaches to Sustainability Challenges: The Need to Model Socio-Environmental Systems in the Longue Durée" Sustainability 14, no. 16: 10234. https://doi.org/10.3390/su141610234
APA StyleSilva, F., Coward, F., Davies, K., Elliott, S., Jenkins, E., Newton, A. C., Riris, P., Vander Linden, M., Bates, J., Cantarello, E., Contreras, D. A., Crabtree, S. A., Crema, E. R., Edwards, M., Filatova, T., Fitzhugh, B., Fluck, H., Freeman, J., Klein Goldewijk, K., ... Williams, A. (2022). Developing Transdisciplinary Approaches to Sustainability Challenges: The Need to Model Socio-Environmental Systems in the Longue Durée. Sustainability, 14(16), 10234. https://doi.org/10.3390/su141610234