Sustainable Decommissioning Strategies for Nuclear Power Plants: A Systematic Literature Review
Abstract
:1. Introduction
2. Sustainable Decommissioning Strategy of NPPs
3. Methods
4. Descriptive Analysis
5. Results and Discussion
5.1. Results of the Quantitative and Qualitative Review
5.1.1. Summary by Adopted Decommissioning Strategy
5.1.2. Summary of the Eight Influencing Factors
5.2. Co-Occurrence Network Analysis
5.3. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
NPP | Nuclear Power Plant |
UCLA | University of California, Los Angeles |
ID | Immediate Dismantling |
DD | Deferred Dismantling |
ET | Entombment |
SE | Safe Enclosure |
PD | Partial Dismantling |
ISD | In Situ Disposal |
IAEA | International Atomic Energy Agency |
PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
WoS | Web of Sciences |
SCIE | Science Citation Index Expanded |
ISI | Institute for Scientific Information |
References
- Nuclear Energy Institute (NEI). The Advantages of Nuclear Energy. Available online: https://www.nei.org/advantages (accessed on 22 August 2021).
- International Atomic Energy Agency (IAEA). Nuclear Power Reactors in the World, 2021 Edition. IAEA. 2021. Available online: https://www-pub.iaea.org/MTCD/Publications/PDF/RDS-2-41_web.pdf (accessed on 22 August 2021).
- International Atomic Energy Agency (IAEA). The international nuclear and radiological event scale (INES). Available online: https://www.iaea.org/sites/default/files/ines.pdf (accessed on 22 August 2021).
- Operational Performance Information System for Nuclear Power Plant (OPIS). Representative examples of INES classification criteria. Available online: https://opis.kins.re.kr/opis?act=KROCA2100R (accessed on 1 September 2021).
- Hindmarsh, R.; Priestley, R. The Fukushima Effect: A New Geopolitical Terrain, 1st ed.; Routledge Studies in Science, Technology and Society; Routledge: New York, NY, USA, 2015. [Google Scholar] [CrossRef]
- Nuclear Energy Institute (NEI). Decommissioning Nuclear Power Plants, Fact Sheet. NEI, 2016. Available online: https://www.nei.org/resources/fact-sheets/decommissioning-nuclear-power-plants (accessed on 22 August 2021).
- Suh, Y.A.; Hornibrook, C.; Yim, M.S. Decisions on nuclear decommissioning strategies: Historical review. Prog. Nucl. Energy 2018, 106, 34–43. [Google Scholar] [CrossRef]
- International Atomic Energy Agency (IAEA). Selection of Decommissioning Strategies: Issues and Factors. IAEA-TECDOC-1478, IAEA. 2005. Available online: https://www.iaea.org/publications/7393/selection-of-decommissioning-strategies-issues-and-factors (accessed on 2 September 2021).
- International Atomic Energy Agency (IAEA). Policies and Strategies for the Decommissioning of Nuclear and Radiological Facilities. IAEA Nuclear Energy Series No. NW-G-2.1. 2011. Available online: https://www.iaea.org/publications/8659/policies-and-strategies-for-the-decommissioning-of-nuclear-and-radiological-facilities (accessed on 2 September 2021).
- Laraia, M. Nuclear Decommissioning. Planning, Execution and International Experience; Woodhead Publishing: Sawston, UK, 2012. [Google Scholar]
- Bayliss, C.; Langley, K. Nuclear Decommissioning, Waste Management, and Environmental Site Remediation; Elsevier: Amsterdam, The Netherlands, 2003. [Google Scholar]
- Szőke, I.; Louka, M.N.; Bryntesen, T.R.; Edvardsen, S.T.; Bratteli, J. Comprehensive support for nuclear decommissioning based on 3D simulation and advanced user interface technologies. J. Nucl. Sci. Technol. 2015, 52, 371–387. [Google Scholar] [CrossRef] [Green Version]
- Volk, R.; Hübner, F.; Hünlich, T.; Schultmann, F. The future of nuclear decommissioning–A worldwide market potential study. Energy Policy 2019, 124, 226–261. [Google Scholar] [CrossRef]
- Asahara, A.; Kawasaki, D.; Yanagihara, S. Study on strategy construction for dismantling and radioactive waste management at Fukushima Daiichi Nuclear Power Station. Nucl. Eng. Des. 2021, 374, 111066. [Google Scholar] [CrossRef]
- Lough, W.T.; White, K.P., Jr. A critical review of nuclear power plant decommissioning planning studies. Energy Policy 1990, 18, 471–479. [Google Scholar] [CrossRef]
- Bond, A.; Bussell, M.; O’Sullivan, P.; Palerm, J. Environmental impact assessment and the decommissioning of nuclear power plants—a review and suggestion for a best practicable approach. Environ. Impact Assess. Rev. 2003, 23, 197–217. [Google Scholar] [CrossRef]
- Devgun, J.S. A review of decommissioning considerations for new reactors. In Proceedings of the WM2008 Conference, Phoenix, AZ, USA, 24–28 February 2008. [Google Scholar]
- Crompton, A.J.; Gamage, K.A.; Jenkins, A.; Taylor, C.J. Alpha particle detection using alpha-induced air radioluminescence: A review and future prospects for preliminary radiological characterisation for nuclear facilities decommissioning. Sensors 2018, 18, 1015. [Google Scholar] [CrossRef] [Green Version]
- Croudace, I.W.; Russell, B.C.; Warwick, P.W. Plasma source mass spectrometry for radioactive waste characterisation in support of nuclear decommissioning: A review. J. Anal. At. Spectrom. 2017, 32, 494–526. [Google Scholar] [CrossRef] [Green Version]
- Remeikis, V.; Grineviciute, J.; Duškesas, G.; Juodis, L.; Plukienė, R.; Plukis, A. Review of modeling experience during operation and decommissioning of RBMK-1500 reactors. I. Safety improvement studies during operation. Nucl. Eng. Des. 2021, 380, 110952. [Google Scholar] [CrossRef]
- Bogue, R. Robots in the nuclear industry: A review of technologies and applications. Ind. Robot. Int. J. 2001, 38, 113–118. [Google Scholar] [CrossRef]
- Kim, S. Special Issue Technology and Management for Sustainable Buildings and Infrastructures, Special Issue Information. Available online: https://www.mdpi.com/journal/sustainability/special_issues/Technology_sensors (accessed on 6 September 2021).
- Randers, J.; Behrens, W.W.; Pestel, E. The Limits to Growth: A Report to The Club of Rome (1972). 2007. Available online: https://web.ics.purdue.edu/~wggray/Teaching/His300/Illustrations/Limits-to-Growth.pdf (accessed on 6 September 2021).
- U.S. Environmental Protection Agency (US EPA). What Is Sustainability? Available online: https://www.epa.gov/sustainability/learn-about-sustainability#what (accessed on 6 September 2021).
- University of California, Los Angeles (UCLA). What is Sustainability? Available online: https://www.sustain.ucla.edu/what-is-sustainability/ (accessed on 6 September 2021).
- Oxford. Sustainability, UK Dictionary. Available online: https://www.lexico.com/definition/sustainability (accessed on 8 September 2021).
- Gillin, K. The benefits of sustainable decommissioning approach, Lloyd’s Register, 12 March 2019. Available online: https://www.lr.org/en/insights/sustainability/the-benefits-of-a-sustainable-decommissioning-approach/ (accessed on 1 November 2021).
- Wikipedia. Strategy. Available online: https://en.wikipedia.org/wiki/Strategy (accessed on 26 December 2021).
- Freedman, L. Strategy; Oxford University Press: Oxford, UK, 2013; ISBN 978-0-19-932515-3. [Google Scholar]
- Mintzberg, H.; Quinn, J.B. The Strategy Process: Concepts, Contexts, Cases; Prentice Hall: Hoboken, NJ, USA, 1996; ISBN 978-0-132-340304. [Google Scholar]
- World Nuclear News. REVIEW: Planning Ahead for Decommissioning. Available online: https://www.world-nuclear-news.org/Articles/REVIEW-Planning-ahead-for-decommissioning (accessed on 1 November 2021).
- Organisation for Economic Co-operation and Development (OECD). Selecting Strategies for the Decommissioning of Nuclear Facilities, A Status Report; Nuclear Energy Agency (NEA): Paris, France; OECD: Paris, France, 2006; ISBN 92-64-02305-4. [Google Scholar]
- European Commission (EC). Analysis of the Factors Influencing the Selection of Strategies for Decommissioning of Nuclear Installations; Final reports; EC: Brussels, Belgium, 2005. [Google Scholar]
- Thierfeldt, S. Safe enclosure and entombment strategies in nuclear decommissioning projects. In Nuclear Decommissioning; Woodhead Publishing: Sawston, UK, 2012; pp. 245–292. [Google Scholar] [CrossRef]
- Laraia, M. Reuse and redevelopment of decommissioned nuclear sites: Strategies and lessons learned. In Nuclear Decommissioning; Woodhead Publishing: Sawston, UK, 2012; pp. 475–510. [Google Scholar] [CrossRef]
- Zohuri, B. Nuclear fuel cycle and decommissioning. In Nuclear Reactor Technology Development and Utilization; Woodhead Publishing: Sawston, UK, 2020; pp. 61–120. [Google Scholar] [CrossRef]
- Lainetti, P.D.O.; de Freitas, A.A.; Mindrisz, A.C.; Camilo, R.L. Decommissioning of Nuclear Fuel Cycle Facilities in the IPEN-CNEN/SP. 2007. Available online: https://www.ipen.br/biblioteca/2007/eventos/13964.pdf (accessed on 9 November 2021).
- Leclair, A.N.; Lemire, D.S. Information management for nuclear decommissioning projects. In Nuclear Decommissioning; Woodhead Publishing: Sawston, UK, 2012; pp. 777–798. [Google Scholar] [CrossRef]
- Borrmann, F. Knowledge management toward, during, and after decommissioning. In Advances and Innovations in Nuclear Decommissioning; Woodhead Publishing: Sawston, UK, 2017; pp. 73–90. [Google Scholar] [CrossRef]
- Monteiro, D.B.; Moreira, J.M.L.; Maiorino, J.R. A method for decommissioning strategy proposal and a cost estimation considering a multiple reactor site with interdependent plants. Prog. Nucl. Energy 2020, 127, 103440. [Google Scholar] [CrossRef]
- Monteiro, D.B.; Moreira, J.M.L.; Maiorino, J.R. A new management tool and mathematical model for decommissioning cost estimation of multiple reactors site. Prog. Nucl. Energy 2019, 114, 61–83. [Google Scholar] [CrossRef]
- Hoang, P.T.; Choi, Y.S.; Rhee, I.; Kang, G.; Choi, H.R. A new torque minimization method for heavy-duty redundant manipulators used in nuclear decommissioning tasks. Intell. Serv. Robot. 2021, 14, 459–469. [Google Scholar] [CrossRef]
- Jeong, K.; Choi, M.; Kim, A.; Lee, J.; Lee, B. A systematic approach to the effective strategy and plan of stakeholders for safety improvement during decommissioning of nuclear facilities. Ann. Nucl. Energy 2021, 158, 108307. [Google Scholar] [CrossRef]
- Jeong, K.; Choi, B.; Moon, J.; Hyun, D.; Lee, J.; Kim, I.; Seo, J. An evaluation of the dismantling technologies for decommissioning of nuclear power plants. Ann. Nucl. Energy 2014, 69, 62–64. [Google Scholar] [CrossRef]
- Greenwood, D.F.; Westfahl, R.K.; Rymsha, J.W. Analysis of decommissioning costs for nuclear power reactors. Nucl. Technol. 1983, 62, 190–206. [Google Scholar] [CrossRef]
- Bogatov, S.A.; Vysotskii, V.L.; Sarkisov, A.A.; Pologikh, B.G.; Sivintsev, Y.V.; Nikitin, V.S. Analysis of the radioactive contamination of the environment due to decommissioned objects of the nuclear-powered fleet in northwestern Russia. At. Energy 2006, 101, 485–493. [Google Scholar] [CrossRef]
- Kim, S.I.; Lee, H.Y.; Song, J.S. A study on characteristics and internal exposure evaluation of radioactive aerosols during pipe cutting in decommissioning of nuclear power plant. Nucl. Eng. Technol. 2018, 50, 1088–1098. [Google Scholar] [CrossRef]
- Chae, N.; Lee, M.H.; Choi, S.; Park, B.G.; Song, J.S. Aerodynamic diameter and radioactivity distributions of radioactive aerosols from activated metals cutting for nuclear power plant decommissioning. J. Hazard. Mater. 2019, 369, 727–745. [Google Scholar] [CrossRef]
- Seo, H.W.; Oh, J.Y.; Yu, J.H.; Jo, K.H. Calculation approach to building DCGLs of waste treatment facilility for Kori unit 1 decommissioning and comparative analysis of the results. Ann. Nucl. Energy 2021, 153, 108009. [Google Scholar] [CrossRef]
- Seo, H.W.; Sohn, W. Calculation of preliminary site-specific DCGLs for nuclear power plant decommissioning using hybrid scenarios. Nucl. Eng. Technol. 2019, 51, 1098–1108. [Google Scholar] [CrossRef]
- Lee, C.; Kim, H.R.; Lee, S.J. Comparison of occupational exposure according to dismantling strategy of Kori nuclear power plant unit# 1 bio-shield. Ann. Nucl. Energy 2021, 157, 108227. [Google Scholar] [CrossRef]
- Songa, M.; Kim, C.L.; Kessel, D.S. Consideration of spent fuel pool island as an interim management option of spent nuclear fuel for Kori unit 3 & 4 during decommissioning of Kori site. Energy Strategy Rev. 2018, 21, 163–171. [Google Scholar] [CrossRef]
- Han, S.; Hong, S.; Nam, S.; Kim, W.S.; Um, W. Decontamination of concrete waste from nuclear power plant decommissioning in South Korea. Ann. Nucl. Energy 2020, 149, 107795. [Google Scholar] [CrossRef]
- Jeong, K.S.; Choi, B.S.; Moon, J.K.; Hyun, D.J.; Lee, J.H.; Kim, G.H.; Lee, J.J. Evaluation of alternative removal methods for decommissioning of heavy components in nuclear power plants. Ann. Nucl. Energy 2014, 63, 506–508. [Google Scholar] [CrossRef]
- Chen, Y.S.; Huang, L.Y. Evaluation of the reactor building environmental conditions under a LOCA for the decommissioning Chinshan plant. Ann. Nucl. Energy 2021, 156, 108205. [Google Scholar] [CrossRef]
- Choi, W.J.; Roh, M.S.; Kim, C.L. Innovative Nuclear Power Plant Building Arrangement in Consideration of Decommissioning. Nucl. Eng. Technol. 2017, 49, 525–533. [Google Scholar] [CrossRef] [Green Version]
- Pyo, J.Y.; Um, W.; Heo, J. Magnesium potassium phosphate cements to immobilize radioactive concrete wastes generated by decommissioning of nuclear power plants. Nucl. Eng. Technol. 2021, 53, 2261–2267. [Google Scholar] [CrossRef]
- Lee, M.H.; Yang, W.; Chae, N.; Choi, S. Performance assessment of HEPA filter against radioactive aerosols from metal cutting during nuclear decommissioning. Nucl. Eng. Technol. 2020, 52, 1043–1050. [Google Scholar] [CrossRef]
- Lee, S.H.; Seo, H.W.; Kim, C.L. Preparation of radiological environmental impact assessment for the decommissioning of nuclear power plant in Korea. J. Nucl. Fuel Cycle Waste Technol. (JNFCWT) 2018, 16, 107–122. [Google Scholar] [CrossRef]
- Seo, H.W.; Lee, D.H.; Kessel, D.S.; Kim, C.L. Proposal for the management strategy of metallic waste from the decommissioning of kori unit 1 by using melting and segmentation technology. Ann. Nucl. Energy 2017, 110, 633–647. [Google Scholar] [CrossRef]
- Seo, H.W.; Sohn, W.; Jo, K.H. Proposal for the spent nuclear fuel management plan from the decommissioning of Kori site NPPs. Ann. Nucl. Energy 2018, 120, 749–762. [Google Scholar] [CrossRef]
- Jeong, K.S.; Choi, B.S.; Moon, J.K.; Hyun, D.J.; Kim, G.H.; Kim, T.H.; Lee, J.J. Radiological assessment for decommissioning of major component in nuclear power plants. Ann. Nucl. Energy 2014, 63, 571–574. [Google Scholar] [CrossRef]
- Choi, Y.; Ko, J.; Lee, D.; Kim, H.; Park, K.; Sohn, H. Safety Assessment for the self-disposal plan of clearance radioactive waste after nuclear power plant decommissioning. J. Energy Eng. 2020, 29, 63–74. [Google Scholar] [CrossRef]
- Kim, H.; Lee, D.; Lee, C.W.; Kim, H.R.; Lee, S.J. Safety Assessment Framework for Nuclear Power Plant Decommissioning Workers. IEEE Access 2019, 7, 76305–76316. [Google Scholar] [CrossRef]
- Kim, J.H.; Hornibrook, C.; Yim, M.S. The impact of below detection limit samples in residual risk assessments for decommissioning nuclear power plant sites. J. Environ. Radioact. 2020, 222, 106340. [Google Scholar] [CrossRef]
- Kim, D.; Croudace, I.W.; Warwick, P.E. The requirement for proper storage of nuclear and related decommissioning samples to safeguard accuracy of tritium data. J. Hazard. Mater. 2012, 213, 292–298. [Google Scholar] [CrossRef]
- Moon, J.; Kim, S.; Choi, W.; Choi, B.; Chung, D.; Seo, B. The status and prospect of decommissioning technology development at KAERI. J. Nucl. Fuel Cycle Waste Technol. (JNFCWT) 2019, 17, 139–165. [Google Scholar] [CrossRef]
- Shin, J.S.; Oh, S.Y.; Park, S.; Park, H.; Kim, T.S.; Lee, L.; Lee, J. Underwater laser cutting of stainless steel up to 100 mm thick for dismantling application in nuclear power plants. Ann. Nucl. Energy 2020, 147, 107655. [Google Scholar] [CrossRef]
- Tsypin, S.G.; Sharafutdinov, R.B. Characteristic features of the decommissioning of fuel-cycle nonreactor nuclear systems and radiation sources. At. Energy 2000, 88, 236–238. [Google Scholar] [CrossRef]
- Bylkin, B.; Pereguda, V.; Shaposhnikov, V.; Tikhonovskii, V. Composition and structure of simulation models for evaluating decommissioning costs for nuclear power plant units. At. Energy 2011, 110, 77. [Google Scholar] [CrossRef]
- Bylkin, B.K.; Shaposhnikov, V.A.; Sadovoi, Y.K.; Tikhonovskii, V.L. Database for decommissioning power-generating units at the Leningrad nuclear power plant. At. Energy 2003, 95, 591–596. [Google Scholar] [CrossRef]
- Simanovskii, Y.M.; Safutin, V.D.; Tokarenko, A.I.; Khmel’shchikov, V.V.; Chepurnoi, Y.A. Decommissioning and Disassembly of a Research Reactor at the Noril’sk Integrated Mining–Metallurgical Plant. At. Energy 2003, 95, 521–527. [Google Scholar] [CrossRef]
- Kulikov, I.D.; Safutin, V.D.; Simanovskii, V.M.; Abramov, M.I.; Bylkin, B.K.; Zverkov, Y.A.; Nikolaev, A.G. Decommissioning industrial uranium-graphite reactors. At. Energy 1999, 87, 569–576. [Google Scholar] [CrossRef]
- Engovatov, I.A.; Mashkovich, V.P.; Orlov, Y.V.; Pologikh, B.G.; Khlopkin, N.S.; Tsypin, S.G. Decommissioning of civil and military reactors. At. Energy 1998, 85, 706–709. [Google Scholar] [CrossRef]
- Ryazantsev, E.P.; Kolyadin, V.I.; Egorenkov, P.M.; Smirnov, A.M.; Kukharkin, N.E.; Bylkin, B.K.; Zverkov, Y.A. Decommissioning of nuclear and radiation-hazardous objects of the russian science center “Kurchatov Institute”. At. Energy 1999, 87, 631–639. [Google Scholar] [CrossRef]
- Poluektov, P.P.; Sukhanov, L.P.; Chernikov, M.A.; Chizhov, A.A.; Felitsyn, M.A. Decontamination and decommissioning of radioactively contaminated rooms and equipment at the Bochvar All-Russia Research Institute of Standardization in Machine Engineering. At. Energy 2008, 105, 60–64. [Google Scholar] [CrossRef]
- Berela, A.I.; Sorokin, V.N.; Shpitser, V.Y.; Étingen, A.A.; Bylkin, B.K.; Makhov, V.A.; Morozov, V.G. Developing technology for decommissioning nuclear power stations. At. Energy 1997, 83, 890–893. [Google Scholar] [CrossRef]
- Bylkin, B.K.; Berela, A.I.; Kopytov, I.I. Development in a nuclear power station project of matters concerning the dismantling of equipment at the stage of power unit decommissioning. Therm. Eng. 2006, 53, 743–748. [Google Scholar] [CrossRef]
- Bykov, A.A.; Bylkin, B.K.; Gorlinskii, Y.E.; Gudimov, R.S.; Drozdov, A.A.; Zverkov, Y.A.; Samarin, E.N. Experience in international collaboration in the development of preliminary plans for decommissioning nuclear research facilities at the Russian science center Kurchatov institute. At. Energy 2009, 107, 225. [Google Scholar] [CrossRef]
- Stepanov, A.I.; Doil’nitsyn, V.A. Foam-and Film-Forming Compositions and Technical Means for Accident-Remediation and Disassembly Work on Nuclear Power Facilities. At. Energy 2008, 105, 75–77. [Google Scholar] [CrossRef]
- Bylkin, B.K.; Gorelov, K.A.; Engovatov, I.A.; Zaitsev, A.N.; Zimin, V.K.; Musorin, A.I.; Nozdrin, G.N. Improvement of regulatory documents on decommissioning power-generating units of nuclear power plants. At. Energy 2009, 107, 369–373. [Google Scholar] [CrossRef]
- Bugaenko, S.E.; Arzhaev, A.I.; Evropin, S.V.; Savchenko, V.A. Management of the service life of a nuclear Power Plant. At. Energy 2002, 92, 279–286. [Google Scholar] [CrossRef]
- Tikhonovskii, V.L.; Kononov, V.V.; Chuiko, D.V.; Bylkin, B.K.; Shaposhnikov, V.A. Methods for representing and organizing information for a database on decommissioning power-generating units in nuclear power plants. At. Energy 2007, 103, 990–994. [Google Scholar] [CrossRef]
- Nazarov, V.; Frontasyeva, M.; Lavdanskij, P.; Stephanov, N. NAA for optimization of radiation shielding of nuclear power plants. J. Radioanal. Nucl. Chem. 1994, 180, 83–95. [Google Scholar] [CrossRef]
- Fedosov, A.M. Optimal fuel utilization during decommissioning of nuclear power plants with RBMK reactors. At. Energy 2007, 102, 353–360. [Google Scholar] [CrossRef]
- Frolov, V.V.; Kryuchkov, A.V.; Kuznetsov, Y.N.; Moskin, V.A.; Pankrat’ev, Y.V.; Romenkov, A.A. Possibility of burning irradiated graphite from decommissioned nuclear power-generating units. At. Energy 2004, 97, 781–784. [Google Scholar] [CrossRef]
- Volkov, V.G.; Zverkov, Y.A.; Kolyadin, V.I.; Lemus, A.V.; Muzrukova, V.D.; Pavlenko, V.I.; Shisha, A.D. Preparations for decommissioning the MR research reactor at the Russian Science Center Kurchatov institute. At. Energy 2008, 104, 335–341. [Google Scholar] [CrossRef]
- Bylkin, B.K.; Berela, A.I. Problem-oriented system for designing a technology for disassembling equipment for decommissioning the power-generating units of a nuclear power plant. At. Energy 2000, 89, 701–708. [Google Scholar] [CrossRef]
- Shadrin, A.P.; Kuz’min, A.N. Radioactive waste utilization and decommissioning of low-power nuclear power stations under arctic conditions. At. Energy 1997, 83, 573–575. [Google Scholar] [CrossRef]
- Bylkin, B.K.; Davydova, G.B.; Zhurbenko, E.A. Radwastes from disassembly of nuclear power plant reactor units. At. Energy 2011, 110, 203. [Google Scholar] [CrossRef]
- Hoeppener-Kramar, U.; Pimpl, M.; Willmann, F. Application of procedures for low level radionuclide analysis in environmental monitoring for the purpose of clearance measurements of materials from decommissioning of nuclear facilities. J. Radioanal. Nucl. Chem. 1997, 226, 99–103. [Google Scholar] [CrossRef]
- Volkmann, B.; Löschhorn, U. Aspects on decommissioning of the Greifswald nuclear power plant. Nucl. Eng. Des. 1995, 159, 117–121. [Google Scholar] [CrossRef]
- Delakowitz, B.; Meinrath, G. Decommissioning of a nuclear power plant: Determination of site-specific sorption coefficients for Co-60 and Cs-137. Isot. Environ. Health Stud. 1998, 34, 371–380. [Google Scholar] [CrossRef]
- Brendebach, B. Decommissioning of nuclear facilities: Germany’s experience. IAEA Bull. 2016, 57, 24–25. [Google Scholar]
- Zapata-García, D.; Wershofen, H. Development of radiochemical analysis strategies for decommissioning activities. Appl. Radiat. Isot. 2017, 126, 204–207. [Google Scholar] [CrossRef]
- Viehrig, H.W.; Altstadt, E.; Houska, M.; Valo, M. Fracture mechanics characterisation of the beltline welding seam of the decommissioned WWER-440 reactor pressure vessel of nuclear power plant Greifswald Unit 4. Int. J. Press. Vessel. Pip. 2012, 89, 129–136. [Google Scholar] [CrossRef]
- Ehlert, A. Implementation of Knowledge Management in the Decommissioning of Nuclear Power Stations of E. ON Kernkraft GmbH. No. IAEA-CN--153. 2007. Available online: https://inis.iaea.org/search/search.aspx?orig_q=RN:38067982 (accessed on 9 November 2021).
- Kirschnick, F.; Engelhardt, S. Knowledge Management for the Decommissioning of Nuclear Power Plants. No. IAEA-CN--123. 2004. Available online: https://inis.iaea.org/search/search.aspx?orig_q=RN:35088787 (accessed on 9 November 2021).
- Seher, H.; Navarro, M.; Artmann, A.; Larue, J.; Roloff, R.; Weiß, D. Modelling contaminant transport in generic landfills for decommissioning waste from German nuclear power plants. Prog. Nucl. Energy 2016, 89, 46–56. [Google Scholar] [CrossRef]
- Invernizzi, D.C.; Locatelli, G.; Grönqvist, M.; Brookes, N.J. Applying value management when it seems that there is no value to be managed: The case of nuclear decommissioning. Int. J. Proj. Manag. 2019, 37, 668–683. [Google Scholar] [CrossRef]
- Braysher, E.; Russell, B.; Woods, S.; García-Miranda, M.; Ivanov, P.; Bouchard, B.; Read, D. Complete dissolution of solid matrices using automated borate fusion in support of nuclear decommissioning and production of reference materials. J. Radioanal. Nucl. Chem. 2019, 321, 183–196. [Google Scholar] [CrossRef] [Green Version]
- Hicks, D.I.; Crittenden, B.D.; Warhurst, A.C. Design for decommissioning: Addressing the future closure of chemical sites in the design of new plant. Process Saf. Environ. Prot. 2000, 78, 465–479. [Google Scholar] [CrossRef]
- Bond, A.; Palerm, J.; Haigh, P. Public participation in EIA of nuclear power plant decommissioning projects: A case study analysis. Environ. Impact Assess. Rev. 2004, 24, 617–641. [Google Scholar] [CrossRef]
- Coffey, P.; Smith, N.; Lennox, B.; Kijne, G.; Bowen, B.; Davis-Johnston, A.; Martin, P.A. Robotic arm material characterisation using LIBS and Raman in a nuclear hot cell decommissioning environment. J. Hazard. Mater. 2021, 412, 125193. [Google Scholar] [CrossRef] [PubMed]
- Di Buono, A.; Cockbain, N.; Green, P.R.; Lennox, B. The effects of Total Ionizing Dose irradiation on supercapacitors deployed in nuclear decommissioning environments. J. Power Sources 2020, 479, 228675. [Google Scholar] [CrossRef]
- Gardner, L.J.; Walling, S.A.; Corkhill, C.L.; Hyatt, N.C. Thermal treatment of Cs-exchanged chabazite by hot isostatic pressing to support decommissioning of Fukushima Daiichi Nuclear Power Plant. J. Hazard. Mater. 2021, 413, 125250. [Google Scholar] [CrossRef]
- Purkis, J.M.; Warwick, P.E.; Graham, J.; Hemming, S.D.; Cundy, A.B. Towards the application of electrokinetic remediation for nuclear site decommissioning. J. Hazard. Mat. 2021, 413, 125274. [Google Scholar] [CrossRef]
- Sun, H.; Qu, J.; Wang, P.; Kang, J. Application of the Analytic Hierarchy Process in the Selection of Nuclear Power Plant Decommissioning Strategy. In Proceedings of the 24th International Conference on Nuclear Engineering, Charlotte, NC, USA, 26–30 June 2016; American Society of Mechanical Engineers: New York, NY, USA, 2016; Volume 50053, p. V005T15A004. [Google Scholar] [CrossRef]
- Greco, A.; Yamamoto, D. Geographical political economy of nuclear power plant closures. Geoforum 2019, 106, 234–243. [Google Scholar] [CrossRef]
- Rod McCullu. Nuclear Power Plant Decommissioning. J. Encycl. Nucl. Energy 2021, 240–246. [Google Scholar] [CrossRef]
- Schroeder, R.; Sevin, S.; Yarbrough, K. Reporting effects of SFAS 143 on nuclear decommissioning costs. Int. Adv. Econ. Res. 2005, 11, 449–458. [Google Scholar] [CrossRef]
- Rempe, J.L. Safety, Regulation, and Decommissioning of Commercial Nuclear Power Reactors—Introduction. In Encyclopedia of Nuclear Energy; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar] [CrossRef]
- Uchida, S.; Karasawa, H.; Kino, C.; Pellegrini, M.; Naitoh, M.; Ohsaka, M. An approach toward evaluation of long-term fission product distributions in the Fukushima Daiichi nuclear power plant after the severe accident. Nucl. Eng. Des. 2021, 380, 111256. [Google Scholar] [CrossRef]
- Kudo, S.; Sugihara, T. Basic concept of safety evaluation method for decommissioning of nuclear power plants by applying a graded approach. Nucl. Eng. Des. 2021, 379, 111212. [Google Scholar] [CrossRef]
- Takashima, R.; Naito, Y.; Kimura, H.; Madarame, H. Decommissioning and equipment replacement of nuclear power plants under uncertainty. J. Nucl. Sci. Technol. 2007, 44, 1347–1355. [Google Scholar] [CrossRef]
- Iguchi, Y.; Kanehira, Y.; Tachibana, M.; Johnsen, T. Development of decommissioning engineering support system (dexus of the fugen nuclear power station. J. Nucl. Sci. Technol. 2004, 41, 367–375. [Google Scholar] [CrossRef]
- Iguchi, Y.; Yanagihara, S. Integration of knowledge management system for the decommissioning of nuclear facilities. Mech. Eng. J. 2016, 3, 15–00518. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, A.; Jang, S.; Hida, K.; Yamanaka, Y.; Narumiya, Y. Risk assessment strategy for decommissioning of Fukushima Daiichi nuclear power station. Nucl. Eng. Technol. 2017, 49, 442–449. [Google Scholar] [CrossRef]
- Zhang, Z.; Song, Y.; Ma, S.; Guo, Y.; Li, C. A rapid coupling method for calculating the radiation field in decommissioning nuclear power plants. Ann. Nucl. Energy 2021, 156, 108179. [Google Scholar] [CrossRef]
- Li, F.; Wang, J.; Li, H.; Hu, Q.; Dan, W.; Ge, L.; Cohen, D. Evaluation on nuclear emergency response strategies in the Asia-Pacific region. Int. J. Crit. Infrastruct. Prot. 2021, 34, 100447. [Google Scholar] [CrossRef]
- Awodi, N.J.; Liu, Y.K.; Ayodeji, A.; Adibeli, J.O. Expert judgement-based risk factor identification and analysis for an effective nuclear decommissioning risk assessment modeling. Prog. Nucl. Energy 2021, 136, 103733. [Google Scholar] [CrossRef]
- Adibeli, J.O.; Liu, Y.K.; Ayodeji, A.; Awodi, N.J. Path planning in nuclear facility decommissioning: Research status, challenges, and opportunities. Nucl. Eng. Technol. 2021, 53, 3505–3516. [Google Scholar] [CrossRef]
- Yang, L.Q.; Liu, Y.K.; Peng, M.J.; Ayodeji, A.; Chen, Z.T.; Long, Z.Y. Radioactive gas diffusion simulation and inhaled effective dose evaluation during nuclear decommissioning. Nucl. Eng. Technol. 2021, 54, 293–300. [Google Scholar] [CrossRef]
- Bednár, D.; Lištjak, M.; Slimák, A.; Nečas, V. Comparison of deterministic and stochastic methods for external gamma dose rate calculation in the decommissioning of nuclear power plants. Ann. Nucl. Energy 2019, 134, 67–76. [Google Scholar] [CrossRef]
- Robredo, L.M.; Navarro, T.; Sierra, I. Indirect monitoring of internal exposure in the decommissioning of a nuclear power plant in Spain. Appl. Radiat. Isot. 2000, 53, 345–350. [Google Scholar] [CrossRef]
- Sanchez-Cabeza, J.A.; Molero, J. Plutonium, americium and radiocaesium in the marine environment close to the Vandellós I nuclear power plant before decommissioning. J. Environ. Radioact. 2000, 51, 211–228. [Google Scholar] [CrossRef]
- Herranz, M.; Boden, S.; Völgyesi, P.; Idoeta, R.; Broeckx, W.; González, J.R.; Legarda, F. Radiological characterisation in view of nuclear reactor decommissioning: On-site benchmarking exercise of a biological shield. Prog. Nucl. Energy 2021, 137, 103740. [Google Scholar] [CrossRef]
- Diaz-Maurin, F.; Yu, J.; Ewing, R.C. Socio-technical multi-criteria evaluation of long-term spent nuclear fuel management strategies: A framework and method. Sci. Total Environ. 2021, 777, 146086. [Google Scholar] [CrossRef] [PubMed]
- Aspe, F.; Idoeta, R.; Auge, G.; Herranz, M. Classification and categorization of the constrained environments in nuclear/radiological installations under decommissioning and dismantling processes. Prog. Nucl. Energy 2020, 124, 103347. [Google Scholar] [CrossRef]
- Laraia, M. Decommissioning Strategies Worldwide: A Re-Visited Overview of Relevant Factors. In Proceedings of the ASME 2009 12th International Conference on Environmental Remediation and Radioactive Waste Management, Liverpool, UK, 11–15 October 2009; Volume 44083, pp. 263–273. [Google Scholar] [CrossRef]
- Chen, Y.F.; Lin, Y.K.; Sheu, R.J.; Jiang, S.H. Evaluation of Radionuclides in Concrete Shielding for Nuclear Power Plant Decommissioning. Nucl. Technol. 2009, 168, 508–512. [Google Scholar] [CrossRef]
- Slimák, A.; Nečas, V. Melting of contaminated metallic materials in the process of the decommissioning of nuclear power plants. Prog. Nucl. Energy 2016, 92, 29–39. [Google Scholar] [CrossRef]
- Hrncir, T.; Strazovec, R.; Zachar, M. Potential for recycling of slightly radioactive metals arising from decommissioning within nuclear sector in Slovakia. J. Environ. Radioact. 2019, 196, 212–224. [Google Scholar] [CrossRef]
- Liu, R.F.; Chen, C.K.; Yang, P.Y. Safety aspects of spent fuel management in nuclear power plants during transition to decommissioning. Ann. Nucl. Energy 2020, 144, 107469. [Google Scholar] [CrossRef]
- Chen, Y.S. Thermal analysis for the integrated spent fuel pool of the Chinshan plant in the decommissioning process. Ann. Nucl. Energy 2018, 119, 163–174. [Google Scholar] [CrossRef]
- Laraia, M. Worldwide current strategies, issues and trends on decommissioning of nuclear power plants: New emphasis on WWERs in the IAEA decommissioning programme. Dokladi BYaD 2001, 6, 66–78. [Google Scholar]
- Rimkevičius, S.; Vaišnoras, M.; Babilas, E.; Ušpuras, E. HAZOP application for the nuclear power plants decommissioning projects. Ann. Nucl. Energy 2016, 94, 461–471. [Google Scholar] [CrossRef]
- Remeikis, V.; Grineviciute, J.; Duškesas, G.; Juodis, L.; Plukienė, R.; Plukis, A. Review of modeling experience during operation and decommissioning of RBMK-1500 reactors. II. Radioactive waste management. Nucl. Eng. Des. 2021, 380, 111242. [Google Scholar] [CrossRef]
- Starý, M.; Novotný, F.; Horák, M.; Stará, M. Sampling robot for primary circuit pipelines of decommissioned nuclear facilities. Autom. Constr. 2020, 119, 103303. [Google Scholar] [CrossRef]
- Adámek, A.; Pražský, M.; Binka, J. Some problems with determination of alpha-active nuclides during decommissioning of nuclear power plant A-1. J. Radioanal. Nucl. Chem. 1988, 121, 395–401. [Google Scholar] [CrossRef]
- Amft, M.; Leisvik, M.; Carroll, S. Applying and adapting the Swedish regulatory system for decommissioning to nuclear power reactors–The regulator’s perspective. J. Environ. Radioact. 2019, 196, 181–186. [Google Scholar] [CrossRef]
- Volmert, B.; Bykov, V.; Petrovic, D.; Kickhofel, J.; Amosova, N.; Kim, J.H.; Cho, C.W. Illustration of Nagra’s AMAC approach to Kori-1 NPP decommissioning based on experience from its detailed application to Swiss NPPs. Nucl. Eng. Technol. 2021, 53, 1491–1510. [Google Scholar] [CrossRef]
- Jarjies, A.; Abbas, M.; Fernandes, H.M.; Wong, M.; Coates, R. Prioritization methodology for the decommissioning of nuclear facilities: A study case on the Iraq former nuclear complex. J. Environ. Radioact. 2013, 119, 70–78. [Google Scholar] [CrossRef]
- Testa, C.; Desideri, D.; Meli, M.A.; Roselli, C.; Queirazza, G.; Bazzarri, S. Radioanalytical procedures for the separation and determination of alpha, beta and X emitters in environmental samples of a nuclear power plant before decommissioning. Sci. Total Environ. 1993, 130, 403–417. [Google Scholar] [CrossRef]
- Hou, X. Radiochemical analysis of radionuclides difficult to measure for waste characterization in decommissioning of nuclear facilities. J. Radioanal. Nucl. Chem. 2007, 273, 43–48. [Google Scholar] [CrossRef]
- Hoti, F.; Perko, T.; Thijssen, P.; Renn, O. Who is willing to participate? Examining public participation intention concerning decommissioning of nuclear power plants in Belgium. Energy Policy 2021, 157, 112488. [Google Scholar] [CrossRef]
- Statista. Number of Operable Nuclear Reactors Worldwide as of October 2021, by Country. Available online: https://www.statista.com/statistics/267158/number-of-nuclear-reactors-in-operation-by-country/ (accessed on 11 February 2022).
- Lordan-Perret, R.; Sloan, R.D.; Rosner, R. Decommissioning the US nuclear fleet: Financial assurance, corporate structures, and bankruptcy. Energy Policy 2021, 154, 112280. [Google Scholar] [CrossRef]
- Freilich, S.; Kreimer, A.; Meilijson, I.; Gophna, U.; Sharan, R.; Ruppin, E. The large-scale organization of the bacterial network of ecological co-occurrence interactions. Nucleic Acids Res. 2010, 38, 3857–3868. [Google Scholar] [CrossRef]
- Market Reports. Global Nuclear Decommissioning Market—Analysis of Growth, Trends and Forecasts (2018–2023). Available online: https://www.marketreportsworld.com/global-nuclear-decommissioning-market-12343410 (accessed on 5 March 2022).
Country | Articles | References | Remarks |
---|---|---|---|
South Korea | 26 | [7,42,43,44,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68] | |
Russia | 23 | [46,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90] | |
Germany | 12 | [13,34,39,91,92,93,94,95,96,97,98,99] | |
UK | 9 | [16,100,101,102,103,104,105,106,107] | |
USA | 8 | [15,36,45,108,109,110,111,112] | |
Japan | 7 | [14,113,114,115,116,117,118] | |
China | 6 | [108,119,120,121,122,123] | |
Spain | 5 | [124,125,126,127,128] | |
Austria, Slovakia, Taiwan | 9 | [35,129,130,131,132,133,134,135,136] | 3 papers each in three countries |
Czech Republic, Brazil, Lithuania | 6 | [41,42,137,138,139,140] | 2 papers each in three countries |
Canada, Italy, Iraq, Switzerland, Sweden, Belgium, Denmark, South Africa | 8 | [37,38,141,142,143,144,145,146] | 1 paper each in eight countries |
Total | 119 |
Description | Articles | References | Ratio (%) | Remarks |
---|---|---|---|---|
Deferred dismantling (DD) | 117 | [2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,91,92,93,94,95,96,97,98,99,100,101,102,108,109,110,113,114,115,116,117,119,120,121,122,124,125,126,129,130,131,132,133,137,141,142,143,144] | 98.3 | Ratio for 119 articles |
Immediate dismantling (ID) | 61 | [6,7,8,10,12,13,14,15,16,21,27,28,29,31,35,36,37,54,55,56,58,59,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,95,96,97,98,103,109,110,111,112,113,116,117,119,121,122,132,137,142] | 51.3 | |
Entombment (ET) | 60 | [1,6,7,8,13,14,15,16,21,27,28,29,31,35,36,37,69,70,71,73,74,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,128] | 50.4 |
Decommissioning Strategy | No. of Reactors and Ratio | No. of Countries | Remarks | |
---|---|---|---|---|
No. of Reactors | Ratio (%) | |||
Deferred dismantling (DD) | 72 | 45.6 | 12 | Dd + PD + SE 46 Dd + SE 26 |
Immediate dismantling (ID) | 60 | 38.0 | 13 | ID |
Entombment (ET) | 3 | 1.9 | 1 | ISD |
Others | 23 | 14.5 | 7 | None of the above |
Total | 158 | 100.0 | 19 |
Factors | Articles | Ratio (%) | Remarks |
---|---|---|---|
Policies and regulatory framework (F1) | 15 | 12.6 | Ratio for 119 articles |
Financial resources/Cost of implementing a strategy (F2) | 28 | 23.5 | |
Spent fuel and waste management system (F3) | 36 | 30.3 | |
Health, safety, and environmental impact (F4) | 44 | 37.0 | |
Knowledge management and human resources (F5) | 5 | 4.2 | |
Social impacts and stakeholder involvement (F6) | 14 | 11.8 | |
Suitable technologies and techniques (F7) | 25 | 21.0 | |
Reactor and site characteristics (F8) | 9 | 7.6 |
Country | DD | ID | ET | Total | Remarks |
---|---|---|---|---|---|
Belgium | - | 1 | - | 1 | Only DD, ID, and ET are summarized. |
Bulgaria | 4 | - | - | 4 | |
Canada | 5 | - | - | 5 | |
France | - | 10 | - | 10 | |
Germany | 1 | 22 | - | 23 | |
Italy | - | 3 | - | 3 | |
Japan | 11 | 3 | - | 14 | |
Kazakhstan | 1 | - | - | 1 | |
South Korea | - | 2 | - | 2 | |
Lithuania | - | 2 | - | 2 | |
The Netherlands | 1 | - | - | 1 | |
Slovakia | 1 | 2 | - | 3 | |
Spain | 1 | 2 | - | 3 | |
Sweden | 1 | 2 | - | 3 | |
Switzerland | 1 | 1 | - | 2 | |
UK | 25 | 1 | - | 26 | |
USA | 20 | 9 | 3 | 32 | |
Total | 72 | 60 | 3 | 135 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, K.; Son, S.; Oh, J.; Kim, S. Sustainable Decommissioning Strategies for Nuclear Power Plants: A Systematic Literature Review. Sustainability 2022, 14, 5947. https://doi.org/10.3390/su14105947
Park K, Son S, Oh J, Kim S. Sustainable Decommissioning Strategies for Nuclear Power Plants: A Systematic Literature Review. Sustainability. 2022; 14(10):5947. https://doi.org/10.3390/su14105947
Chicago/Turabian StylePark, Kwangheon, Seunghyun Son, Jinhyuk Oh, and Sunkuk Kim. 2022. "Sustainable Decommissioning Strategies for Nuclear Power Plants: A Systematic Literature Review" Sustainability 14, no. 10: 5947. https://doi.org/10.3390/su14105947
APA StylePark, K., Son, S., Oh, J., & Kim, S. (2022). Sustainable Decommissioning Strategies for Nuclear Power Plants: A Systematic Literature Review. Sustainability, 14(10), 5947. https://doi.org/10.3390/su14105947