Climate-Responsive Green-Space Design Inspired by Traditional Gardens: Microclimate and Human Thermal Comfort of Japanese Gardens
Abstract
:1. Introduction
1.1. Urban Green Space and Human Well-Being
1.2. Climate Responsive Green Space Strategies
1.3. Microclimate of Traditional Gardens
1.4. Research Questions and Objectives
- Are historical/traditional gardens in Kyoto thermally comfortable?
- How do the gardens ameliorate human thermal comfort? Does a certain configuration of the gardens modify the microclimate? Do certain garden elements play a critical role in modifying the microclimate?
- How might heat-mitigation strategies of Japanese gardens be applied to urban green spaces?
2. Materials and Methods
2.1. Study Site
2.1.1. Overview of Kyoto
2.1.2. Studied Gardens in Kyoto
2.2. Meteorological Data Collection and Thermal-Comfort Measurement
Data Collection at the Study Sites
2.3. Human Thermal Comfort Calculation—PET
2.4. Garden-Configuration Analysis
2.5. Statistical Analysis
3. Results
3.1. Microclimate of the Study Sites
3.2. Human Thermal Comfort of the Study Sites
3.3. Garden Spatial Configurations
3.4. Relationship Between Garden Configurations and Human Thermal Comfort
3.4.1. Relationship between Garden Configurations and Human Thermal Comfort in the Morning
3.4.2. Relationship between Garden Configurations and Human Thermal Comfort at Noon
3.4.3. Relationship between Garden Configurations and Human Thermal Comfort in the Afternoon
4. Discussion
4.1. Characteristics of Japanese Pond Gardens in Regard to Microclimate and Thermal Comfort
4.2. Japanese Pond Garden Configurations and Their Cooling Effects
4.3. Implications for Planning and Design of Urban Green Spaces
4.4. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wilson, E.O. Biophilia; Harvard University Press: Cambridge, MA, USA, 1984; ISBN 978-0-674-07442-2. [Google Scholar]
- James, P.; Banay, R.F.; Hart, J.E.; Laden, F. A Review of the Health Benefits of Greenness. Curr. Epidemiol. Rep. 2015, 2, 131–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karsten, L. It All Used to Be Better? Different Generations on Continuity and Change in Urban Children’s Daily Use of Space. Child. Geogr. 2005. [Google Scholar] [CrossRef]
- Etemad, M.; Turner, C. An Investigation of the Status of Outdoor Play. Fract. Mech. Seventeenth 2008, 5, 485. [Google Scholar] [CrossRef]
- Akpinar, A. How Is Quality of Urban Green Spaces Associated with Physical Activity and Health? Urban For. Urban Green. 2016, 16, 76–83. [Google Scholar] [CrossRef]
- Turner, W.R.; Nakamura, T.; Dinetti, M. Global Urbanization and the Separation of Humans from Nature. BioScience 2004, 54, 585. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Goodale, E.; Chen, J. How Contact with Nature Affects Children’s Biophilia, Biophobia and Conservation Attitude in China. Biol. Conserv. 2014. [Google Scholar] [CrossRef]
- Soga, M.; Gaston, K.J. Extinction of Experience: The Loss of Human-Nature Interactions. Front. Ecol. Environ. 2016, 14, 94–101. [Google Scholar] [CrossRef] [Green Version]
- Soga, M.; Evans, M.J.; Yamanoi, T.; Fukano, Y.; Tsuchiya, K.; Koyanagi, T.F.; Kanai, T. How Can We Mitigate against Increasing Biophobia among Children during the Extinction of Experience? Biol. Conserv. 2020, 242, 108420. [Google Scholar] [CrossRef]
- Soga, M.; Gaston, K.J.; Koyanagi, T.F.; Kurisu, K.; Hanaki, K. Urban Residents’ Perceptions of Neighbourhood Nature: Does the Extinction of Experience Matter? Biol. Conserv. 2016, 203, 143–150. [Google Scholar] [CrossRef]
- Soga, M.; Gaston, K.J.; Kubo, T. Cross-Generational Decline in Childhood Experiences of Neighborhood Flowering Plants in Japan. Landsc. Urban Plan. 2018, 174, 55–62. [Google Scholar] [CrossRef]
- Schetke, S.; Qureshi, S.; Lautenbach, S.; Kabisch, N. What Determines the Use of Urban Green Spaces in Highly Urbanized Areas?—Examples from Two Fast Growing Asian Cities. Urban For. Urban Green. 2016, 16, 150–159. [Google Scholar] [CrossRef]
- Giles-Corti, B.; Broomhall, M.H.; Knuiman, M.; Collins, C.; Douglas, K.; Ng, K.; Lange, A.; Donovan, R.J. Increasing Walking. Am. J. Prev. Med. 2005, 28, 169–176. [Google Scholar] [CrossRef]
- Wright Wendel, H.E.; Zarger, R.K.; Mihelcic, J.R. Accessibility and Usability: Green Space Preferences, Perceptions, and Barriers in a Rapidly Urbanizing City in Latin America. Landsc. Urban Plan. 2012, 107, 272–282. [Google Scholar] [CrossRef]
- Jansson, M.; Fors, H.; Lindgren, T.; Wiström, B. Perceived Personal Safety in Relation to Urban Woodland Vegetation—A Review. Urban For. Urban Green. 2013, 12, 127–133. [Google Scholar] [CrossRef] [Green Version]
- Lin, B.B.; Fuller, R.A.; Bush, R.; Gaston, K.J.; Shanahan, D.F. Opportunity or Orientation? Who Uses Urban Parks and Why. PLoS ONE 2014, 9, e87422. [Google Scholar] [CrossRef] [Green Version]
- Groff, E.; McCord, E.S. The Role of Neighborhood Parks as Crime Generators. Secur. J. 2012, 25, 1–24. [Google Scholar] [CrossRef]
- Fleming, C.M.; Manning, M.; Ambrey, C.L. Crime, Greenspace and Life Satisfaction: An Evaluation of the New Zealand Experience. Landsc. Urban Plan. 2016, 149, 1–10. [Google Scholar] [CrossRef]
- Lyytimäki, J.; Sipilä, M. Hopping on One Leg—The Challenge of Ecosystem Disservices for Urban Green Management. Urban For. Urban Green. 2009, 8, 309–315. [Google Scholar] [CrossRef]
- Zhang, Y.; van den Berg, A.; van Dijk, T.; Weitkamp, G. Quality over Quantity: Contribution of Urban Green Space to Neighborhood Satisfaction. Int. J. Environ. Res. Public Health 2017, 14, 535. [Google Scholar] [CrossRef]
- Zhang, Y.; van Dijk, T.; Tang, J.; Berg, A. Green Space Attachment and Health: A Comparative Study in Two Urban Neighborhoods. Int. J. Environ. Res. Public Health 2015, 12, 14342–14363. [Google Scholar] [CrossRef] [Green Version]
- Nikolopoulou, M.; Lykoudis, S. Use of Outdoor Spaces and Microclimate in a Mediterranean Urban Area. Build. Environ. 2007, 42, 3691–3707. [Google Scholar] [CrossRef] [Green Version]
- Lin, T.-P.; Tsai, K.-T.; Liao, C.-C.; Huang, Y.-C. Effects of Thermal Comfort and Adaptation on Park Attendance Regarding Different Shading Levels and Activity Types. Build. Environ. 2013, 59, 599–611. [Google Scholar] [CrossRef]
- Thorsson, S.; Honjo, T.; Lindberg, F.; Eliasson, I.; Lim, E.-M. Thermal Comfort and Outdoor Activity in Japanese Urban Public Places. Environ. Behav. 2007, 39, 660–684. [Google Scholar] [CrossRef]
- Andou, K.; Nishida, M.; Misaka Ikusei, N.K. Study on Termal Environment and Usage Situation at Outdoor Amenity Space. Soc. Heat. Air Cond. Sanit. Eng. Jpn. 2012, 973–976. [Google Scholar] [CrossRef]
- Spronken-Smith, R.A.; Oke, T.R. The Thermal Regime of Urban Parks in Two Cities with Different Summer Climates. Int. J. Remote Sens. 1998, 19, 2085–2104. [Google Scholar] [CrossRef]
- Klemm, W.; Heusinkveld, B.G.; Lenzholzer, S.; Jacobs, M.H.; Hove, B.V. Psychological and Physical Impact of Urban Green Spaces on Outdoor Thermal Comfort during Summertime in The Netherlands. Build. Environ. 2015, 83, 120–128. [Google Scholar] [CrossRef]
- Murakami Akinobu, O. En Study on the improvement of thermal comfort by urban greenery. J. City Plan. Inst. Jpn. 2014, 49, 231–236. [Google Scholar] [CrossRef]
- Chang, C.-R.; Li, M.-H.; Chang, S.-D. A Preliminary Study on the Local Cool-Island Intensity of Taipei City Parks. Landsc. Urban Plan. 2007, 80, 386–395. [Google Scholar] [CrossRef]
- Shooshtarian, S.; Rajagopalan, P.; Sagoo, A. A Comprehensive Review of Thermal Adaptive Strategies in Outdoor Spaces. Sustain. Cities Soc. 2018, 41, 647–665. [Google Scholar] [CrossRef]
- Thorsson, S.; Lindqvist, M.; Lindqvist, S. Thermal Bioclimatic Conditions and Patterns of Behaviour in an Urban Park in Göteborg, Sweden. Int. J. Biometeorol. 2004, 48, 149–156. [Google Scholar] [CrossRef]
- Brown, R.D. Design with Microclimate: The Secret to Comfortable Outdoor Spaces; Island Press: Washington, DC, USA, 2010; ISBN 978-1-59726-739-7. [Google Scholar]
- Soflaei, F.; Shokouhian, M.; Mofidi Shemirani, S.M. Traditional Iranian Courtyards as Microclimate Modifiers by Considering Orientation, Dimensions, and Proportions. Front. Archit. Res. 2016, 5, 225–238. [Google Scholar] [CrossRef] [Green Version]
- Ojaghlou, M.; Khakzand, M. Thermal Comfort Characteristic of 5 Patterns of a Persian Garden in a Hot-Arid Climate of Shiraz, Iran. J. Landsc. Ecol. 2019, 12, 1–33. [Google Scholar] [CrossRef] [Green Version]
- Xue, S.; Xiao, Y. Study on the Outdoor Thermal Comfort Threshold of Lingnan Garden in Summer. Procedia Eng. 2016, 169, 422–430. [Google Scholar] [CrossRef]
- Xiong, Y.; Zhang, J.; Xu, X.; Yan, Y.; Sun, S.; Liu, S. Strategies for Improving the Microclimate and Thermal Comfort of a Classical Chinese Garden in the Hot-Summer and Cold-Winter Zone. Energy Build. 2020, 215, 109914. [Google Scholar] [CrossRef]
- Sullivan, C.; Treib, M. Garden and Climate; McGraw-Hill: New York, NY, USA, 2002; ISBN 978-0-07-027103-6. [Google Scholar]
- Japan Meteorological Agency. Available online: https://www.jma.go.jp/jma/indexe.html (accessed on 11 April 2019).
- Kyoto City Fire Department. Available online: https://www.city.kyoto.lg.jp/shobo/index.html (accessed on 1 November 2018).
- Hisatsune, S. Kyoto Meienki; Seibundo Shinkosha: Tokyo, Japan, 1967; Volume 1. [Google Scholar]
- Höppe, P. The Physiological Equivalent Temperature—A Universal Index for the Biometeorological Assessment of the Thermal Environment. Int. J. Biometeorol. 1999, 43, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Matzarakis, A.; Rutz, F.; Mayer, H. Modelling Radiation Fluxes in Simple and Complex Environments—Application of the RayMan Model. Int. J. Biometeorol. 2007, 51, 323–334. [Google Scholar] [CrossRef]
- Matzarakis, A.; Mayer, H. Another Kind of Environmental Stress: Thermal Stress. WHO Newsl. 1996, 18, 7–10. [Google Scholar]
- Lin, T.-P.; Matzarakis, A. Tourism Climate and Thermal Comfort in Sun Moon Lake, Taiwan. Int. J. Biometeorol. 2008, 52, 281–290. [Google Scholar] [CrossRef]
- Chen, L.; Ng, E. Outdoor Thermal Comfort and Outdoor Activities: A Review of Research in the Past Decade. Cities 2012, 29, 118–125. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Oliveira, S.; Andrade, H.; Vaz, T. The Cooling Effect of Green Spaces as a Contribution to the Mitigation of Urban Heat: A Case Study in Lisbon. Build. Environ. 2011, 46, 2186–2194. [Google Scholar] [CrossRef]
- Rahman, M.A.; Moser, A.; Rötzer, T.; Pauleit, S. Microclimatic Differences and Their Influence on Transpirational Cooling of Tilia Cordata in Two Contrasting Street Canyons in Munich, Germany. Agric. For. Meteorol. 2017, 232, 443–456. [Google Scholar] [CrossRef]
- Tesfuhuney, W.A.; Walker, S.; Rensburg, L.D.V.; Steyn, A.S. Micrometeorological Measurements and Vapour Pressure Deficit Relations under In-Field Rainwater Harvesting. Phys. Chem. Earth Parts A B C 2016, 94, 196–206. [Google Scholar] [CrossRef]
- Montaldo, N.; Oren, R. The Way the Wind Blows Matters to Ecosystem Water Use Efficiency. Agric. For. Meteorol. 2016, 217, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Imam Syafii, N.; Ichinose, M.; Kumakura, E.; Jusuf, S.K.; Chigusa, K.; Wong, N.H. Thermal Environment Assessment around Bodies of Water in Urban Canyons: A Scale Model Study. Sustain. Cities Soc. 2017, 34, 79–89. [Google Scholar] [CrossRef]
- Sun, R.; Chen, L. How Can Urban Water Bodies Be Designed for Climate Adaptation? Landsc. Urban Plan. 2012, 105, 27–33. [Google Scholar] [CrossRef]
- Lu, S. Hidden Orders in Chinese Gardens: Irregular Fractal Structure and Its Generative Rules. Environ. Plan. B 2010, 37, 1076–1094. [Google Scholar] [CrossRef]
- Eliasson, I. The Use of Climate Knowledge in Urban Planning. Landsc. Urban Plan. 2000, 48, 31–44. [Google Scholar] [CrossRef]
- Nikolopoulou, M.; Steemers, K. Thermal Comfort and Psychological Adaptation as a Guide for Designing Urban Spaces. Energy Build. 2003, 35, 95–101. [Google Scholar] [CrossRef]
- Massetti, L.; Petralli, M.; Napoli, M.; Brandani, G.; Orlandini, S.; Pearlmutter, D. Effects of Deciduous Shade Trees on Surface Temperature and Pedestrian Thermal Stress during Summer and Autumn. Int. J. Biometeorol. 2019, 63, 467–479. [Google Scholar] [CrossRef] [PubMed]
- Santamouris, M.; Gaitani, N.; Spanou, A.; Saliari, M.; Giannopoulou, K.; Vasilakopoulou, K.; Kardomateas, T. Using Cool Paving Materials to Improve Microclimate of Urban Areas—Design Realization and Results of the Flisvos Project. Build. Environ. 2012, 53, 128–136. [Google Scholar] [CrossRef] [Green Version]
Garden S | Garden C | Garden J | |
---|---|---|---|
Construction of the garden * | 17th century | ||
Garden style | Pond garden Sedentary appreciation | Pond garden Sedentary appreciation | Pond garden Sedentary appreciation |
Special status | Has a close relationship with the emperor family; once was the residence of Empress Go-Sakuramachi | Municipal place of scenic beauty | National place of scenic beauty |
Area | 0.21 ha | 0.40 ha | 0.13 ha |
Canopy coverage | 52.4% | 70.7% | 38.5% |
Pond area ratio | 8.1% | 21.8% | 12.3% |
Dominant arbor tree species | Acer palmatum, Ternstroemia japonica | Acer palmatum, Castanopsis cuspidata | Pinus densiflora |
Dominant shrub species | Rhododendron indicum | Rhododendron indicum | Rhododendron indicum |
Dominant green ground materials | Lawns | Moss | Lawns |
Date | 2nd | 3rd | 4th | 6th | 9th | 12th | 13th | 14th | 17th | Ave. |
---|---|---|---|---|---|---|---|---|---|---|
Garden | J | C | S | J | S | C | J | S | C | |
Air temperature (°C) | 27.3 | 29.9 | 29.4 | 29.1 | 28.1 | 28.2 | 27.3 | 29.0 | 29.9 | 29.8 |
Highest Air temperature (°C) | 31.6 | 35.7 | 33.5 | 34.5 | 32.7 | 32.1 | 32.1 | 35.1 | 36.7 | 33.8 |
Relative Humidity (%) | 62 | 63 | 68 | 70 | 66 | 64 | 64 | 63 | 71 | 65.7 |
Tree Canopy | Roof | Green Ground |
---|---|---|
Canopy of the trees at a height of 3 m or higher than 3 m | Ground surface materials including moss, grasses, and shrubs that are under 3 m height. | |
Pavement | Water Body | Canopy and Roof (CR) |
Paving materials including concrete, asphalt, stone, gravel and soil | Ponds and streams | The area covered by either arbor tree canopy or roofs |
S1 | S2 | C1 | C2 | C3 | J | Average | |
---|---|---|---|---|---|---|---|
Air temperature (°C ) | 2.22 | 2.78 | 0.03 | 0.17 | 1.02 | 1.91 | 1.35 |
Globe temperature (°C ) | 8.43 | 9.38 | 5.40 | 6.59 | 8.30 | 9.62 | 7.95 |
Relative humidity (%) | −9.69 | −9.82 | −0.92 | −1.01 | −3.79 | −4.92 | −5.03 |
Wind speed (m/s) | 0.48 | 0.20 | 0.69 | 0.85 | 0.78 | 0.39 | 0.57 |
Garden Element | 5 m | 10 m | 20 m |
---|---|---|---|
Canopy | −0.188 *** | −0.174 *** | −0.103 *** |
Green ground | −0.016 | −0.147 *** | −0.25 *** |
Pavement | 0.334 *** | 0.303 *** | 0.255 *** |
Water | −0.241 *** | −0.122 *** | −0.068 ** |
Roof | −0.208 *** | 0.113 *** | 0.203 *** |
CR | −0.207 *** | −0.087 *** | −0.007 |
CR.N | 0.023 | 0.11 *** | 0.092 *** |
CR.E | −0.104 *** | 0.027 | 0.105 *** |
CR.S | −0.197 *** | −0.176 *** | −0.164 *** |
CR.W | −0.25 *** | −0.228 *** | −0.162 *** |
Garden Element | 5 m | 10 m | 20 m |
---|---|---|---|
Canopy | −0.144 *** | −0.095 ** | −0.004 |
Green ground | −0.051 | −0.031 | −0.109 * |
Pavement | 0.303 *** | 0.254 *** | 0.272 *** |
Water | −0.248 *** | −0.19 *** | −0.169 *** |
Roof | −0.194 *** | 0.131 ** | 0.113 ** |
CR | −0.168 *** | 0.011 | 0.078 |
CR.N | 0.075 | 0.15 *** | 0.141 *** |
CR.E | −0.206 *** | 0.075 | 0.15 *** |
CR.S | −0.188 *** | −0.184 *** | −0.187 *** |
CR.W | −0.14 *** | −0.087 * | −0.079 |
Garden Element | 5 m | 10 m | 20 m |
---|---|---|---|
Canopy | −0.293 *** | −0.282 *** | −0.193 *** |
Green ground | −0.008 | −0.273 *** | −0.415 *** |
Pavement | 0.487 *** | 0.447 *** | 0.345 *** |
Water | −0.335 *** | −0.131 *** | −0.043 |
Roof | −0.314 *** | 0.138 *** | 0.329 *** |
CR | −0.322 *** | −0.176 *** | −0.05 |
CR.N | −0.006 | 0.125 *** | 0.096 |
CR.E | −0.125 *** | 0.003 | 0.153 *** |
CR.S | −0.271 *** | −0.232 *** | −0.209 *** |
CR.W | −0.399 *** | −0.393 *** | −0.276 *** |
Garden Element | 5 m | 10 m | 20 m |
---|---|---|---|
Canopy | −0.149 *** | −0.159 *** | −0.111 ** |
Green ground | −0.008 | −0.153 *** | −0.248 *** |
Pavement | 0.262 *** | 0.256 *** | 0.193 *** |
Water | −0.174 *** | −0.07 | −0.011 |
Roof | −0.15 *** | 0.082 | 0.184 *** |
CR | −0.16 *** | −0.096 * | −0.033 |
CR.N | 0.009 | 0.076 | 0.06 |
CR.E | −0.015 | 0.014 | 0.047 |
CR.S | −0.158 *** | −0.136 *** | −0.12 ** |
CR.W | −0.237 *** | −0.227 *** | −0.146 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, L.; Rupprecht, C.D.D.; Shibata, S. Climate-Responsive Green-Space Design Inspired by Traditional Gardens: Microclimate and Human Thermal Comfort of Japanese Gardens. Sustainability 2021, 13, 2736. https://doi.org/10.3390/su13052736
Cui L, Rupprecht CDD, Shibata S. Climate-Responsive Green-Space Design Inspired by Traditional Gardens: Microclimate and Human Thermal Comfort of Japanese Gardens. Sustainability. 2021; 13(5):2736. https://doi.org/10.3390/su13052736
Chicago/Turabian StyleCui, Lihua, Christoph D. D. Rupprecht, and Shozo Shibata. 2021. "Climate-Responsive Green-Space Design Inspired by Traditional Gardens: Microclimate and Human Thermal Comfort of Japanese Gardens" Sustainability 13, no. 5: 2736. https://doi.org/10.3390/su13052736
APA StyleCui, L., Rupprecht, C. D. D., & Shibata, S. (2021). Climate-Responsive Green-Space Design Inspired by Traditional Gardens: Microclimate and Human Thermal Comfort of Japanese Gardens. Sustainability, 13(5), 2736. https://doi.org/10.3390/su13052736