Environmental Impacts of Boom-Corridor and Selectively Thinned Small-Diameter-Tree Forests
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area, Equipment and Machine Operator
2.2. Post-Thinning Damage Inventory
2.3. Statistical Analyses
2.4. Life Cycle Impact Assessment
2.4.1. Goal and Scope, System Boundaries and Study Scenarios
Allocation Procedure
Comparisons between Thinning Techniques
2.4.2. Data Inventory
2.4.3. Impact Assessment
3. Results
3.1. Overall Damage Results
3.2. Damage Characteristics
- R-squared = 28.4%
- R-squared (adjusted for d.f.) = 25.3%
- p-value = 0.0000
3.3. LCA Interpretation and Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Forest Europe. State of Europe’s Forests 2020; Liaison Unit Bratislava: Bratislava, Slovakia, 2020. [Google Scholar]
- Statistical Office of the Republic of Slovenia. General Data about Forestry, Slovenia. 2018. Available online: https://www.stat.si/StatWeb/en/News/Index/8384 (accessed on 15 September 2021).
- FAO. FAOSTAT, Forests. Available online: http://www.fao.org/faostat/en/#data/GF (accessed on 15 September 2021).
- Ministerio de Agricultura, Pesca y Alimentación. Avance del Anuario de Estadística 2019. Available online: https://www.mapa.gob.es/estadistica/pags/anuario/2019-Avance/avance/AvAE19.pdf (accessed on 15 September 2021).
- Routa, J.; Asikainen, A.; Bjorheden, R.; Laitila, J.; Röser, D. Forest energy procurement: State of the art in Finland and Sweden. Wiley Interdiscip. Rev.-Energy Environ. 2013, 2, 602–613. [Google Scholar] [CrossRef]
- Piqué, M.; Laina, R.; Vericat, P.; Beltrán, M.; Busquets, E.; Tolosana, E. Spain. In Coppice Forests in Europe; Unrau, A., Becker, G., Spinelli, R., Lazdina, D., Magagnotti, N., Nicolescu, V.-N., Buckley, P., Bartlett, D., Kofman, P.D., Eds.; University Freiburg: Freiburg, Germany, 2017; pp. 330–336. Available online: https://www.eurocoppice.uni-freiburg.de/intern/coppiceineurope-volume/coppice-forests-in-europe-2018-09-10-final-small.pdf (accessed on 30 November 2021).
- Slovenian Forestry Institute. Unpublished Data from National Forest Inventory (NFI). Ljubljana, Slovenia. 2015; Unpublished. [Google Scholar]
- Sängstuvall, L. Improved Harvesting Technology for Thinning of Small Diameter Stands: Impact on Forest Management and National Supply of Forest Biomass; Department of Forest Resource Management, Swedish University of Agricultural Sciences: Umeå, Sweden, 2018. [Google Scholar]
- MITECO. Third National Forest Inventory 1997–2007. Available online: https://www.miteco.gob.es/es/biodiversidad/servicios/banco-datos-naturaleza/informacion-disponible/tablas_resumen_IFN3.aspx (accessed on 17 January 2022).
- Tolosana, E.; Bados, R.; Laina, R.; Bacescu, N.M.; De la Fuente, T. Forest Biomass Collection from Systematic Mulching on Post-Fire Pine Regeneration with BioBaler WB55: Productivity, Cost and Comparison with a Conventional Treatment. Forests 2021, 12, 979. [Google Scholar] [CrossRef]
- Bergström, D.; Di Fulvio, F. Comparison of the cost and energy efficiencies of present and future biomass supply systems for young dense forests. Scand. J. For. Res. 2014, 29, 793–812. [Google Scholar] [CrossRef]
- Rodríguez-Soalleiro, R.; Madrigal-Collazo, A. Selvicultura de Pinus Pinaster Ait. Subsp. Atlantica. In Compendio de Selvicultura Aplicada en España; Serrada, R., Montero, G., Reque, J., de Vill, H., Eds.; Instituto Nacional de Investigaciones Agrarias (National Institute of Agricultural Reserach): Madrid, Spain, 2008; pp. 367–398. (In Spanish) [Google Scholar]
- Bergström, D.; Fernandez-Lacruz, R.; De La Fuente, T.; Höök, C.; Krajnc, N.; Malinen, J.; Nuutinen, Y.; Triplat, M.; Nordfjell, T. Effects of boom-corridor thinning on harvester productivity and residual stand structure. Int. J. For. Eng. 2022, 1–17, Ahead-of-Print. [Google Scholar] [CrossRef]
- Bergström, D.; Bergsten, U.; Nordfjell, T.; Lundmark, T. Simulation of geometric thinning systems and their time requirements for young forests. Silva Fenn. 2007, 41, 311. [Google Scholar] [CrossRef] [Green Version]
- Bergström, D.; Bergsten, U.; Nordfjell, T. Comparison of Boom-Corridor Thinning and Thinning From Below Harvesting Methods in Young Dense Scots Pine Stands. Silva Fenn. 2010, 44, 669–679. [Google Scholar] [CrossRef] [Green Version]
- Ahnlund Ulvcrona, K.; Bergström, D.; Bergsten, U. Stand structure after thinning in 1–2 m wide corridors in young dense stands. Silva Fenn. 2017, 51, 1563. [Google Scholar] [CrossRef] [Green Version]
- Nuutinen, Y.; Miina, J.; Saksa, T.; Bergström, D.; Routa, J. Comparing the characteristics of boom-corridor and selectively thinned stands of Scots pine and birch. Silva Fenn. 2021, 55, 10462. [Google Scholar] [CrossRef]
- Witzell, J.; Bergström, D.; Bergsten, U. Variable corridor thinning—A cost-effective key to provision of multiple ecosystem services from young boreal conifer forests? Scand. J. For. Res. 2019, 34, 497–507. [Google Scholar] [CrossRef]
- Abdullah, E.; Akay, M.Y.; Fatih, T. Impact of Mechanized Harvesting Machines on Forest Ecosystem: Residual Stand Damage. J. Appl. Sci. 2006, 6, 2414–2419. [Google Scholar]
- Sinclair, W.A.; Lyon, H.H.; Johnson, W.T. Disease of Trees and Shrubs; Comstock Publishing Association, a Division of Cornell University Press: Ithaca, NY, USA, 1987; 575p. [Google Scholar]
- Vasiliauskas, R. Damage to Trees due to Forestry Operations and its Pathological Significance in Temperate Forests: A Literature Review. J. For. 2001, 74, 319–336. [Google Scholar] [CrossRef] [Green Version]
- Bodaghi, A.I.; Nikooy, M.; Naghdi, R.; Tavankar, F. Logging damage to residual trees during sustainable harvesting of uneven-age stands in the Hyrcanian forests of Iran. N. Z. J. For. Sci. 2020, 50, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Tavankar, T.; Bonyad, A.; Marchi, E.; Venanzi, R.; Picchio, R. Effect of logging wounds on diameter growth of beech (Fagus orientalis Lipsky) trees following selection cutting in Caspian forest of Iran. N. Z. J. For. Sci. 2015, 45, 19. [Google Scholar] [CrossRef] [Green Version]
- Tavankar, F.; Picchio, R.; Nikooy, M.; Lo Monaco, A.; Venanzi, R.; Iranparast Bodaghi, A. Healing rate of logging wounds on broadleaf trees in Hyrcanian forest with some technological implications. Drewno 2017, 60, 65–80. [Google Scholar]
- Yong, R.N.; Fattah, E.A.; Skiadas, N. Vehicle Traction Mechanics; Elsevier Science Pub. Co., Inc.: New York, NY, USA, 1984. [Google Scholar]
- Taylor, H.M.; Brar, G.S. Effect of soil compaction on root development. Soil Till. Res. 1991, 19, 37–52. [Google Scholar] [CrossRef]
- Cambi, M.; Certini, G.; Neri, F.; Marchi, E. The impact of heavy traffic on forest soils: A review. For. Ecol. Manag. 2015, 338, 124–138. [Google Scholar] [CrossRef]
- Mohammad, R.G.; Robin, A.; Martin, K. A Short Review of Fuel Consumption Rates of Whole Tree and Cut-To-Length Timber Harvesting Methods. Curr. Investig. Agric. Curr. Res. 2018, 5, 603–606. [Google Scholar]
- ISO 14040; Environmental Management e Life Cycle Assessment e Principles and Framework. International Organization for Standardization: Geneva, Switzerland, 2006.
- De La Fuente, T. System analysis and life cycle assessment of forest supply chains with integrated biomass production. Acta Univ. Agric. Suec. 2017, 54, 96. [Google Scholar]
- Whittaker, C.L.; Mortimer, N.; Matthews, R. Understanding the Carbon Footprint of Timber Transport in the United Kingdom; Report; North Energy: Oslo, Norway, 2010; p. 56. [Google Scholar]
- Whittaker, C.L.; Mortimer, N.D.; Murphy, R.; Matthews, R. Energy and greenhouse gas balance of the use of forest residues for bioenergy production in the UK. Biomass Bioenerg 2011, 35, 4581–4594. [Google Scholar] [CrossRef] [Green Version]
- Johnson, L.; Lippke, B.; Oneil, E. Modeling biomass collection and wood processing Life Cycle Analysis. For. Prod. J. 2012, 62, 258–272. [Google Scholar] [CrossRef]
- Murphy, F.; Devlin, G.; McDonnell, K. Forest biomass supply chains in Ireland: A life cycle assessment of GHG emissions and primary energy balances. Appl. Energy 2014, 116, 1–8. [Google Scholar] [CrossRef] [Green Version]
- De La Fuente, T.; Athanassiadis, D.; González-García, S.; Nordfjell, T. Cradle-to-gate life cycle assessment of forest supply chains: Comparison of Canadian and Swedish case studies. J. Clean. Prod. 2017, 143, 866–881. [Google Scholar] [CrossRef]
- Björheden, R.; Fröding, A. A New Routine for Checking the Biological Quality of Thinning in Practice; Research Notes 48; Swedish Department of Operational Efficiency, University of Agricultural Sciences: Garpenberg, Sweden, 1986. [Google Scholar]
- EU-JRC-IES (European Commission-Joint Research Centre-Institute for Environment and Sustainability). International Reference Life Cycle Data System (ILCD) Handbook—General Guide for Life Cycle Assessment—Detailed Guidance; EUR 24708 EN.; Publications Office of the European Union: Luxembourg, 2010. [Google Scholar]
- Dones, R.; Bauer, C.; Bolliger, R.; Burger, B.; Faist Enmenegger, M.; Frischknecht, R.; Heck, T.; Jungbluth, N.; Röder, A.; Tuchschmid, M. Life Cycle Inventories of Energy Systems: Results for Current Systems in Switzerland and Other UCTE Countries; Ecoinvent Report N. 5; Paul Scherrer Institut Villigen, Swiss Centre for Life Cycle Inventories: Dübendorf, Switzerland, 2007. [Google Scholar]
- Nemecek, T.; Käggi, T. Life Cycle Inventories of Agricultural Production Systems; Final report ecoinvent v2.0 No. 15a; Swiss Centre for Life Cycle Inventories: Zurich and Dübendorf, Switzerland, 2007. [Google Scholar]
- Ecoinvent. Ecoinvent Database. Available online: https://ecoinvent.org/the-ecoinvent-database/ (accessed on 8 March 2022).
- ISO 14044; Environmental Management—Life Cycle Assessment—Requirements and Guidelines. International Organization for Standardization: Geneva, Switzerland, 2006.
- Goedkoop, M.J.; Heijungs, R.; Huijbregts, M.; De Schryver, A.; Struijs, J.; Van Zelm, R. ReCiPe 2008. A Life Cycle Impact Assessment Method Which Comprises Harmonised Category Indicators at the Midpoint and the Endpoint Level. Report I: Characterisation. 2009. Available online: http://www.lcia-recipe.net (accessed on 8 March 2022).
- Klein, D.; Wolf, C.; Schulz, C.; Weber-Blaschke, G. 20 years of life cycle assessment (LCA) in the forestry sector: State of the art and a methodical proposal for the LCA of forest production. Int. J. Life Cycle Assess. 2015, 20, 556–575. [Google Scholar] [CrossRef]
- Ahlgren, S.; Björklund, A.; Ekman, A.; Karlsson, H.; Berlin, J.; Börjesson, P.; Ekvall, T.; Finnveden, G.; Janssen, M.; Strid, I. Review of methodological choices in LCA of biorefinery systems—key issues and recommendations. Biofuels Bioprod. Biorefin. 2015, 9, 606–619. [Google Scholar] [CrossRef] [Green Version]
- Finnveden, G.; Hauschild, M.Z.; Ekvall, T.; Guinee, J.; Heijungs, R.; Hellweg, S.; Koehler, A.; Pennington, D.; Suh, S. Recent developments in Life Cycle Assessment. J. Environ. Manag. 2009, 91, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Berg, S. Terrain Classification System for Forestry Work; The Forest Operations Institute of Sweden: Kista, Sweden, 1992. [Google Scholar]
- Heitzman, E.; Grell, A.G. Residual tree damage along forwarder trails from cut-to-length thinning in Maine spruce stands. North. J. Appl. For. 2002, 19, 161–167. [Google Scholar] [CrossRef]
- Jäghagen, K.; Lageson, H. Timber quality after thinning from above and below in stands of Pinus sylvestris. Scand. J. For. Res. 1996, 11, 336–342. [Google Scholar] [CrossRef]
- Tavankar, F.; Bonyad, A.; Majnounian, B. Affective factors on residual tree damage during selection cutting and cable-skidder logging in the Caspian forests, Northern Iran. Ecol. Eng. 2015, 83, 505–512. [Google Scholar] [CrossRef]
- Cabral, O.M.J.V. Avaliação Operacional da Colheita de Madeira em Desbastes de Pinus taeda L. Master’s Thesis, Setor de Ciências Agrárias, Universidade Estadual do Centro-Oeste, Guarapuava, Brazil, 2015; 110p. [Google Scholar]
- Lopes, E.S.; Oliveira, F.M.; Droog, A. Damage to residual trees following commercial thinning by harvester and forwarder in a Pinus taeda stand in Southern Brazil. Sci. For. 2018, 46, 167–175. [Google Scholar] [CrossRef]
- Diniz, C.C.C.; de Oliveira, F.M.; Junior, R.T.; Robert, R.C.G.; Tramontini, M.P.; de Brito, F.B. Damage caused by a wheeled harvester to the residual trees of a pinus stand in the first mechanized mixed thinning. Floresta 2020, 50, 1547–1554. [Google Scholar] [CrossRef]
- Läspä, O.; Nurmi, J. Geometrical thinning in energy wood harvesting. Int. J. For. Eng. 2018, 29, 171–178. [Google Scholar] [CrossRef] [Green Version]
- Nikooy, M.; Tavankar, F.; Naghdi, R.; Ghorbani, A.; Jourgholami, M.; Picchio, R. Soil impacts and residual stand damage from thinning operations. Int. J. For. Eng. 2020, 31, 126–137. [Google Scholar] [CrossRef]
- Picchio, R.; Neri, F.; Maesano, M.; Savelli, S.; Sirna, A.; Blasi, S.; Baldini, S.; Marchi, E. Growth effects of thinning damage in a Corsican pine (Pinus laricio Poiret) stand in central Italy. For. Ecol. Manag. 2011, 262, 237–243. [Google Scholar] [CrossRef]
- Vasiliauskas, A.; Stenlid, J. Discoloration following bark stripping wounds on Fraxinus excelsior. Eur. J. For. Pathol. 2007, 28, 383–390. [Google Scholar] [CrossRef]
- Athanassiadis, D. Residual stand damage following cut-to-length harvesting operations with a farm tractor in two conifer stands. Silva Fenn. 1997, 31, 461–467. [Google Scholar] [CrossRef] [Green Version]
- Lageson, H. Effects of thinning type on the harvester productivity and on the residual stand. J. For. Eng. 1997, 8, 7–14. [Google Scholar]
- Ursic, B.; Vusic, D.; Papa, I.; Poršinsky, T.; Zecic, Ž.; Ðuka, A. Damage to Residual Trees in Thinning of Broadleaf Stand by Mechanised Harvesting System. Forests 2022, 13, 51. [Google Scholar] [CrossRef]
- Fjeld, D.; Granhus, A. Injuries after selection harvesting in multi-storied spruce stands—The influence of operating systems and harvest intensity. Int. J. For. Eng. 1998, 9, 33–40. [Google Scholar] [CrossRef]
- Han, H.S.; Kellogg, L.D.; Fillip, G.M.; Brown, T.D. Scar closure and future timber value losses from thinning damage in western Oregon. For. Prod. J. 2000, 50, 36–42. [Google Scholar]
- Prindulis, U.; Lazdiņš, A.; Kalēja, S. Impact of biomass extraction method on damage to remaining trees in mechanized thinning of deciduous stands. Res. Rural Devel. 2015, 2, 74–80. [Google Scholar]
Country | Thinning Technique | DBH (cm) | Height (m) | Trees/ha DBH ≥ 1 cm | Trees/ha DBH ≥ 7 cm |
---|---|---|---|---|---|
Sweden | BCT | 4.2 (0.6) | 5.7 (0.5) | 11,890 (3914) | 1960 (455) |
ST | 4.3 (0.7) | 5.8 (0.6) | 10,590 (4013) | 1930 (447) | |
Finland | BCT | 4.6 (0.5) | 6.2 (0.4) | 9708 (2562) | 2258 (694) |
ST | 4.4 (0.6) | 6.0 (1.1) | 8617 (2573) | 1692 (714) | |
Slovenia | BCT | 5.0 (1.5) | 7.4 (1.0) | 10,778 (3287) | 2094 (708) |
ST | 5.3 (2.0) | 7.6 (1.5) | 10,038 (3282) | 2069 (873) | |
Spain | BCT | 5.1 (0.6) | 4.3 (1.5) | 12,330 (2659) | 1865 (736) |
ST | 5.5 (1.39) | 4.4 (1.5) | 12,445 (3221) | 2060 (727) |
Species | Country | Pre-Harvest Distribution of Tree Species (N) per Thinning Technique | Number of Harvested Trees (N) per Species and Thinning Technique | Percentage (%) of Harvested Trees per Species and Thinning Technique | |||
---|---|---|---|---|---|---|---|
ST | BCT | ST | BCT | ST | BCT | ||
Pinus sylvestris | Sweden | 253 | 234 | 129 | 112 | 51.0 | 47.9 |
Picea abies | Sweden | 32 | 50 | 19 | 27 | 59.4 | 54.0 |
Betula sp. | Sweden | 36 | 45 | 18 | 30 | 50.0 | 66.7 |
Other broadleaves | Sweden | 50 | 63 | 43 | 56 | 64.0 | 63.5 |
Picea abies | Finland | 23 | 33 | 11 | 6 | 47.8 | 18.2 |
Betula sp. | Finland | 179 | 236 | 135 | 174 | 75.4 | 73.7 |
Other broadleaves | Finland | 1 | 2 | 1 | 1 | 100.0 | 50.0 |
Tilia cordata | Slovenia | 132 | 79 | 50 | 44 | 37.9 | 55.7 |
Betula pendula | Slovenia | 142 | 134 | 118 | 92 | 83.1 | 68.7 |
Fagus sylvatica | Slovenia | 99 | 139 | 42 | 53 | 42.4 | 38.1 |
Acer pseudoplatanus | Slovenia | 46 | 24 | 36 | 12 | 78.3 | 50.0 |
Ostrya carpinifolia | Slovenia | 18 | 46 | 7 | 31 | 38.9 | 67.4 |
Corylus avellana | Slovenia | 47 | 78 | 41 | 66 | 87.2 | 84.6 |
Picea abies | Slovenia | 101 | 82 | 34 | 38 | 33.7 | 46.3 |
Other broadleaves | Slovenia | 14 | 9 | 12 | 6 | 85.7 | 57.9 |
Quercus pyrenaica | Spain | 400 | 342 | 172 | 130 | 43.0 | 38.0 |
Thinning Technique | Country | Time Consumption (PMh/ODt) | Fuel Consumption (l/PMh) |
---|---|---|---|
BCT | Sweden | 0.16 (0.06) | 14.49 (0.56) |
Finland | 0.22 (0.06) | 14.20 (1.33) | |
Slovenia | 0.19 (0.08) | 15.08 (1.03) | |
Spain | 0.24 (0.07) | 14.65 (1.64) | |
ST | Sweden | 0.19 (0.03) | 14.56 (0.80) |
Finland | 0.24 (0.06) | 14.25 (1.73) | |
Slovenia | 0.22 (0.07) | 15.49 (1.14) | |
Spain | 0.35 (0.08) | 14.46 (2.02) |
Country | Thinning Technique | Number of Damaged Trees/100 m Strip Road after Thinning | Number of Damaged Trees/ha after Forwarding |
---|---|---|---|
Sweden | BCT | 4.4 (4.0) | 125.0 (35.4) |
ST | 5.1 (2.2); p-value = 0.662 | 120.0 (88.8); p-value = 0.870 | |
Finland | BCT | 2.3 (2.7) | 91.7 (58.5) |
ST | 4.3 (5.3); p-value = 0.557 | 133.3 (112.5); p-value = 0.666 | |
Slovenia | BCT | 6.6 (4.2) * | 185.7 (98.9) |
ST | 12.0 (5.1) *; p-value = 0.013 | 210.7 (100.3); p-value = 0.512 | |
Spain | BCT | 2.3 (2.2) | 75.0 (48.6) * |
ST | 2.5 (2.6); p-value = 0.853 | 165.0 (94.4;) *; p-value = 0.015 |
Country | Thinning Technique | Strip Road Length (m) | Strip Road Width (m) | Soil Damage/100 m | Deepest Rut (cm) |
---|---|---|---|---|---|
Sweden | BCT | 47.3 (5.2) | 4.6 (0.3) | 7.8 (6.2) | 20.9 (11.0) |
ST | 46.9 (5.8) | 4.9 (0.6) | 7.3 (1.8) | 17.8 (4.3) | |
Finland | BCT | 49.2 (2.0) | 4.6 (0.4) | 6.0 (8.0) | 16.7 (2.9) |
ST | 50.0 (0.0) | 4.6 (0.3) | 6.7 (12.1) | 25.0 (7.1) | |
Slovenia | BCT | 49.0 (3.0) | 4.9 (0.4) | 0.7 (1.3) | 13.3 (2.9) |
ST | 48.2 (4.0) | 5.0 (0.9) | 0.9 (1.6) | 10.0 (0.0) | |
Spain | BCT | 51.6 (2.3) | 4.6 (0.5) | 0.0 | - |
ST | 51.5 (2.7) | 4.5 (0.4) | 0.1 (0.3) | 40 (0.0) |
Country | Thinning Technique | Stump Height (cm) |
---|---|---|
Sweden | BCT | 38.9 (3.6) |
ST | 36.5 (3.7) | |
Finland | BCT | 28.5 (3.8) |
ST | 25.4 (1.4) | |
Slovenia | BCT | 28.2 (5.1) |
ST | 25.4 (5.6) | |
Spain | BCT | 24.8 (4.3) |
ST | 25.9 (4.2) |
Country | Thinning Technique | Bark Scratched | Bark Squeezed | Wood Damage (Depth; cm) | Large Broken Branch (>10 cm Diameter) | ||||
---|---|---|---|---|---|---|---|---|---|
AT | AF | AT | AF | AT | AF | AT | AF | ||
Sweden | BCT | 3.4 | 20.0 | 59.1 | 55.8 | 37.4 (0.6) | 19.2 (0.5) | 0.0 | 5.0 |
ST | 3.7 | 5.6 | 55.1 | 58.6 | 41.3 (0.9) | 35.8 (0.8) | 0.0 | 0.0 | |
Finland | BCT | 11.1 | 20.8 | 55.6 | 50.0 | 33.3 (0.3) | 29.2 (0.9) | 0.0 | 0.0 |
ST | 27.4 | 28.3 | 35.7 | 46.1 | 36.9 (0.1) | 25.6 (0.5) | 0.0 | 0.0 | |
Slovenia | BCT | 66.3 | 75.0 | 19.1 | 25.0 | 13.7 (1.1) | 0.0 | 1.0 | 0.0 |
ST | 80.9 | 66.3 | 12.0 | 31.9 | 7.1 (1.4) | 1.8 (1.1) | 0.0 | 0.0 | |
Spain | BCT | 14.4 | 54.2 | 12.2 | 9.2 | 70.0 (0.7) | 36.7 (0.5) | 3.3 | 0.0 |
ST | 0.0 | 33.8 | 49.3 | 24.4 | 50.7 (0.7) | 41.8 (0.4) | 0.0 | 0.0 |
Country | Thinning Technique | <0.3 m | 0.3–1.0 m | >1.0 m | <50 cm2 | 50–200 cm2 | >200 cm2 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AT | AF | AT | AF | AT | AF | AT | AF | AT | AF | AT | AF | ||
Sweden | BCT | 16.7 | 27.6 | 34.0 | 17.7 | 49.3 | 54.7 | 69.7 | 79.9 | 13.6 | 6.4 | 16.7 | 13.7 |
ST | 34.4 | 41.9 | 42.3 | 32.5 | 23.3 | 25.7 | 73.3 | 84.8 | 11.7 | 1.9 | 15.0 | 13.3 | |
Finland | BCT | 83.3 | 91.7 | 16.7 | 0.0 | 0.0 | 8.3 | 83.3 | 91.7 | 16.7 | 0.0 | 0.0 | 8.3 |
ST | 75.0 | 88.9 | 25.0 | 8.3 | 0.0 | 2.8 | 75.0 | 94.4 | 25.0 | 5.6 | 0.0 | 0.0 | |
Slovenia | BCT | 5.5 | 1.1 * | 43.6 | 32.5 | 50.8 | 66.4 | 73.3 | 44.7 | 18.1 | 33.8 | 8.6 | 21.5 |
ST | 7.4 | 21.2 * | 35.9 | 18.1 | 56.7 | 60.8 | 61.7 | 36.2 | 29.8 | 25.2 | 8.4 | 38.7 | |
Spain | BCT | 50.6 | 51.7 | 17.2 | 21.3 | 32.2 | 27.1 | 91.7 | 66.7 | 8.3 | 7.1 | 0.0 | 26.2 |
ST | 41.9 | 26.5 | 19.5 | 32.2 | 38.6 | 41.3 | 87.6 | 75.7 | 7.6 | 6.0 | 4.8 | 18.3 |
Country | Thinning Technique | Machine Movement; Harvester Head | Machine Movement; Machine Wheels | Saw Wound | Tree Felling | Forwarding Work | Others or Unknown | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
AT | AF | AT | AF | AT | AF | AT | AF | AF | AT | AF | ||
Sweden | BCT | 53.6 | 27.5 | 27.8 | 0.0 | 0.0 | 0.0 | 0.0 | 10.0 | 22.5 | 18.7 | 40.0 |
ST | 79.7 | 31.6 | 15.0 | 11.1 | 0.0 | 0.0 | 1.7 | 0.0 | 9.3 | 3.7 | 48.0 | |
Finland | BCT | 38.9 | 83.3 | 50.0 | 8.3 | 0.0 | 0.0 | 11.1 | 8.3 | 0.0 | 0.0 | 0.0 |
ST | 47.6 | 80.6 | 33.3 | 19.4 | 0.0 | 0.0 | 19.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
Slovenia | BCT | 39.0 | 54.2 | 17.2 | 0.0 * | 5.8 | 0.0 | 37.9 | 9.0 | 36.7 | 0.0 | 0.0 |
ST | 58.8 | 55.3 | 5.1 | 15.1 * | 3.0 | 0.0 | 33.1 | 5.3 | 22.5 | 0.0 | 1.8 | |
Spain | BCT | 81.7 | 45.2 | 8.3 | 19.0 | 0.0 | 0.0 | 10.0 | 35.7 | 0.0 | 0.0 | 0.0 |
ST | 95.2 | 83.4 | 4.5 | 1.4 | 0.0 | 0.9 | 0.0 | 14.3 | 0.0 | 0.0 | 0.0 |
Parameter | Standard Error | T Statistic | p-Value |
---|---|---|---|
Constant | 3.88645 | 4.98389 | 0.0000 |
Removal (R) | 0.000319273 | 2.33076 | 0.0227 |
Working method (WM) | 1.78602 | −2.83333 | 0.0060 |
Remaining trees with DBH ≥ 7 cm (RT) | 0.00245497 | −2.72133 | 0.0082 |
Country | Thinning Technique | CCP | TAP | FEP | MEP | POFP | FDP |
---|---|---|---|---|---|---|---|
(kg CO2 eq) | (g SO2 eq) | (g P eq) | (g N eq) | (g NMVOC) | (kg Oil eq) | ||
Sweden | BCT | 9.1 | 75.0 | 1.5 | 4.6 | 128.1 | 3.1 |
ST | 10.6 | 87.4 | 1.8 | 5.3 | 149.1 | 3.6 | |
Finland | BCT | 12.2 | 101.2 | 2.0 | 6.2 | 172.7 | 4.2 |
ST | 13.4 | 110.8 | 2.2 | 6.8 | 189.1 | 4.5 | |
Slovenia | BCT | 10.9 | 90.7 | 1.8 | 5.5 | 155.2 | 3.7 |
ST | 13.1 | 109.1 | 2.1 | 6.7 | 186.9 | 4.5 | |
Spain | BCT | 13.8 | 114.7 | 2.2 | 7.0 | 196.2 | 4.7 |
ST | 19.6 | 161.8 | 3.3 | 9.9 | 276.2 | 6.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de la Fuente, T.; Bergström, D.; Fernandez-Lacruz, R.; Hujala, T.; Krajnc, N.; Laina, R.; Nordfjell, T.; Triplat, M.; Tolosana, E. Environmental Impacts of Boom-Corridor and Selectively Thinned Small-Diameter-Tree Forests. Sustainability 2022, 14, 6075. https://doi.org/10.3390/su14106075
de la Fuente T, Bergström D, Fernandez-Lacruz R, Hujala T, Krajnc N, Laina R, Nordfjell T, Triplat M, Tolosana E. Environmental Impacts of Boom-Corridor and Selectively Thinned Small-Diameter-Tree Forests. Sustainability. 2022; 14(10):6075. https://doi.org/10.3390/su14106075
Chicago/Turabian Stylede la Fuente, Teresa, Dan Bergström, Raul Fernandez-Lacruz, Teppo Hujala, Nike Krajnc, Ruben Laina, Tomas Nordfjell, Matevz Triplat, and Eduardo Tolosana. 2022. "Environmental Impacts of Boom-Corridor and Selectively Thinned Small-Diameter-Tree Forests" Sustainability 14, no. 10: 6075. https://doi.org/10.3390/su14106075