The Potential of Locally-Sourced European Protein Sources for Organic Monogastric Production: A Review of Forage Crop Extracts, Seaweed, Starfish, Mussel, and Insects
Abstract
:1. Introduction
2. Sustainability
2.1. Sustainability during Production
2.2. Sustainability at Processing
3. Nutrient Composition of Alternative Ingredients
3.1. Mussel Meal and Starfish Meal as Compared to Fishmeal
Item | Mussel Meal 1 | Starfish Meal 2 | ||||
---|---|---|---|---|---|---|
N | Avg ± SD 3 | CV 4 | N | Avg ± SD | CV | |
Crude ash | 5 | 8.61 ± 0.91 | 10.5 | 15 | 45.0 ± 9.98 | 22.2 |
Crude fat | 5 | 10.1 ± 3.26 | 32.2 | 15 | 8.28 ± 1.40 | 16.8 |
Crude protein | 5 | 66.4 ± 3.86 | 5.82 | 15 | 39.0 ± 9.69 | 24.8 |
Minerals | ||||||
Calcium | 2 | 7.00 ± 2.00 | 28.6 | 15 | 129 ± 31.5 | 24.5 |
Phosphorus | 2 | 8.50 ± 0.50 | 5.88 | 15 | 6.31 ± 5.64 | 89.4 |
EAA5 | ||||||
Histidine | 5 | 1.85 ± 0.17 | 9.32 | 15 | 1.65 ± 0.11 | 6.53 |
Isoleucine | 5 | 3.96 ± 0.57 | 14.3 | 15 | 3.61 ± 0.12 | 3.42 |
Leucine | 5 | 6.10 ± 0.83 | 13.7 | 15 | 5.36 ± 0.35 | 6.60 |
Lysine | 5 | 6.78 ± 0.69 | 10.1 | 15 | 5.65 ± 0.38 | 6.78 |
Methionine | 4 | 2.37 ± 0.40 | 16.7 | 15 | 1.95 ± 0.18 | 9.15 |
Phenylalanine | 5 | 3.43 ± 0.45 | 13.2 | 15 | 3.22 ± 0.15 | 4.52 |
Threonine | 5 | 4.18 ± 0.51 | 12.3 | 15 | 4.40 ± 0.53 | 12.0 |
Tryptophan | 1 | 1.20 | 14 | 0.98 ± 0.10 | 10.6 | |
Valine | 5 | 3.97 ± 0.51 | 12.8 | 15 | 4.49 ± 0.37 | 8.27 |
NEAA6 | ||||||
Alanine | 5 | 4.57 ± 0.41 | 9.07 | 15 | 5.00 ± 0.44 | 8.73 |
Arginine | 5 | 6.49 ± 0.77 | 11.9 | 15 | 5.82 ± 0.22 | 3.82 |
Aspartic acid | 5 | 9.00 ± 1.16 | 12.9 | 15 | 8.43 ± 0.15 | 1.76 |
Cysteine | 4 | 1.51 ± 0.50 | 32.7 | 15 | 1.39 ± 0.22 | 15.7 |
Glutamic acid | 5 | 11.8 ± 1.31 | 11.1 | 15 | 10.0 ± 2.39 | 23.9 |
Glycine | 5 | 5.65 ± 0.50 | 8.78 | 15 | 14.2 ± 1.97 | 13.9 |
Proline | 5 | 3.52 ± 0.42 | 11.8 | 15 | 4.50 ± 0.35 | 7.75 |
Serine | 5 | 4.11 ± 0.69 | 16.8 | 15 | 5.08 ± 1.13 | 22.2 |
Tyrosine | 3 | 3.29 ± 0.56 | 17.1 | 1 | 2.94 | |
∑AA | 5 | 80.8 | 15 | 85.8 | ||
∑EAA | 5 | 32.4 | 15 | 31.2 | ||
∑NEAA | 5 | 48.3 | 15 | 54.6 | ||
EAA:NEAA | 5 | 0.67 | 15 | 0.58 |
3.2. Seaweed Meal as Compared to Soya Bean and Wheat
Item | Ulva lactuca1 | Ascophyllum nodosum2 | Saccharina latissimi3 | ||||||
---|---|---|---|---|---|---|---|---|---|
N | Avg ± SD 4 | CV 5 | N | Avg ± SD | CV | N | Avg ± SD | CV | |
Crude ash | 17 | 19.9 ± 5.28 | 26.6 | 11 | 25.2 ± 2.57 | 10.2 | 20 | 21.5 ± 8.56 | 39.8 |
Crude fat | 16 | 2.28 ± 1.87 | 81.9 | 7 | 3.94 ± 2.29 | 58.2 | 2 | 3.15 ± 2.36 | 74.9 |
Crude protein | 18 | 19.0 ± 5.94 | 31.3 | 14 | 7.56 ± 2.63 | 34.7 | 28 | 10.7 ± 7.36 | 69.0 |
Carbohydrate | 8 | 51.6 ± 7.73 | 15.0 | 2 | 62.9 ± 6.75 | 10.7 | 21 | 53.5 ± 16.4 | 30.7 |
Minerals | |||||||||
Calcium | 5 | 24.5 ± 19.7 | 80.5 | 9 | 10.57 ± 2.41 | 22.8 | 7 | 39.6 ± 38.9 | 98.3 |
Magnesium | 3 | 23.0 ± 5.30 | 23.0 | 9 | 8.31 ± 1.68 | 20.2 | 7 | 6.79 ± 0.69 | 10.2 |
Phosphorus | 3 | 1.66 ± 0.42 | 25.2 | 8 | 1.96 ± 1.98 | 101 | 7 | 2.99 ± 0.72 | 23.9 |
Sodium | 4 | 18.0 ± 7.35 | 40.9 | 8 | 42.89 ± 7.92 | 18.5 | 7 | 46.0 ± 4.93 | 10.7 |
Potassium | 4 | 20.2 ± 3.45 | 17.1 | 9 | 33.20 ± 21.3 | 64.3 | 7 | 61.0 ± 20.3 | 33.3 |
Micro-minerals | |||||||||
Aluminum | 1 | 122 | 4 | 89.2 ± 69.7 | 78.1 | 16 | 376 ± 513 | 137 | |
Arsenic | 4 | 5.72 ± 3.36 | 58.7 | 4 | 37.5 ± 11.8 | 31.4 | 16 | 57.6 ± 22.5 | 39.1 |
Cadmium | 3 | 0.27 ± 0.27 | 101 | 4 | 0.95 ± 0.58 | 61.0 | 8 | 1.17 ± 0.49 | 41.5 |
Chromium | 3 | 2.66 ± 1.19 | 44.8 | 4 | 1.83 ± 0.68 | 37.4 | 8 | 0.61 ± 0.50 | 82.7 |
Cobalt | 3 | 1.06 ± 0.57 | 53.9 | 4 | 3.05 ± 1.01 | 33.2 | 7 | 0.16 ± 0.10 | 65.6 |
Copper | 6 | 30.0 ± 52.4 | 174 | 7 | 8.76 ± 8.60 | 98.2 | 16 | 2.41 ± 1.09 | 45.4 |
Iodine | 2 | 68.7 ± 45.4 | 66.1 | 1 | 461 | 15 | 1549 ± 1799 | 116 | |
Iron | 5 | 899 ± 686 | 76.3 | 8 | 185 ± 88.1 | 47.6 | 16 | 330 ± 394 | 119 |
Lead | 3 | 0.85 ± 0.50 | 59.0 | 4 | 0.49 ± 0.01 | 1.70 | 8 | 0.90 ± 1.44 | 159 |
Manganese | 5 | 47.4 ± 41.0 | 86.6 | 8 | 19.8 ± 11.4 | 57.3 | 16 | 14.6 ± 12.4 | 84.8 |
Nickel | 4 | 5.35 ± 1.85 | 34.5 | 4 | 1.85 ± 0.67 | 36.0 | 8 | 0.76 ± 0.38 | 50.4 |
Selenium | 2 | 1.07 ± 0.88 | 82.2 | 4 | 0.98 ± 0.02 | 1.70 | 7 | 1.60 ± 1.38 | 86.0 |
Zinc | 5 | 26.5 ± 19.7 | 74.5 | 7 | 58.2 ± 20.3 | 35.0 | 16 | 34.9 ± 17.1 | 49.2 |
EAA6 | |||||||||
Histidine | 6 | 1.45 ± 0.24 | 16.3 | 3 | 1.32 ± 0.16 | 11.8 | 17 | 1.51 ± 0.23 | 14.9 |
Isoleucine | 6 | 3.49 ± 0.83 | 23.7 | 3 | 2.84 ± 0.86 | 30.5 | 17 | 2.68 ± 1.11 | 41.5 |
Leucine | 6 | 6.16 ± 1.27 | 20.6 | 3 | 4.80 ± 1.82 | 37.8 | 17 | 6.27 ± 0.90 | 14.4 |
Lysine | 6 | 4.14 ± 1.22 | 29.4 | 3 | 4.35 ± 0.47 | 10.9 | 17 | 4.23 ± 1.17 | 27.5 |
Methionine | 6 | 1.69 ± 0.57 | 33.8 | 3 | 1.34 ± 0.65 | 48.7 | 17 | 2.09 ± 0.28 | 13.4 |
Phenylalanine | 6 | 3.57 ± 0.78 | 21.7 | 3 | 3.04 ± 1.29 | 42.3 | 17 | 4.36 ± 0.71 | 16.3 |
Threonine | 6 | 4.59 ± 1.08 | 23.5 | 3 | 3.47 ± 1.09 | 31.3 | 17 | 4.57 ± 0.42 | 9.10 |
Tryptophan | 1 | 0.14 | 6 | 1.74 ± 0.22 | 12.9 | ||||
Valine | 6 | 5.79 ± 1.75 | 30.2 | 3 | 3.56 ± 1.12 | 31.5 | 17 | 4.19 ± 0.76 | 18.2 |
NEAA7 | |||||||||
Arginine | 6 | 4.89 ± 0.94 | 19.2 | 3 | 3.13 ± 0.99 | 31.8 | 17 | 5.33 ± 1.11 | 20.9 |
Alanine | 5 | 1.19 ± 0.60 | 50.3 | 4 | 4.59 ± 3.24 | 70.6 | 17 | 11.6 ± 3.01 | 25.9 |
Aspartic acid | 6 | 10.1 ± 2.78 | 27.6 | 4 | 6.42 ± 3.18 | 49.5 | 17 | 15.3 ± 3.89 | 25.4 |
Cysteine | 5 | 2.27 ± 1.90 | 83.5 | 1 | 1.80 | 17 | 6.82 ± 6.20 | 90.9 | |
Glutamic acid | 6 | 10.3 ± 1.87 | 18.1 | 4 | 10.1 ± 6.84 | 67.8 | 17 | 17.5 ± 3.81 | 21.8 |
Glycine | 6 | 6.07 ± 2.26 | 37.2 | 2 | 4.85 ± 0.05 | 1.02 | 17 | 8.56 ± 2.57 | 30.0 |
Proline | 6 | 4.03 ± 0.83 | 20.6 | 4 | 2.66 ± 1.72 | 64.6 | 17 | 4.89 ± 2.08 | 42.5 |
Serine | 6 | 4.72 ± 1.37 | 29.1 | 3 | 4.19 ± 0.15 | 3.46 | 17 | 5.93 ± 1.32 | 22.3 |
Tyrosine | 4 | 2.96 ± 1.78 | 60.3 | 2 | 1.37 ± 0.50 | 36.8 | 16 | 1.96 ± 1.18 | 60.2 |
∑AA | 6 | 83.0 | 3 | 66.8 | 17 | 108 | |||
∑EAA | 6 | 30.9 | 3 | 24.8 | 17 | 30.5 | |||
∑NEAA | 6 | 52.1 | 3 | 42.1 | 17 | 77.8 | |||
EAA:NEAA | 6 | 0.60 | 3 | 0.61 | 17 | 0.42 |
3.3. Insect Meal as Compared to Soya Bean
3.4. Grass Protein Meal as Compared to Soya Bean
4. Animal Studies
4.1. Mussel Meal and Starfish Meal
4.1.1. Digestibility
4.1.2. Growth Performance Mussel Meal
4.1.3. Growth Performance Starfish Meal
4.2. Insect Meal
4.2.1. Digestibility
4.2.2. Growth Performance
4.3. Green Protein Meal
4.3.1. Digestibility
Biomass | Inclusion % | Control | Animal | Description | Effect | Reference |
---|---|---|---|---|---|---|
Red clover Trifolium pratense L. | 100 | Soya bean | Pig | AID 1 SID 2 | Reduced | [208] |
Perennial Ryegrass Lolium perenne | 100 | Soya bean | Pig | AID SID | Reduced | [208] |
Red clover | 100 | − | Rat | TD 3; BV 4 | 64; 51 | [206] |
Red clover | 100 | − | Rat | TD; BV | 62; 31 | [200] |
Italian ryegrass Lolium multiforum | 100 | − | Rat | TD; BV | 79; 58 | [200] |
Ryegrass | 100 | Lactalbumin | Rat | RNV 5; PTD 6 | Reduced | [209] |
Lucerne Medicago sativa L. | 100 | Lactalbumin | Rat | RNV; PTD | Reduced | [209] |
White clover Trifolium repens | 100 | Lactalbumin | Rat | RNV; PTD | Reduced | [209] |
Lucerne | 100 | − | Rat | TD; BV | 86; 77 | [210] |
Red clover | − | Rat | TD; BV | 70.6; 53.7 | [211] | |
Lucerne | 100 | Rat | TD; BV | 76−88; 37−57 | [207] | |
Lucerne | Rat | TD; BV | 65; 45 | [168] | ||
Red clover | Rat | TD; BV | 80; 44 | [168] | ||
Italian ryegrass | Rat | TD; BV | 85; 58 | [168] | ||
White clover | 100 | Rat | TD | 83.0 | [162] | |
Lucerne | Rat | TD | 85.0 | [160] | ||
Red clover | Rat | TD | 77.4 | [160] | ||
Perennial Ryegrass | Rat | TD | 75.4 | |||
White clover | Rat | TD | 79.3 | [160] |
4.3.2. Growth Performance
Biomass | Inclusion % | Control | Animal | Description | Effect | Reference |
---|---|---|---|---|---|---|
Red clover Trifolium pretense L. | 1:1 SBM protein ratio | Soya bean | Broiler/Astra B | ADFI 1, ADG 2 | Increased w. 0–4, Reduced w. 5–8 Reduced w. 0–4 No effect w. 5–8 | [200] |
Italian ryegrass Lolium multiforum | 1:1 SBM protein ratio | Soya bean | Broiler | ADFI, ADG | No effect | [200] |
Lucerne/Italian rye-grass/White clover Trifolium repens | Casein | Broiler Rode Island Red x Light Sussex | Weight, Gross protein value | Reduced. Dependent on plant maturity | [225] | |
Red clover | 30, 40 | Broiler H&N “Meat Nick” | Weight gain, FCR 3 | Reduced | [213] | |
Grass-clover mix 4 | 0, 8, 16, 24 | Soya press cake Org. 5 | Broiler Color Yield JA57 (slow growing) | ADFI, ADG, FCR | No effect at 8 Reduced at 16–24 | [45] |
Lucerne Medicago sativa L. | 1.5, 3.0 | Soya bean | Broiler Ross 308 | ADFI, ADG, FCR | Reduced Increased BW d. 21 No effect | [224] |
Lucerne (low+high saponin; LS/HS) | 10, 20, 30, 40 | Soya bean | Broiler Layer Leghorn | Weight gain, FCR | LS improved HS: reduced Reduced when 30 and 40% wet undried LS alfalfa protein concentrate was incorporated in the diets. | [213] |
Lucerne | 0, 5, 10, 15, 20 | Soya bean | Pig | ADG, FCR | Good performance in all groups | [214] |
Lucerne | − | Soya bean | Pig Yorkshire | ADG, FCR | No effect | [205] |
Lucerne | 0, 33, 66, 100 5 | Soya bean | Crossbred Pig | ADG, ADFI, FCR | Starter: no effect Grower: no effect Finisher: increased gain at 66 and 100% | [216] |
Lucerne | 0, 25, 50, 100 5 | Soya bean | Pig Landrace | ADG, Weight gain, FCR | No effect | [217] |
Lucerne | 100 | Fish meal+meat and bone meal | Pig Landrace x Large White | ADG, ADFI | No effect 25–80 kg Increased | [223] |
Lucerne | 1.5, 3 | Soya bean | Pig (sow) Polish Landrace x Polish Large White | Weight growth | Late gestation sow: weight increased, Piglet: no effect | [215] |
Lucerne | 10, 20, 29, 56 | Soya bean | Rat | ADG | No effect at 10–20 Reduced at 29–56 | [226] |
Lucerne, Red clover, Italian ryegrass | 100 6 | Effect of precipitation pH | Rat | Intake, Growth, AID 7 | No effect | [227] |
Lucerne | 100 | Casein | Rat | Weight, PER 8 | Reduced | [228] |
5. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- EU 2018/848 regulation (EU) 2018/848 of the european parliament and of the council of 30 May 2018 on organic production and labelling of organic products and repealing Council Regulation (EC) No 834/2007. Off. J. Eur. Union 2018, L150, 1–92.
- Eriksson, M.; Waldenstedt, L.; Engström, B.; Elwinger, K. Protein supply in organic broiler diets. Acta Agric. Scand. A Anim. Sci. 2009, 59, 211–219. [Google Scholar] [CrossRef]
- Da Silva, V.P.; van der Werf, H.M.; Spies, A.; Soares, S.R. Variability in environmental impacts of Brazilian soybean according to crop production and transport scenarios. J. Environ. Manag. 2010, 91, 1831–1839. [Google Scholar] [CrossRef] [PubMed]
- Früh, B.; Schlatter, B.; Isensee, A.; Maurer, V.; Willer, H. Report on Organic Protein Availability and Demand in Europe; Zumsteg Druck AG: Frick, Switzerland, 2015; pp. 1–134. [Google Scholar]
- Deutsch, L.; Graslund, S.; Folke, C.; Troell, M.; Huitric, M.; Kautsky, N.; Lebel, L. Feeding aquaculture growth through globalization: Exploitation of marine ecosystems for fishmeal. Glob. Environ. Chang. Hum. Policy Dimens. 2007, 17, 238–249. [Google Scholar] [CrossRef]
- Veldkamp, T.; Bosch, G. Insects: A protein-rich feed ingredient in pig and poultry diets. Anim. Front. 2015, 5, 45–50. [Google Scholar] [CrossRef]
- Van Kernebeek, H.R.J.; Oosting, S.J.; Van Ittersum, M.K.; Bikker, P.; De Boer, I.J.M. Saving land to feed a growing population: Consequences for consumption of crop and livestock products. Int. J. Life Cycle Assess. 2015, 21, 677–687. [Google Scholar] [CrossRef] [Green Version]
- Van Raamsdonk, L.; Van der Fels-Klerx, H.; De Jong, J. New feed ingredients: The insect opportunity. Food Addit. Contam. 2017, 34, 1384–1397. [Google Scholar] [CrossRef] [Green Version]
- Buschmann, A.H.; Camus, C.; Infante, J.; Neori, A.; Israel, Á.; Hernández-González, M.C.; Pereda, S.V.; Gomez-Pinchetti, J.L.; Golberg, A.; Tadmor-Shalev, N. Seaweed production: Overview of the global state of exploitation, farming and emerging research activity. Eur. J. Phyc. 2017, 52, 391–406. [Google Scholar] [CrossRef]
- Handå, A.; Forbord, S.; Wang, X.; Broch, O.J.; Dahle, S.W.; Størseth, T.R.; Reitan, K.I.; Olsen, Y.; Skjermo, J. Seasonal-and depth-dependent growth of cultivated kelp (Saccharina latissima) in close proximity to salmon (Salmo salar) aquaculture in Norway. Aquaculture 2013, 414, 191–201. [Google Scholar] [CrossRef]
- Moy, F.E.; Christie, H. Large-scale shift from sugar kelp (Saccharina latissima) to ephemeral algae along the south and west coast of Norway. Mar. Biol. Res. 2012, 8, 309–321. [Google Scholar] [CrossRef]
- Manevski, K.; Lærke, P.E.; Jiao, X.; Santhome, S.; Jørgensen, U. Biomass productivity and radiation utilisation of innovative cropping systems for biorefinery. Agric. For. Meteorol. 2017, 233, 250–264. [Google Scholar] [CrossRef]
- Manevski, K.; Lærke, P.E.; Olesen, J.E.; Jørgensen, U. Nitrogen balances of innovative cropping systems for feedstock production to future biorefineries. Sci. Total Environ. 2018, 633, 372–390. [Google Scholar] [CrossRef] [PubMed]
- Taylor, D.; Saurel, C.; Nielsen, P.; Petersen, J.K. Production characteristics and optimization of mitigation mussel culture. Front. Mar. Sci. 2019, 6, 698. [Google Scholar] [CrossRef] [Green Version]
- Petersen, J.K.; Hasler, B.; Timmermann, K.; Nielsen, P.; Tørring, D.B.; Larsen, M.M.; Holmer, M. Mussels as a tool for mitigation of nutrients in the marine environment. Mar. Pollut. Bull. 2014, 82, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Holdt, S.L.; Edwards, M.D. Cost-effective IMTA: A comparison of the production efficiencies of mussels and seaweed. J. Appl. Phycol. 2014, 26, 933–945. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; Jiang, L.; Tian, C.; Li, J.; Xiao, Z. Potential of Perennial Crop on Environmental Sustainability of Agriculture. Procedia Environ. Sci. 2011, 10, 1141–1147. [Google Scholar] [CrossRef] [Green Version]
- Angus, J.; Bolger, T.; Kirkegaard, J.; Peoples, M. Nitrogen mineralisation in relation to previous crops and pastures. Soil Res. 2006, 44, 355–365. [Google Scholar] [CrossRef]
- Espinoza, S.; Ovalle, C.; Zagal, E.; Matus, I.; Tay, J.; Peoples, M.; del Pozo, A. Contribution of legumes to wheat productivity in Mediterranean environments of central Chile. Field Crops Res. 2012, 133, 150–159. [Google Scholar] [CrossRef]
- Oonincx, D.G.; Van Broekhoven, S.; Van Huis, A.; van Loon, J.J. Feed conversion, survival and development, and composition of four insect species on diets composed of food by-products. PLoS ONE 2015, 10, e0144601. [Google Scholar] [CrossRef] [Green Version]
- Van Huis, A.; Oonincx, D.G. The environmental sustainability of insects as food and feed. A review. Agron. Sustain. Dev. 2017, 37, 43. [Google Scholar] [CrossRef] [Green Version]
- EC 1069/2009 Regulation No 1069/2009 of the European Parliament and of the Council of 21 October 2009 Laying Down Health Rules as Regards Animal By-Products and Derived Products not Intended for Human Consumption and Repealing Regulation (EC) No 1774/2002 (Animal By-Products Regulation). Off. J. Eur. Union 2009, L300, 1–47.
- Chung, I.K.; Beardall, J.; Mehta, S.; Sahoo, D.; Stojkovic, S. Using marine macroalgae for carbon sequestration: A critical appraisal. J. Appl. Phycol. 2011, 23, 877–886. [Google Scholar] [CrossRef]
- Stagnari, F.; Maggio, A.; Galieni, A.; Pisante, M. Multiple benefits of legumes for agriculture sustainability: An overview. Chem. Biol. Technol. Agric. 2017, 4, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Oonincx, D.G.; De Boer, I.J. Environmental impact of the production of mealworms as a protein source for humans–a life cycle assessment. PLoS ONE 2012, 7, e51145. [Google Scholar] [CrossRef] [Green Version]
- Parodi, A.; De Boer, I.J.; Gerrits, W.J.; Van Loon, J.J.; Heetkamp, M.J.; Van Schelt, J.; Bolhuis, J.E.; Van Zanten, H.H. Bioconversion efficiencies, greenhouse gas and ammonia emissions during black soldier fly rearing—A mass balance approach. J. Clean. Prod. 2020, 271, 122488. [Google Scholar] [CrossRef]
- Petersen, J.; Gislason, H.; Fitridge, I.; Saurel, C.; Degel, H.; Nielsen, C. Fiskeri efter Søstjerner i Limfjorden; DTU Aqua: Roskilde, Denmark, 2016; pp. 1–35. [Google Scholar]
- Puente-Rodríguez, D.; Swart, J.A.; Middag, M.; Van der Windt, H.J. Identities, communities, and practices in the transition towards Sustainable Mussel Fishery in the Dutch Wadden Sea. Hum. Ecol. 2015, 43, 93–104. [Google Scholar] [CrossRef] [Green Version]
- Timmermann, K.; Maar, M.; Bolding, K.; Larsen, J.; Nielsen, P.; Petersen, J.K. Mussel production as a nutrient mitigation tool for improving marine water quality. Aquac. Envir. Inter. 2019, 11, 191–204. [Google Scholar] [CrossRef] [Green Version]
- McEniry, J.; O’Kiely, P. 11—Developments in grass-/forage-based biorefineries. In Advances in Biorefineries; Waldron, K., Ed.; Woodhead Publishing: Cambridge, UK, 2014; pp. 335–363. [Google Scholar]
- Njakou Djomo, S.; Knudsen, M.T.; Martinsen, L.; Andersen, M.S.; Ambye-Jensen, M.; Møller, H.B.; Hermansen, J.E. Green proteins: An energy-efficient solution for increased self-sufficiency in protein in Europe. Biofuels Bioprod. Bioref. 2020, 14, 605–619. [Google Scholar] [CrossRef]
- Verbeke, W. Profiling consumers who are ready to adopt insects as a meat substitute in a Western society. Food Qual. Prefer. 2015, 39, 147–155. [Google Scholar] [CrossRef]
- Fernández, A.; Grienke, U.; Soler-Vila, A.; Guihéneuf, F.; Stengel, D.B.; Tasdemir, D. Seasonal and geographical variations in the biochemical composition of the blue mussel (Mytilus edulis L.) from Ireland. Food Chem. 2015, 177, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Cox, S.; Abu-Ghannam, N. Effect of different drying temperatures on the moisture and phytochemical constituents of edible Irish brown seaweed. LWT Food Sci. Technol. 2011, 44, 1266–1272. [Google Scholar] [CrossRef] [Green Version]
- Sharma, H.S.; Lyons, G.; McRoberts, C. Biorefining of perennial grasses: A potential sustainable option for Northern Ireland grassland production. Chem. Eng. Res. Des. 2011, 89, 2309–2321. [Google Scholar] [CrossRef]
- Nielsen, M.M.; Manns, D.; D’Este, M.; Krause-Jensen, D.; Rasmussen, M.B.; Larsen, M.M.; Alvarado-Morales, M.; Angelidaki, I.; Bruhn, A. Variation in biochemical composition of Saccharina latissima and Laminaria digitata along an estuarine salinity gradient in inner Danish waters. Algal Res. 2016, 13, 235–245. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, M.; Fang, Z. Recent development in efficient processing technology for edible algae: A review. Trends Food Sci. Technol. 2019, 88, 251–259. [Google Scholar] [CrossRef]
- Berge, G.M.; Austreng, E. Blue mussel in feed for rainbow trout. Aquaculture 1989, 81, 79–90. [Google Scholar] [CrossRef]
- Veldkamp, T.; Van Niekerk, T. Live black soldier fly larvae (Hermetia illucens) for turkey poults. J. Insects Food Feed 2019, 5, 301–311. [Google Scholar] [CrossRef]
- Woods, M.; Cullere, M.; Van Emmenes, L.; Vincenzi, S.; Pieterse, E.; Hoffman, L.; Zotte, A.D. Hermetia illucens larvae reared on different substrates in broiler quail diets: Effect on apparent digestibility, feed-choice and growth performance. J. Insects Food Feed 2019, 5, 89–98. [Google Scholar] [CrossRef]
- Larsen, S.U.; Jørgensen, H.; Bukh, C.; Schjoerring, J.K. Green biorefining: Effect of nitrogen fertilization on protein yield, protein extractability and amino acid composition of tall fescue biomass. Ind. Crops Prod. 2019, 130, 642–652. [Google Scholar] [CrossRef]
- Colas, D.; Doumeng, C.; Pontalier, P.Y.; Rigal, L. Green crop fractionation by twin-screw extrusion: Influence of the screw profile on alfalfa (Medicago sativa) dehydration and protein extraction. Chem. Eng. Process. 2013, 72, 1–9. [Google Scholar] [CrossRef]
- Santamaria-Fernandez, M.; Ambye-Jensen, M.; Damborg, V.K.; Lübeck, M. Demonstration-scale protein recovery by lactic acid fermentation from grass clover—A single case of the production of protein concentrate and press cake silage for animal feeding trials. Biofuels Bioprod. Bioref. 2018, 13, 502–513. [Google Scholar] [CrossRef]
- Damborg, V.K.; Jensen, S.K.; Weisbjerg, M.R.; Adamsen, A.P.; Stødkilde, L. Screw-pressed fractions from green forages as animal feed: Chemical composition and mass balances. Anim. Feed Sci. Technol. 2020, 261, 114401. [Google Scholar] [CrossRef]
- Stødkilde, L.; Ambye-Jensen, M.; Jensen, S.K. Biorefined grass-clover protein composition and effect on organic broiler performance and meat fatty acid profile. J. Anim. Physiol. Anim. Nutr. 2020, 104, 1757–1767. [Google Scholar] [CrossRef]
- Santamaría-Fernández, M.; Lübeck, M. Production of leaf protein concentrates in green biorefineries as alternative feed for monogastric animals. Anim. Feed Sci. Technol. 2020, 268, 114605. [Google Scholar] [CrossRef]
- De Jong, E.; Jungmeier, G. Biorefinery concepts in comparison to petrochemical refineries. In Industrial Biorefineries & White Biotechnology, 1st ed.; Pandey, A., Höfer, R., Taherzadeh, M., Nampoothiri, K.M., Larroche, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 3–33. [Google Scholar]
- Dale, B.E.; Allen, M.S.; Laser, M.; Lynd, L.R. Protein feeds coproduction in biomass conversion to fuels and chemicals. Biofuels Bioprod. Bioref. 2009, 3, 219–230. [Google Scholar] [CrossRef]
- Kragbæk Damborg, V.; Krogh Jensen, S.; Johansen, M.; Ambye-Jensen, M.; Weisbjerg, M.R. Ensiled pulp from biorefining increased milk production in dairy cows compared with grass-clover silage. J. Dairy Sci. 2019, 102, 8883–8897. [Google Scholar] [CrossRef]
- Santamaría-Fernández, M.; Molinuevo-Salces, B.; Lübeck, M.; Uellendahl, H. Biogas potential of green biomass after protein extraction in an organic biorefinery concept for feed, fuel and fertilizer production. Renew. Energy 2018, 129, 769–775. [Google Scholar] [CrossRef]
- Keto, L.; Perttilä; Särkijärvi, S.; Kamppari, K.; Immonen, I.; Kytölä, K.; Ertbjerg, P.; Rinne, M. Grass Silage for Biorefinery—Silage Juice as a Dietary Component for Growing Pigs; European Grassland Federation: Helsinki, Finland, 2020. [Google Scholar]
- Audren, G.; Classen, H.; Schwean, K.; Racz, V. Nutritional value of wheat screenings for broiler chickens. Can. J. Anim. Sci. 2002, 82, 393–398. [Google Scholar] [CrossRef]
- Steenfeldt, S. The dietary effect of different wheat cultivars for broiler chickens. Br. Poult. Sci. 2001, 42, 595–609. [Google Scholar] [CrossRef]
- Zijlstra, R.; Lange, C.D.; Patience, J. Nutritional value of wheat for growing pigs: Chemical composition and digestible energy content. Can. J. Anim. Sci. 1999, 79, 187–194. [Google Scholar] [CrossRef]
- Barzegar, S.; Wu, S.-B.; Noblet, J.; Swick, R.A. Metabolizable energy of corn, soybean meal and wheat for laying hens. Poult. Sci. 2019, 98, 5876–5882. [Google Scholar] [CrossRef]
- Feed Tables Wheat Feed Flour. Available online: https://www.feedtables.com/content/wheat-feed-flour (accessed on 26 August 2020).
- Feed Tables Wheat Soft. Available online: https://www.feedtables.com/content/wheat-soft (accessed on 26 August 2020).
- Ao, X.; Kim, I. Effects of dietary dried mealworm (Ptecticus tenebrifer) larvae on growth performance and nutrient digestibility in weaning pigs. Livestock Sci. 2019, 230, 103815. [Google Scholar] [CrossRef]
- Lagos, L.V.; Stein, H.H. Torula yeast has greater digestibility of amino acids and phosphorus, but not energy, compared with a commercial source of fish meal fed to weanling pigs. J. Anim. Sci. 2020, 98, skz375. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Hou, G.; Song, Z.; Zhao, J.; Fan, Z.; Hou, D.; He, X. Nutritional value of enzyme-treated soybean meal, concentrated degossypolized cottonseed protein, dried porcine solubles and fish meal for 10-to-20 kg pigs. Anim. Feed Sci. Technol. 2019, 252, 23–33. [Google Scholar] [CrossRef]
- Oliveira, M.; Espinosa, C.; Berrocoso, J.; Rojas, O.; Htoo, J.; Stein, H. Concentration of digestible and metabolizable energy in L-threonine and L-valine biomass products fed to weanling pigs. Anim. Feed Sci. Technol. 2020, 263, 114463. [Google Scholar] [CrossRef]
- Sinn, S.; Gibbons, W.; Brown, M.; DeRouchey, J.; Levesque, C. Evaluation of microbially enhanced soybean meal as an alternative to fishmeal in weaned pig diets. Animal 2017, 11, 784–793. [Google Scholar] [CrossRef] [PubMed]
- Sørensen, P.; Nørgaard, J.V. Starfish (Asterias rubens) as feed ingredient for piglets. Anim. Feed Sci. Technol. 2016, 211, 181–188. [Google Scholar] [CrossRef]
- Trosvik, K.A.; Rawles, S.D.; Thompson, K.R.; Metts, L.A.; Gannam, A.; Twibell, R.; Webster, C.D. Growth and body composition of Nile tilapia, Oreochromis niloticus, fry fed organic diets containing yeast extract and soybean meal as replacements for fish meal, with and without supplemental lysine and methionine. J. World Aquacult. Soc. 2012, 43, 635–647. [Google Scholar] [CrossRef]
- Hammershøj, M.; Steenfeldt, S. Effects of blue lupin (Lupinus angustifolius) in organic layer diets and supplementation with foraging material on egg production and some egg quality parameters. Poult. Sci. 2005, 84, 723–733. [Google Scholar] [CrossRef]
- Jacob, J. Nutrient content of organically grown feedstuffs. J. Appl. Poult. Res. 2007, 16, 642–651. [Google Scholar] [CrossRef]
- Feed Tables Soybean Meal, Oil 5–20%. Available online: https://www.feedtables.com/content/soybean-meal-oil-5-20 (accessed on 13 October 2020).
- National Research Council, Nutrient Requirements of Swine; National Academies Press: Washington, DC, USA, 2012.
- Grkovic, N.; Dimitrijevic, M.; Teodorovic, V.; Karabasil, N.; Vasilev, D.; Stajkovic, S.; Velebit, B. Factors Influencing Mussel (Mytilus Galloprovincialis) Nutritional Quality; IOP Conference Series: Earth and Environmental Science, 2019; IOP Publishing: Bristol, UK, 2019; pp. 1–6. [Google Scholar]
- Lemaire, N.; Pellerin, J.; Fournier, M.; Girault, L.; Tamigneaux, E.; Cartier, S.; Pelletier, E. Seasonal variations of physiological parameters in the blue mussel Mytilus spp. from farm sites of eastern Quebec. Aquaculture 2006, 261, 729–751. [Google Scholar] [CrossRef]
- Ferguson, J.C. The role of free amino acids in nitrogen storage during the annual cycle of a starfish. Comp. Biochem. Phys. A Phys. 1975, 51, 341–350. [Google Scholar] [CrossRef]
- Rubilar, T.; de Vivar, M.D.; de Ward, C.P. Biochemical composition of body compartments during the reproductive cycle of the starfish Allostichaster capensis in Patagonia, Argentina. Rev. Biol. Trop. 2008, 56, 351–360. [Google Scholar] [CrossRef]
- Van der Heide, M.E.; Møller, L.F.; Petersen, J.K.; Nørgaard, J.V. Annual variation in the composition of major nutrients of the common starfish (Asterias rubens). Anim. Feed Sci. Technol. 2018, 238, 91–97. [Google Scholar] [CrossRef] [Green Version]
- Nørgaard, J.V.; Petersen, J.K.; Tørring, D.B.; Jørgensen, H.; Lærke, H. Chemical composition and standardized ileal digestibility of protein and amino acids from blue mussel, starfish, and fish silage in pigs. Anim. Feed Sci. Technol. 2015, 205, 90–97. [Google Scholar] [CrossRef]
- Jönsson, L.; Elwinger, K. Mussel meal as a replacement for fish meal in feeds for organic poultry—A pilot short-term study. Acta Agric. Scand. A Anim. Sci. 2009, 59, 22–27. [Google Scholar] [CrossRef]
- Nagel, F.; von Danwitz, A.; Schlachter, M.; Kroeckel, S.; Wagner, C.; Schulz, C. Blue mussel meal as feed attractant in rapeseed protein-based diets for turbot (Psetta maxima L.). Aquacult. Res. 2014, 45, 1964–1978. [Google Scholar] [CrossRef]
- Langeland, M.; Vidakovic, A.; Vielma, J.; Lindberg, J.; Kiessling, A.; Lundh, T. Digestibility of microbial and mussel meal for Arctic charr (Salvelinus alpinus) and Eurasian perch (Perca fluviatilis). Aquacult. Nutr. 2016, 22, 485–495. [Google Scholar] [CrossRef]
- Van der Heide, M.E.; Carlson, D.; Nørgaard, J.V. Growth performance of weaned pigs fed different levels of starfish meal. Anim. Feed Sci. Technol. 2018, 238, 84–90. [Google Scholar] [CrossRef]
- Stiger-Pouvreau, V.; Bourgougnon, N.; Deslandes, E. Carbohydrates from seaweeds. In Seaweed in Health and Disease Prevention; Fluerence, J., Levine, I., Eds.; Elsevier: London, UK, 2016; pp. 223–274. [Google Scholar]
- Øverland, M.; Mydland, L.T.; Skrede, A. Marine macroalgae as sources of protein and bioactive compounds in feed for monogastric animals. J. Sci. Food Agric. 2019, 99, 13–24. [Google Scholar] [CrossRef] [Green Version]
- Bikker, P.; Stokvis, L.; van Krimpen, M.; van Wikselaar, P.; Cone, J. Evaluation of seaweeds from marine waters in Northwestern Europe for application in animal nutrition. Anim. Feed Sci. Technol. 2020, 263, 114460. [Google Scholar] [CrossRef]
- Moen, E.; Horn, S.; Østgaard, K. Biological degradation of Ascophyllum nodosum. J. Appl. Phycol. 1997, 9, 347–357. [Google Scholar] [CrossRef]
- Gardiner, G.E.; Campbell, A.J.; O’Doherty, J.V.; Pierce, E.; Lynch, P.B.; Leonard, F.C.; Stanton, C.; Ross, R.P.; Lawlor, P.G. Effect of Ascophyllum nodosum extract on growth performance, digestibility, carcass characteristics and selected intestinal microflora populations of grower–finisher pigs. Anim. Feed Sci. Technol. 2008, 141, 259–273. [Google Scholar] [CrossRef]
- Tibbetts, S.M.; Milley, J.E.; Lall, S.P. Nutritional quality of some wild and cultivated seaweeds: Nutrient composition, total phenolic content and in vitro digestibility. J. Appl. Phycol. 2016, 28, 3575–3585. [Google Scholar] [CrossRef]
- Creech, B.; Spears, J.; Flowers, W.; Hill, G.; Lloyd, K.; Armstrong, T.; Engle, T. Effect of dietary trace mineral concentration and source (inorganic vs. chelated) on performance, mineral status, and fecal mineral excretion in pigs from weaning through finishing. J. Anim. Sci. 2004, 82, 2140–2147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lei, X.J.; Chung, J.Y.; Park, J.H.; Kim, I.H. Evaluation of different dietary electrolyte balance in weanling pigs diets. Anim. Feed Sci. Technol. 2017, 226, 98–102. [Google Scholar] [CrossRef]
- Sharma, S.; Neves, L.; Funderud, J.; Mydland, L.T.; Øverland, M.; Horn, S.J. Seasonal and depth variations in the chemical composition of cultivated Saccharina latissima. Algal Res. 2018, 32, 107–112. [Google Scholar] [CrossRef]
- Ometto, F.; Steinhovden, K.B.; Kuci, H.; Lunnbäck, J.; Berg, A.; Karlsson, A.; Handå, A.; Wollan, H.; Ejlertsson, J. Seasonal variation of elements composition and biomethane in brown macroalgae. Biomass Bioenerg. 2018, 109, 31–38. [Google Scholar] [CrossRef]
- Ventura, M.; Castañón, J. The nutritive value of seaweed (Ulva lactuca) for goats. Small Ruminant Res. 1998, 29, 325–327. [Google Scholar] [CrossRef]
- Tabarsa, M.; Rezaei, M.; Ramezanpour, Z.; Waaland, J.R. Chemical compositions of the marine algae Gracilaria salicornia (Rhodophyta) and Ulva lactuca (Chlorophyta) as a potential food source. J. Sci. Food Agric. 2012, 92, 2500–2506. [Google Scholar] [CrossRef]
- Arieli, A.; Sklan, D.; Kissil, G. A note on the nutritive value of Ulva lactuca for ruminants. Anim. Sci. 1993, 57, 329–331. [Google Scholar] [CrossRef]
- Gaillard, C.; Bhatti, H.S.; Novoa-Garrido, M.; Lind, V.; Roleda, M.Y.; Weisbjerg, M.R. Amino acid profiles of nine seaweed species and their in situ degradability in dairy cows. Anim. Feed Sci. Technol. 2018, 241, 210–222. [Google Scholar] [CrossRef]
- Ortiz, J.; Romero, N.; Robert, P.; Araya, J.; Lopez-Hernandez, J.; Bozzo, C.; Navarrete, E.; Osorio, A.; Rios, A. Dietary fiber, amino acid, fatty acid and tocopherol contents of the edible seaweeds Ulva lactuca and Durvillaea antarctica. Food Chem. 2006, 99, 98–104. [Google Scholar] [CrossRef]
- Abudabos, A.M.; Okab, A.B.; Aljumaah, R.S.; Samara, E.M.; Abdoun, K.A.; Al-Haidary, A.A. Nutritional value of green seaweed (Ulva lactuca) for broiler chickens. Ital. J. Anim. Sci. 2013, 12, 177–181. [Google Scholar] [CrossRef]
- Pádua, M.D.; Fontoura, P.S.G.; Mathias, A.L. Chemical composition of Ulvaria oxysperma (Kützing) bliding, Ulva lactuca (Linnaeus) and Ulva fascita (Delile). Braz. Arch. Biol. Technol. 2004, 47, 49–55. [Google Scholar] [CrossRef] [Green Version]
- Khairy, H.M.; El-Shafay, S.M. Seasonal variations in the biochemical composition of some common seaweed species from the coast of Abu Qir Bay, Alexandria, Egypt. Oceanologia 2013, 55, 435–452. [Google Scholar] [CrossRef] [Green Version]
- Okab, A.B.; Samara, E.M.; Abdoun, K.A.; Rafay, J.; Ondruska, L.; Parkanyi, V.; Pivko, J.; Ayoub, M.A.; Al-Haidary, A.A.; Aljumaah, R.S. Effects of dietary seaweed (Ulva lactuca) supplementation on the reproductive performance of buck and doe rabbits. J. Appl. Anim. Res. 2013, 41, 347–355. [Google Scholar] [CrossRef]
- Ho, Y. Mineral element content in Ulva lactuca L. with reference to eutrophication in Hong Kong coastal waters. Hydrobiologia 1981, 77, 43–47. [Google Scholar] [CrossRef]
- Rohani-Ghadikolaei, K.; Abdulalian, E.; Ng, W.-K. Evaluation of the proximate, fatty acid and mineral composition of representative green, brown and red seaweeds from the Persian Gulf of Iran as potential food and feed resources. J. Food Sci. Technol. 2012, 49, 774–780. [Google Scholar] [CrossRef] [Green Version]
- Yoganandham, S.T.; Raguraman, V.; Muniswamy, G.; Sathyamoorthy, G.; Renuka, R.R.; Chidambaram, J.; Rajendran, T.; Chandrasekaran, K.; Ravindranath, R.R.S. Mineral and trace metal concentrations in seaweeds by microwave-assisted digestion method followed by quadrupole inductively coupled plasma mass spectrometry. Biol. Trace Elem. Res. 2019, 187, 579–585. [Google Scholar] [CrossRef]
- Oucif, H.; Benaissa, M.; Ali Mehidi, S.; Prego, R.; Aubourg, S.P.; Abi-Ayad, S.-M. Chemical Composition and Nutritional Value of Different Seaweeds from the West Algerian Coast. J. Aquat. Food Prod. Technol. 2020, 29, 90–104. [Google Scholar] [CrossRef]
- Maia, M.R.; Fonseca, A.J.; Oliveira, H.M.; Mendonça, C.; Cabrita, A.R. The potential role of seaweeds in the natural manipulation of rumen fermentation and methane production. Sci. Rep. 2016, 6, 32321. [Google Scholar] [CrossRef] [PubMed]
- Cabrita, A.R.; Maia, M.R.; Oliveira, H.M.; Sousa-Pinto, I.; Almeida, A.A.; Pinto, E.; Fonseca, A.J. Tracing seaweeds as mineral sources for farm-animals. J. Appl. Phycol. 2016, 28, 3135–3150. [Google Scholar] [CrossRef]
- Yaich, H.; Garna, H.; Besbes, S.; Paquot, M.; Blecker, C.; Attia, H. Chemical composition and functional properties of Ulva lactuca seaweed collected in Tunisia. Food Chem. 2011, 128, 895–901. [Google Scholar] [CrossRef]
- Zhu, D.; Wen, X.; Xuan, X.; Li, S.; Li, Y. The green alga Ulva lactuca as a potential ingredient in diets for juvenile white spotted snapper Lutjanus stellatus Akazaki. J. Appl. Phycol. 2016, 28, 703–711. [Google Scholar] [CrossRef]
- Afonso, C.; Cardoso, C.; Ripol, A.; Varela, J.; Quental-Ferreira, H.; Pousão-Ferreira, P.; Ventura, M.; Delgado, I.; Coelho, I.; Castanheira, I. Composition and bioaccessibility of elements in green seaweeds from fish pond aquaculture. Food Res. Int. 2018, 105, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, M.M.; Bruhn, A.; Rasmussen, M.B.; Olesen, B.; Larsen, M.M.; Møller, H.B. Cultivation of Ulva lactuca with manure for simultaneous bioremediation and biomass production. J. Appl. Phycol. 2012, 24, 449–458. [Google Scholar] [CrossRef]
- Shuuluka, D.; Bolton, J.J.; Anderson, R.J. Protein content, amino acid composition and nitrogen-to-protein conversion factors of Ulva rigida and Ulva capensis from natural populations and Ulva lactuca from an aquaculture system, in South Africa. J. Appl. Phycol. 2013, 25, 677–685. [Google Scholar] [CrossRef]
- Cruz-Suárez, L.E.; Tapia-Salazar, M.; Nieto-López, M.; Guajardo-Barbosa, C.; Ricque-Marie, D. Comparison of Ulva clathrata and the kelps Macrocystis pyrifera and Ascophyllum nodosum as ingredients in shrimp feeds. Aquacult. Nutr. 2009, 15, 421–430. [Google Scholar] [CrossRef]
- Erickson, P.S.; Marston, S.; Gemmel, M.; Deming, J.; Cabral, R.; Murphy, M.; Marden, J. Kelp taste preferences by dairy calves. J. Dairy Sci. 2012, 95, 856–858. [Google Scholar] [CrossRef] [Green Version]
- Dierick, N.; Ovyn, A.; De Smet, S. Effect of feeding intact brown seaweed Ascophyllum nodosum on some digestive parameters and on iodine content in edible tissues in pigs. J. Sci. Food Agric. 2009, 89, 584–594. [Google Scholar] [CrossRef]
- Tabassum, M.R.; Xia, A.; Murphy, J.D. Seasonal variation of chemical composition and biomethane production from the brown seaweed Ascophyllum nodosum. Biores. Technol. 2016, 216, 219–226. [Google Scholar] [CrossRef]
- Rioux, L.-E.; Beaulieu, L.; Turgeon, S.L. Seaweeds: A traditional ingredients for new gastronomic sensation. Food Hydrocoll. 2017, 68, 255–265. [Google Scholar] [CrossRef]
- Peinado, I.; Girón, J.; Koutsidis, G.; Ames, J. Chemical composition, antioxidant activity and sensory evaluation of five different species of brown edible seaweeds. Food Res. Int. 2014, 66, 36–44. [Google Scholar] [CrossRef] [Green Version]
- Lorenzo, J.M.; Agregán, R.; Munekata, P.E.; Franco, D.; Carballo, J.; Şahin, S.; Lacomba, R.; Barba, F.J. Proximate composition and nutritional value of three macroalgae: Ascophyllum nodosum, Fucus vesiculosus and Bifurcaria bifurcata. Mar. Drugs 2017, 15, 360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villares, R.; Fernández-Lema, E.; López-Mosquera, E. Seasonal variations in concentrations of macro-and micronutrients in three species of brown seaweed. Bot. Mar. 2013, 56, 49–61. [Google Scholar] [CrossRef]
- Vieira, E.F.; Soares, C.; Machado, S.; Correia, M.; Ramalhosa, M.J.; Oliva-Teles, M.T.; Carvalho, A.P.; Domingues, V.F.; Antunes, F.; Oliveira, T.A.C. Seaweeds from the Portuguese coast as a source of proteinaceous material: Total and free amino acid composition profile. Food Chem. 2018, 269, 264–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stévant, P.; Marfaing, H.; Rustad, T.; Sandbakken, I.; Fleurence, J.; Chapman, A. Nutritional value of the kelps Alaria esculenta and Saccharina latissima and effects of short-term storage on biomass quality. J. Appl. Phycol. 2017, 29, 2417–2426. [Google Scholar] [CrossRef]
- Schiener, P.; Black, K.D.; Stanley, M.S.; Green, D.H. The seasonal variation in the chemical composition of the kelp species Laminaria digitata, Laminaria hyperborea, Saccharina latissima and Alaria esculenta. J. Appl. Phycol. 2015, 27, 363–373. [Google Scholar] [CrossRef]
- Finke, M.D. Estimate of chitin in raw whole insects. Zoo Biol. 2007, 26, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Marono, S.; Piccolo, G.; Loponte, R.; Di Meo, C.; Attia, Y.A.; Nizza, A.; Bovera, F. In vitro crude protein digestibility of Tenebrio molitor and Hermetia illucens insect meals and its correlation with chemical composition traits. Ital. J. Anim. Sci. 2015, 14, 338–342. [Google Scholar] [CrossRef] [Green Version]
- Ruhnke, I.; Normant, C.; Campbell, D.L.; Iqbal, Z.; Lee, C.; Hinch, G.N.; Roberts, J. Impact of on-range choice feeding with black soldier fly larvae (Hermetia illucens) on flock performance, egg quality, and range use of free-range laying hens. Anim. Nutr. 2018, 4, 452–460. [Google Scholar] [CrossRef] [PubMed]
- Tybirk, P.; Sloth, N.; Jørgensen, L. Nutrient Recommendations; SEGES the Danish Research Center: Copenhagen, Denmark, 2018. [Google Scholar]
- Rodenburg, T.; Van Harn, J.; Van Krimpen, M.; Ruis, M.; Vermeij, I.; Spoolder, H. Comparison of three different diets for organic broilers: Effects on performance and body condition. Br. Poult. Sci. 2008, 49, 74–80. [Google Scholar] [CrossRef]
- Meneguz, M.; Schiavone, A.; Gai, F.; Dama, A.; Lussiana, C.; Renna, M.; Gasco, L. Effect of rearing substrate on growth performance, waste reduction efficiency and chemical composition of black soldier fly (Hermetia illucens) larvae. J. Sci. Food Agric. 2018, 98, 5776–5784. [Google Scholar] [CrossRef]
- Bovera, F.; Loponte, R.; Marono, S.; Piccolo, G.; Parisi, G.; Iaconisi, V.; Gasco, L.; Nizza, A. Use of Tenebrio molitor larvae meal as protein source in broiler diet: Effect on growth performance, nutrient digestibility, and carcass and meat traits. J. Anim. Sci. 2016, 94, 639–647. [Google Scholar] [CrossRef] [Green Version]
- Biasato, I.; Gasco, L.; De Marco, M.; Renna, M.; Rotolo, L.; Dabbou, S.; Capucchio, M.; Biasibetti, E.; Tarantola, M.; Bianchi, C. Effects of yellow mealworm larvae (Tenebrio molitor) inclusion in diets for female broiler chickens: Implications for animal health and gut histology. Anim. Feed Sci. Technol. 2017, 234, 253–263. [Google Scholar] [CrossRef]
- Józefiak, A.; Kierończyk, B.; Rawski, M.; Mazurkiewicz, J.; Benzertiha, A.; Gobbi, P.; Nogales-Merida, S.; Świątkiewicz, S.; Józefiak, D. Full-fat insect meals as feed additive–the effect on broiler chicken growth performance and gastrointestinal tract microbiota. J. Anim. Feed Sci. 2018, 27, 131–139. [Google Scholar] [CrossRef]
- De Marco, M.; Martinez, S.; Hernandez, F.; Madrid, J.; Gai, F.; Rotolo, L.; Belforti, M.; Bergero, D.; Katz, H.; Dabbou, S.; et al. Nutritional value of two insect larval meals (Tenebrio molitor and Hermetia illucens) for broiler chickens: Apparent nutrient digestibility, apparent ileal amino acid digestibility and apparent metabolizable energy. Anim. Feed Sci. Technol. 2015, 209, 211–218. [Google Scholar] [CrossRef]
- Jensen, L.; Miklos, R.; Dalsgaard, T.; Heckmann, L.; Nørgaard, J. Nutritional evaluation of common (Tenebrio molitor) and lesser (Alphitobius diaperinus) mealworms in rats and processing effect on the lesser mealworm. J. Insects Food Feed 2019, 5, 1–10. [Google Scholar] [CrossRef]
- Kowalska, D.; Gugołek, A.; Strychalski, J. Evaluation of slaughter parameters and meat quality of rabbits fed diets with silkworm pupae and mealworm larvae meals. Ann. Anim. Sci. 2019, 20, 551–564. [Google Scholar] [CrossRef]
- Gasco, L.; Henry, M.; Piccolo, G.; Marono, S.; Gai, F.; Renna, M.; Lussiana, C.; Antonopoulou, E.; Mola, P.; Chatzifotis, S. Tenebrio molitor meal in diets for European sea bass (Dicentrarchus labrax L.) juveniles: Growth performance, whole body composition and in vivo apparent digestibility. Anim. Feed Sci. Technol. 2016, 220, 34–45. [Google Scholar] [CrossRef]
- Siemianowska, E.; Kosewska, A.; Aljewicz, M.; Skibniewska, K.A.; Polak-Juszczak, L.; Jarocki, A.; Jedras, M. Larvae of mealworm (Tenebrio molitor L.) as European novel food. Agricult. Sci. 2013, 04, 287–291. [Google Scholar] [CrossRef] [Green Version]
- Biasato, I.; Ferrocino, I.; Grego, E.; Dabbou, S.; Gai, F.; Gasco, L.; Cocolin, L.; Capucchio, M.T.; Schiavone, A. Gut microbiota and mucin composition in female broiler chickens fed diets including yellow mealworm (Tenebrio molitor L.). Animals 2019, 9, 213. [Google Scholar] [CrossRef] [Green Version]
- Sankian, Z.; Khosravi, S.; Kim, Y.-O.; Lee, S.-M. Effects of dietary inclusion of yellow mealworm (Tenebrio molitor) meal on growth performance, feed utilization, body composition, plasma biochemical indices, selected immune parameters and antioxidant enzyme activities of mandarin fish (Siniperca scherzeri) juveniles. Aquaculture 2018, 496, 79–87. [Google Scholar] [CrossRef]
- Wu, R.A.; Ding, Q.; Yin, L.; Chi, X.; Sun, N.; He, R.; Luo, L.; Ma, H.; Li, Z. Comparison of the nutritional value of mysore thorn borer (Anoplophora chinensis) and mealworm larva (Tenebrio molitor): Amino acid, fatty acid, and element profiles. Food Chem. 2020, 323, 126818. [Google Scholar] [CrossRef]
- Basto, A.; Matos, E.; Valente, L.M. Nutritional value of different insect larvae meals as protein sources for European sea bass (Dicentrarchus labrax) juveniles. Aquaculture 2020, 521, 735085. [Google Scholar] [CrossRef]
- Mastoraki, M.; Ferrándiz, P.M.; Vardali, S.C.; Kontodimas, D.C.; Kotzamanis, Y.P.; Gasco, L.; Chatzifotis, S.; Antonopoulou, E. A comparative study on the effect of fish meal substitution with three different insect meals on growth, body composition and metabolism of European sea bass (Dicentrarchus labrax L.). Aquaculture 2020, 528, 735511. [Google Scholar] [CrossRef]
- Van Broekhoven, S.; Oonincx, D.G.; Van Huis, A.; Van Loon, J.J. Growth performance and feed conversion efficiency of three edible mealworm species (Coleoptera: Tenebrionidae) on diets composed of organic by-products. J. Insect Physiol. 2015, 73, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Yi, L.; Lakemond, C.M.; Sagis, L.M.; Eisner-Schadler, V.; van Huis, A.; van Boekel, M.A. Extraction and characterisation of protein fractions from five insect species. Food Chem. 2013, 141, 3341–3348. [Google Scholar] [CrossRef]
- Bosch, G.; Zhang, S.; Oonincx, D.G.; Hendriks, W.H. Protein quality of insects as potential ingredients for dog and cat foods. J. Nutr. Sci. 2014, 3, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Janssen, R.H.; Vincken, J.-P.; van den Broek, L.A.; Fogliano, V.; Lakemond, C.M. Nitrogen-to-protein conversion factors for three edible insects: Tenebrio molitor, Alphitobius diaperinus, and Hermetia illucens. J. Agric. Food Chem. 2017, 65, 2275–2278. [Google Scholar] [CrossRef]
- Despins, J.; Axtell, R. Feeding behavior and growth of turkey poults fed larvae of the darkling beetle, Alphitobius diaperinus. Poult. Sci. 1994, 73, 1526–1533. [Google Scholar] [CrossRef]
- Roncolini, A.; Milanović, V.; Aquilanti, L.; Cardinali, F.; Garofalo, C.; Sabbatini, R.; Clementi, F.; Belleggia, L.; Pasquini, M.; Mozzon, M. Lesser mealworm (Alphitobius diaperinus) powder as a novel baking ingredient for manufacturing high-protein, mineral-dense snacks. Food Res. Int. 2020, 131, 109031. [Google Scholar] [CrossRef]
- Leni, G.; Soetemans, L.; Jacobs, J.; Depraetere, S.; Gianotten, N.; Bastiaens, L.; Caligiani, A.; Sforza, S. Protein hydrolysates from Alphitobius diaperinus and Hermetia illucens larvae treated with commercial proteases. J. Insects Food Feed 2020, 6, 393–404. [Google Scholar] [CrossRef]
- Maurer, V.; Holinger, M.; Amsler, Z.; Früh, B.; Wohlfahrt, J.; Stamer, A.; Leiber, F. Replacement of soybean cake by Hermetia illucens meal in diets for layers. J. Insects Food Feed 2016, 2, 83–90. [Google Scholar] [CrossRef] [Green Version]
- Liland, N.S.; Biancarosa, I.; Araujo, P.; Biemans, D.; Bruckner, C.G.; Waagbø, R.; Torstensen, B.E.; Lock, E.-J. Modulation of nutrient composition of black soldier fly (Hermetia illucens) larvae by feeding seaweed-enriched media. PLoS ONE 2017, 12, e0183188. [Google Scholar] [CrossRef] [PubMed]
- Zhen, Y.; Chundang, P.; Zhang, Y.; Wang, M.; Vongsangnak, W.; Pruksakorn, C.; Kovitvadhi, A. Impacts of Killing Process on the Nutrient Content, Product Stability and In Vitro Digestibility of Black Soldier Fly (Hermetia illucens) Larvae Meals. Appl. Sci. 2020, 10, 6099. [Google Scholar] [CrossRef]
- Yu, M.; Li, Z.; Chen, W.; Rong, T.; Wang, G.; Ma, X. Hermetia illucens larvae as a potential dietary protein source altered the microbiota and modulated mucosal immune status in the colon of finishing pigs. J. Anim. Sci. Biotechnol. 2019, 10, 50. [Google Scholar] [CrossRef]
- Wang, S.Y.; Wu, L.; Li, B.; Zhang, D. Reproductive Potential and Nutritional Composition of Hermetia illucens (Diptera: Stratiomyidae) Prepupae Reared on Different Organic Wastes. J. Econ. Entomol. 2020, 113, 527–537. [Google Scholar] [CrossRef] [PubMed]
- Cutrignelli, M.I.; Messina, M.; Tulli, F.; Randazzo, B.; Olivotto, I.; Gasco, L.; Loponte, R.; Bovera, F. Evaluation of an insect meal of the Black Soldier Fly (Hermetia illucens) as soybean substitute: Intestinal morphometry, enzymatic and microbial activity in laying hens. Res. Vet. Sci. 2018, 117, 209–215. [Google Scholar] [CrossRef]
- Brede, A.; Wecke, C.; Liebert, F. Does the Optimal Dietary Methionine to Cysteine Ratio in Diets for Growing Chickens Respond to High Inclusion Rates of Insect Meal from Hermetia illucens? Animals 2018, 8, 187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moniello, G.; Ariano, A.; Panettieri, V.; Tulli, F.; Olivotto, I.; Messina, M.; Randazzo, B.; Severino, L.; Piccolo, G.; Musco, N.; et al. Intestinal Morphometry, Enzymatic and Microbial Activity in Laying Hens Fed Different Levels of a Hermetia illucens Larvae Meal and Toxic Elements Content of the Insect Meal and Diets. Animals 2019, 9, 86. [Google Scholar] [CrossRef] [Green Version]
- Kroeckel, S.; Harjes, A.-G.; Roth, I.; Katz, H.; Wuertz, S.; Susenbeth, A.; Schulz, C. When a turbot catches a fly: Evaluation of a pre-pupae meal of the Black Soldier Fly (Hermetia illucens) as fish meal substitute—Growth performance and chitin degradation in juvenile turbot (Psetta maxima). Aquaculture 2012, 364, 345–352. [Google Scholar] [CrossRef]
- Schiavone, A.; De Marco, M.; Martínez, S.; Dabbou, S.; Renna, M.; Madrid, J.; Hernandez, F.; Rotolo, L.; Costa, P.; Gai, F. Nutritional value of a partially defatted and a highly defatted black soldier fly larvae (Hermetia illucens L.) meal for broiler chickens: Apparent nutrient digestibility, apparent metabolizable energy and apparent ileal amino acid digestibility. J. Anim. Sci. BioTechnol. 2017, 8, 1–9. [Google Scholar] [CrossRef]
- Dumas, A.; Raggi, T.; Barkhouse, J.; Lewis, E.; Weltzien, E. The oil fraction and partially defatted meal of black soldier fly larvae (Hermetia illucens) affect differently growth performance, feed efficiency, nutrient deposition, blood glucose and lipid digestibility of rainbow trout (Oncorhynchus mykiss). Aquaculture 2018, 492, 24–34. [Google Scholar] [CrossRef]
- Davys, M.N.G.; Pirie, N.W. A belt press for separating juices from fibrous pulps. J. Agric. Eng. Res. 1965, 10, 142–145. [Google Scholar] [CrossRef]
- Chiesa, S.; Gnansounou, E. Protein extraction from biomass in a bioethanol refinery-possible dietary applications: Use as animal feed and potential extension to human consumption. Bioresour. Technol. 2011, 102, 427–436. [Google Scholar] [CrossRef]
- Pirie, N.W. Leaf Protein and Its By-Products in Human and Animal Nutrition, 2nd ed.; Cambridge University Press: Cambridge, UK, 1987; p. 299. [Google Scholar]
- Stødkilde, L.; Damborg, V.; Jørgensen, H.; Lærke, H.; Jensen, S. Digestibility of fractionated green biomass as protein source for monogastric animals. Animal 2019, 13, 1817–1825. [Google Scholar] [CrossRef]
- Baraniak, B. The effect of flocculant applied in the process of fractionating alfalfa juice on the chemical composition of the obtained protein concentrates. Anim. Feed Sci. Technol. 1990, 31, 305–311. [Google Scholar] [CrossRef]
- Stødkilde, L.; Damborg, V.K.; Jørgensen, H.; Lærke, H.N.; Jensen, S.K. White clover fractions as protein source for monogastrics: Dry matter digestibility and protein digestibility-corrected amino acid scores. J. Sci. Food Agric. 2018, 98, 2557–2563. [Google Scholar] [CrossRef]
- Kidd, M.T.; Kerr, B.J.; Allard, J.P.; Rao, S.K.; Halley, J.T. Limiting Amino Acid Responses in Commercial Broilers. J. Appl. Poult. Res. 2000, 9, 223–233. [Google Scholar] [CrossRef]
- Matti, N. Extraction of leaf protein from green crops. Chemical composition and nutritive value of products of fractionation. Agric. Food Sci. 1983, 55, 143–154. [Google Scholar] [CrossRef]
- Santamaría-Fernández, M.; Karkov Ytting, N.; Lübeck, M. Influence of the development stage of perennial forage crops for the recovery yields of extractable proteins using lactic acid fermentation. J. Clean. Prod. 2019, 218, 1055–1064. [Google Scholar] [CrossRef]
- Santamaría-Fernández, M.; Molinuevo-Salces, B.; Kiel, P.; Steenfeldt, S.; Uellendahl, H.; Lübeck, M. Lactic acid fermentation for refining proteins from green crops and obtaining a high quality feed product for monogastric animals. J. Clean. Prod. 2017, 162, 875–881. [Google Scholar] [CrossRef]
- Szymczyk, B.; Gwiazda, S.; Hanczakowski, P. The effect of leaf protein concentrate from red clover on plasma cholesterol level in rats. J. Sci. Food Agric. 1995, 67, 299–301. [Google Scholar] [CrossRef]
- Maciejewicz-Rys, J.; Hanczakowski, P. Improvement of the nutritive value of cereals by leaf protein supplementation. J. Sci. Food Agric. 1990, 50, 99–104. [Google Scholar] [CrossRef]
- Grela, E.; Pietrzak, K. Production technology, chemical composition and use of alfalfa protein-xanthophyll concentrate as dietary supplement. J. Food Process. Technol. 2014, 5, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Hanczakowski, P.; Szymezyk, B.; Skraba, B. Composition and nutritive value of native and modified green fraction of leaf protein from lucerne (Medicago sativa). J. Sci. Food Agric. 1991, 56, 495–501. [Google Scholar] [CrossRef]
- Madhekar, R.D.; Mungikar, A.M. Chemical composition of lucerne (Medicago Sativa L.), it’s leaf meal and leaf protein concentrate. J. Phytol. Res. 2009, 22, 95–98. [Google Scholar]
- Wiseman, J.; Jagger, S.; Cole, D.; Haresign, W. The digestion and utilization of amino acids of heat-treated fish meal by growing/finishing pigs. Anim. Sci. 1991, 53, 215–225. [Google Scholar] [CrossRef]
- Cervantes-Pahm, S.; Stein, H. Ileal digestibility of amino acids in conventional, fermented, and enzyme-treated soybean meal and in soy protein isolate, fish meal, and casein fed to weanling pigs. J. Anim. Sci. 2010, 88, 2674–2683. [Google Scholar] [CrossRef] [Green Version]
- Afrose, S.; Hammershøj, M.; Nørgaard, J.V.; Engberg, R.M.; Steenfeldt, S. Influence of blue mussel (Mytilus edulis) and starfish (Asterias rubens) meals on production performance, egg quality and apparent total tract digestibility of nutrients of laying hens. Anim. Feed Sci. Technol. 2016, 213, 108–117. [Google Scholar] [CrossRef]
- Jönsson, L.; Wall, H.; Tauson, R. Production and egg quality in layers fed organic diets with mussel meal. Animal 2011, 5, 387–393. [Google Scholar] [CrossRef] [Green Version]
- Waldenstedt, L.; Jönsson, L. Mussel Meal as a High Quality Protein Source for Broiler Chickens. In Proceedings of 12th European Poultry Conference at Verona, Italy; World’s Poultry Science Association: Beekbergen, The Netherlands, 2006. [Google Scholar]
- Wallenbeck, A.; Neil, M.; Lundeheim, N.; Andersson, K. Mussel Meal Diets to Growing/Finishing Pigs: Influence on Performance and Carcass Quality; Book of Abstracts of the 65th Annual Meeting of the European Federation of Animal Science; Wageningen Publishers: Wageningen, The Netherlands, 2014; p. 249. [Google Scholar]
- Lacroix, C.; Duvieilbourg, E.; Guillou, N.; Guyomarch, J.; Bassoulet, C.; Moraga, D.; Chapalain, G.; Auffret, M. Seasonal monitoring of blue mussel (Mytilus spp.) populations in a harbor area: A focus on responses to environmental factors and chronic contamination. Mar. Enivron. Res. 2017, 129, 24–35. [Google Scholar] [CrossRef] [PubMed]
- European Commission directive 2006/113/EC of the european parliament and of the council of 12 December 2006 on the quality required of shellfish waters. Off. J. Eur. Communities 2006, L376, 14–20.
- Jönsson, L.; Holm, L. Effects of toxic and non-toxic blue mussel meal on health and product quality of laying hens. J. Anim. Physiol. Anim. Nutr. 2010, 94, 405–412. [Google Scholar] [CrossRef] [PubMed]
- Selle, P.H.; Cowieson, A.J.; Ravindran, V. Consequences of calcium interactions with phytate and phytase for poultry and pigs. Livestock Sci. 2009, 124, 126–141. [Google Scholar] [CrossRef]
- Qian, H.; Kornegay, E.; Conner, D., Jr. Adverse effects of wide calcium: Phosphorus ratios on supplemental phytase efficacy for weanling pigs fed two dietary phosphorus levels. J. Anim. Sci. 1996, 74, 1288–1297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poulsen, H.D. Phosphorus utilization and excretion in pig production. J. Environ. Qual. 2000, 29, 24–27. [Google Scholar] [CrossRef]
- Ruan, Z.; Zhang, Y.-G.; Yin, Y.-L.; Li, T.-J.; Huang, R.-L.; Kim, S.; Wu, G.; Deng, Z. Dietary requirement of true digestible phosphorus and total calcium for growing pigs. Asian-Australas. J. Anim. Sci. 2007, 20, 1236–1242. [Google Scholar] [CrossRef]
- De Vries, S.; Kwakkel, R.; Dijkstra, J. Dynamics of calcium and phosphorus metabolism in laying hens. In Phosphorus and Calcium Utilization and Requirements in Farm Animals; Vitti, D.M.S.S., Kebreab, E., Eds.; CABI: Wallingford, UK, 2010; pp. 133–150. [Google Scholar]
- Biasato, I.; Renna, M.; Gai, F.; Dabbou, S.; Meneguz, M.; Perona, G.; Martinez, S.; Lajusticia, A.C.B.; Bergagna, S.; Sardi, L. Partially defatted black soldier fly larva meal inclusion in piglet diets: Effects on the growth performance, nutrient digestibility, blood profile, gut morphology and histological features. J. Anim. Sci. BioTechnol. 2019, 10, 1–11. [Google Scholar] [CrossRef]
- Spranghers, T.; Michiels, J.; Vrancx, J.; Ovyn, A.; Eeckhout, M.; De Clercq, P.; De Smet, S. Gut antimicrobial effects and nutritional value of black soldier fly (Hermetia illucens L.) prepupae for weaned piglets. Anim. Feed Sci. Technol. 2018, 235, 33–42. [Google Scholar] [CrossRef]
- Bovera, F.; Loponte, R.; Pero, M.E.; Cutrignelli, M.I.; Calabrò, S.; Musco, N.; Vassalotti, G.; Panettieri, V.; Lombardi, P.; Piccolo, G. Laying performance, blood profiles, nutrient digestibility and inner organs traits of hens fed an insect meal from Hermetia illucens larvae. Res. Vet. Sci. 2018, 120, 86–93. [Google Scholar] [CrossRef]
- Nery, J.; Gasco, L.; Dabbou, S.; Schiavone, A. Protein composition and digestibility of black soldier fly larvae in broiler chickens revisited according to the recent nitrogen-protein conversion ratio. J. Insects Food Feed 2018, 4, 171–177. [Google Scholar] [CrossRef] [Green Version]
- Meyer, S.; Gessner, D.K.; Braune, M.S.; Friedhoff, T.; Most, E.; Höring, M.; Liebisch, G.; Zorn, H.; Eder, K.; Ringseis, R. Comprehensive evaluation of the metabolic effects of insect meal from Tenebrio molitor L. in growing pigs by transcriptomics, metabolomics and lipidomics. J. Anim. Sci. BioTechnol. 2020, 11, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Yu, M.; Li, Z.; Chen, W.; Rong, T.; Wang, G.; Li, J.; Ma, X. Use of Hermetia illucens larvae as a dietary protein source: Effects on growth performance, carcass traits, and meat quality in finishing pigs. Meat Sci. 2019, 158, 107837. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Li, Z.; Chen, W.; Rong, T.; Wang, G.; Wang, F.; Ma, X. Evaluation of full-fat Hermetia illucens larvae meal as a fishmeal replacement for weanling piglets: Effects on the growth performance, apparent nutrient digestibility, blood parameters and gut morphology. Anim. Feed Sci. Technol. 2020, 264, 114431. [Google Scholar] [CrossRef]
- Biasato, I.; De Marco, M.; Rotolo, L.; Renna, M.; Lussiana, C.; Dabbou, S.; Capucchio, M.T.; Biasibetti, E.; Costa, P.; Gai, F.; et al. Effects of dietary Tenebrio molitor meal inclusion in free-range chickens. J. Anim. Physiol. Anim. Nutr. 2016, 100, 1104–1112. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Khan, R.; Alam, W.; Sultan, A. Evaluating the nutritive profile of three insect meals and their effects to replace soya bean in broiler diet. J. Anim. Physiol. Anim. Nutr. 2018, 102, 662–668. [Google Scholar] [CrossRef] [PubMed]
- Bovera, F.; Piccolo, G.; Gasco, L.; Marono, S.; Loponte, R.; Vassalotti, G.; Mastellone, V.; Lombardi, P.; Attia, Y.A.; Nizza, A. Yellow mealworm larvae (Tenebrio molitor, L.) as a possible alternative to soybean meal in broiler diets. Br. Poult. Sci. 2015, 56, 569–575. [Google Scholar] [CrossRef] [PubMed]
- Dabbou, S.; Gai, F.; Biasato, I.; Capucchio, M.T.; Biasibetti, E.; Dezzutto, D.; Meneguz, M.; Plachà, I.; Gasco, L.; Schiavone, A. Black soldier fly defatted meal as a dietary protein source for broiler chickens: Effects on growth performance, blood traits, gut morphology and histological features. J. Anim. Sci. BioTechnol. 2018, 9, 1–10. [Google Scholar] [CrossRef]
- Leiber, F.; Gelencsér, T.; Stamer, A.; Amsler, Z.; Wohlfahrt, J.; Früh, B.; Maurer, V. Insect and legume-based protein sources to replace soybean cake in an organic broiler diet: Effects on growth performance and physical meat quality. Renew. Agric. Food Syst. 2017, 32, 21–27. [Google Scholar] [CrossRef]
- Marono, S.; Loponte, R.; Lombardi, P.; Vassalotti, G.; Pero, M.; Russo, F.; Gasco, L.; Parisi, G.; Piccolo, G.; Nizza, S. Productive performance and blood profiles of laying hens fed Hermetia illucens larvae meal as total replacement of soybean meal from 24 to 45 weeks of age. Poult. Sci. 2017, 96, 1783–1790. [Google Scholar] [CrossRef] [PubMed]
- Joint FAO/WHO Expert Consultation Protein quality evaluation. In Report of Joint FAO/WHO Expert Consultation; FAO/WHO: Rome, Italy, 1991; pp. 1–66.
- Szymczyk, B.; Gwiazda, S.; Hanczakowski, P. The nutritive value for rats and chicks of unextracted and defatted leaf protein concentrates from red clover and Italian ryegrass. Anim. Feed Sci. Technol. 1996, 63, 297–303. [Google Scholar] [CrossRef]
- Hegsted, M.; Linkswiler, H.M. Protein quality of high and low saponin alfalfa protein concentrate. J. Sci. Food Agric. 1980, 31, 777–781. [Google Scholar] [CrossRef] [PubMed]
- Terry, R.A.; Tilley, J.M.A. The digestibility of the leaves and stems of perennial ryegrass, cocksfoot, timothy, tall fescue, lucerne and sainfoin, as measured by an in vitro procedure. Grass Forage Sci. 1964, 19, 363–372. [Google Scholar] [CrossRef]
- Rinne, M.; Jaakkola, S.; Huhtanen, P. Grass maturity effects on cattle fed silage-based diets. 1. Organic matter digestion, rumen fermentation and nitrogen utilization. Anim. Feed Sci. Technol. 1997, 67, 1–17. [Google Scholar] [CrossRef]
- Cowlishaw, S.J.; Eyles, D.E.; Raymond, W.F.; Tilley, J.M.A. Nutritive value of leaf protein concentrates. II. J. Sci. Food Agric. 1956, 7, 775–780. [Google Scholar] [CrossRef]
- Cheeke, P.R.; Kinzell, J.H.; De Fremery, D.; Kohler, G.O. Freeze-Dried and Commercially-Prepared Alfalfa Protein Concentrate Evaluation with Rats and Swine. J. Anim. Sci. 1977, 44, 772–777. [Google Scholar] [CrossRef] [Green Version]
- Szymczyk, B.; Gwiazda, S.; Hanczakowski, P. Nutritive value for rats of unextracted and defatted green fractions of leaf protein concentrate from red clover. Anim. Feed Sci. Technol. 1995, 56, 169–175. [Google Scholar] [CrossRef]
- Hanczakowski, P.; Skraba, B. The effect of different precipitating agents on quality of leaf protein concentrate from lucerne. Anim. Feed Sci. Technol. 1984, 12, 11–17. [Google Scholar] [CrossRef]
- Lærke, H.N.; Stødkilde, L.; Ambye-Jensen, M.; Jensen, S.K.; Sørensen, J.F.; Nørgaard, J.V.; Knudsen, K.E.B. Extracts of Green Biomass as Source of Protein for Pigs; Crovetto, G.M., Ed.; EAAP: Parma, Italy, 2019; pp. 177–178. [Google Scholar]
- Donnelly, P.E.; McDonald, R.M. Leaf protein concentrate quality: The effect pf pasture species and reducing agent. Proc. Nutr. Soc. N. Zeal. 1979, 3, 84–95. [Google Scholar]
- Subba Rau, B.H.; Ramana, K.V.R.; Singh, N. Studies on nutritive value of leaf proteins and some factors affecting their quality. J. Sci. Food Agric. 1972, 23, 233–245. [Google Scholar] [CrossRef] [PubMed]
- Henry, K.M.; Ford, J.E. The nutritive value of leaf protein concentrates determined in biological tests with rats and by microbiological methods. J. Sci. Food Agric. 1965, 16, 425–432. [Google Scholar] [CrossRef]
- Houseman, R.A. The utilization of the products of green-crop fractionation by pigs and ruminants. Proc. Nutr. Soc. 1976, 35, 213–220. [Google Scholar] [CrossRef] [Green Version]
- Ameenuddin, S.; Bird, H.R.; Pringle, D.J.; Sunde, M.L. Studies on the Utilization of Leaf Protein Concentrates as a Protein Source in Poultry Nutrition1. Poult. Sci. 1983, 62, 505–511. [Google Scholar] [CrossRef] [PubMed]
- Myer, R.O.; Cheeke, P.R.; Kennick, W.H. Utilization of Alfalfa Protein Concentrate by Swine. J. Anim. Sci. 1975, 40, 885–891. [Google Scholar] [CrossRef]
- Pietrzak, E.; Grela, E.R. The effects of adding lucerne protein concentrate to diets on the reproductive traits and blood metabolic profiles of sows and piglets. J. Anim. Feed Sci. 2015, 24, 216–225. [Google Scholar] [CrossRef] [Green Version]
- Hsu, A.; Allee, G.L. Feeding value of Alfalfa Leaf Protein Concentrate (ALPC) for swine. In Conference: Swine Day; Kansas State University, Agricultural Experiment Station and Cooperative Extension Service: Manhattan, KS, USA, 1980; pp. 1–5. [Google Scholar]
- Sugimoto, N.; Miyazaki, H.; Saito, T. Studies on the utilization of green-leaf protein concentrate in swine 2. The Effect of Green-leaf Protein Concentrate on the Performance and Carcass Quality of Growing-finishing Pigs. Jpn. J. Swine Husb. Res. 1986, 23, 157–164. [Google Scholar] [CrossRef]
- Barber, R.S.; Braude, R.; Mitchell, K.G.; Partridge, I.G. Lucerne juice as a protein supplement for growing pigs: Effects of mineral content of the diet and of the water supply. Anim. Feed Sci. Technol. 1981, 6, 35–41. [Google Scholar] [CrossRef]
- Barber, R.S.; Braude, R.; Mitchell, K.G.; Partridge, I.G.; Pittman, R.J. Value of freshly produced lucerne juice as a source of supplemental protein for the growing pig. Anim. Feed Sci. Technol. 1980, 5, 215–220. [Google Scholar] [CrossRef]
- Barber, R.S.; Braude, R.; Mitchell, K.G.; Partridge, I.G.; Pittman, R.J. Value of lucerne juice and grass juice as sources of protein for the growing pig. Anim. Feed Sci. Technol. 1979, 4, 233–262. [Google Scholar] [CrossRef]
- Carton, O.; Maguire, M.F.; Craig, J. The Nutritive-Value of Preserved Grass Juice for Growing-Pigs. Irish J. Agric. Res. 1983, 22, 95–104. [Google Scholar]
- Lima, I.; Richardson, T.; Stahmann, M. Leaf proteins as foodstuffs, Fatty acids in some leaf protein concentrates. J. Agric. Food Chem. 1965, 13, 143–145. [Google Scholar] [CrossRef]
- Carr, J.R.; Pearson, G. Photosensitisation, growth performance, and carcass measurements of pigs fed diets containing commercially prepared lucerne leaf-protein concentrate. N. Zeal. J. Exp. Agric. 1976, 4, 45–50. [Google Scholar] [CrossRef] [Green Version]
- Kwiatkowska, K.; Kwiecień, M.; Winiarska-Mieczan, A. Fast-growing chickens fed with lucerne protein-xanthophyll concentrate: Growth performance, slaughter yield and bone quality. J. Anim. Feed Sci. 2017, 26, 131–140. [Google Scholar] [CrossRef] [Green Version]
- Cowlishaw, S.J.; Eyles, D.E.; Raymond, W.F.; Tilley, J.M.A. Nutritive value of leaf protein concentrates. I. Effect of addition of cholesterol and amino-acids. J. Sci. Food Agric. 1956, 7, 768–774. [Google Scholar] [CrossRef]
- Myer, R.O.; Cheeke, P.R. Utilization of Alfalfa Meal and Alfalfa Protein Concentrate by Rats. J. Anim. Sci. 1975, 40, 500–508. [Google Scholar] [CrossRef] [Green Version]
- Horigome, T.; Kim, J.K.; Uchida, S. Nutritive Quality of Leaf Proteins Coagulated at Different pH. J. Nutr. Sci. Vitaminol. 1983, 29, 611–620. [Google Scholar] [CrossRef]
- Hove, E.L.; Lohrey, E.; Urs, M.K.; Allison, R.M. The effect of lucerne-protein concentrate in the diet on growth, reproduction and body composition of rats. Br. J. Nutr. 1974, 31, 147–157. [Google Scholar] [CrossRef] [PubMed]
Item | Wheat 1 | Fish Meal 2 | Organic Soya Bean 3 | ||||||
---|---|---|---|---|---|---|---|---|---|
Macronutrient | N | Avg ± SD 4 | CV 5 | N | Avg ± SD | CV | N | Avg ± SD | CV |
Crude ash | 6 | 1.83 ± 0.18 | 10.0 | 5 | 18.8 ± 2.66 | 14.2 | 3 | 6.41 ± 0.44 | 6.91 |
Crude fat | 7 | 2.15 ± 0.42 | 19.5 | 4 | 9.51 ± 0.47 | 4.97 | 3 | 14.5 ± 6.86 | 47.3 |
Crude protein | 8 | 14.2 ± 2.00 | 14.1 | 6 | 71.4 ± 2.45 | 3.43 | 5 | 44.6 ± 3.65 | 8.17 |
Minerals | |||||||||
Calcium | 6 | 0.43 ± 0.27 | 62.4 | 4 | 41.4 ± 8.52 | 20.6 | 2 | 3.55 ± 0.15 | 4.23 |
Phosphorus | 5 | 4.02 ± 0.48 | 12.0 | 4 | 30.4 ± 6.15 | 20.2 | 2 | 6.15 ± 0.75 | 12.2 |
EAA6 | |||||||||
Histidine | 4 | 2.58 ± 0.24 | 9.17 | 5 | 2.52 ± 0.58 | 23.1 | 5 | 2.65 ± 0.08 | 2.97 |
Isoleucine | 8 | 3.36 ± 0.19 | 5.53 | 5 | 4.00 ± 0.11 | 2.79 | 5 | 4.54 ± 0.24 | 5.36 |
Leucine | 4 | 6.47 ± 0.17 | 2.59 | 5 | 6.88 ± 0.31 | 4.57 | 5 | 7.60 ± 0.18 | 2.42 |
Lysine | 8 | 3.18 ± 0.30 | 9.56 | 5 | 7.47 ± 0.37 | 4.99 | 5 | 6.09 ± 0.16 | 2.69 |
Methionine | 8 | 1.53 ± 0.08 | 5.06 | 5 | 2.68 ± 0.12 | 4.63 | 5 | 1.40 ± 0.06 | 3.93 |
Phenylalanine | 4 | 4.30 ± 0.23 | 5.33 | 5 | 3.83 ± 0.17 | 4.51 | 5 | 4.95 ± 0.19 | 3.86 |
Threonine | 8 | 2.90 ± 0.11 | 3.76 | 5 | 4.01 ± 0.23 | 5.80 | 5 | 3.86 ± 0.20 | 5.10 |
Tryptophan | 5 | 1.17 ± 0.05 | 3.98 | 2 | 0.93 ± 0.08 | 8.78 | 4 | 1.36 ± 0.18 | 13.1 |
Valine | 5 | 4.32 ± 0.26 | 5.97 | 5 | 4.66 ± 0.12 | 2.67 | 5 | 4.84 ± 0.24 | 5.02 |
NEAA7 | |||||||||
Alanine | 8 | 3.36 ± 0.40 | 11.8 | 5 | 6.17 ± 0.10 | 1.68 | 5 | 4.24 ± 0.20 | 4.72 |
Arginine | 5 | 4.97 ± 0.40 | 8.00 | 5 | 5.75 ± 0.24 | 4.20 | 5 | 7.38 ± 0.32 | 4.28 |
Aspartic acid | 4 | 5.37 ± 0.38 | 7.13 | 5 | 6.93 ± 3.24 | 46.7 | 5 | 11.3 ± 0.55 | 4.86 |
Cysteine | 4 | 2.20 ± 0.16 | 7.23 | 5 | 1.11 ± 0.64 | 57.8 | 5 | 1.54 ± 0.12 | 7.80 |
Glutamic acid | 4 | 26.9 ± 2.22 | 8.26 | 5 | 12.2 ± 1.08 | 8.83 | 5 | 18.0 ± 0.48 | 2.65 |
Glycine | 4 | 4.28 ± 0.32 | 7.48 | 5 | 6.99 ± 0.60 | 8.63 | 5 | 4.20 ± 0.14 | 3.45 |
Proline | 4 | 8.19 ± 1.50 | 18.4 | 5 | 4.91 ± 0.64 | 13.0 | 5 | 4.53 ± 1.18 | 26.0 |
Serine | 4 | 4.50 ± 0.34 | 7.49 | 5 | 4.04 ± 0.85 | 21.1 | 5 | 4.86 ± 0.41 | 8.39 |
Tyrosine | 2 | 2.97 ± 0.12 | 4.17 | 5 | 3.69 ± 1.11 | 30.1 | 4 | 3.39 ± 0.13 | 3.71 |
∑AA | 4 | 90.6 | 5 | 88.2 | 5 | 95.7 | |||
∑EAA | 4 | 29.1 | 5 | 36.4 | 5 | 37.0 | |||
∑NEAA | 4 | 61.5 | 5 | 51.8 | 5 | 58.7 | |||
EAA:NEAA | 4 | 0.47 | 5 | 0.70 | 5 | 0.63 |
Item | Tenebrio molitor1 | Alphitobius diaperinus2 | Full Fat Hermetia illucens 3 | Defatted Hermetia illucens 4 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
N | Avg ± SD 5 | CV 6 | N | Avg ± SD | CV | N | Avg ± SD | CV | N | Avg ± SD | CV | |
Crude ash | 13 | 4.15 ± 0.65 | 15.6 | 5 | 4.47 ± 0.69 | 15.4 | 15 | 6.56 ± 2.99 | 45.5 | 9 | 9.30 ± 3.27 | 35.2 |
Crude fat | 14 | 27.0 ± 6.59 | 24.4 | 7 | 22.0 ± 4.87 | 22.1 | 16 | 34.3 ± 6.66 | 19.4 | 11 | 12.1 ± 6.25 | 51.5 |
Crude protein | 15 | 56.0 ± 4.75 | 8.50 | 8 | 59.7 ± 10.7 | 18.0 | 17 | 43.1 ± 5.05 | 11.7 | 11 | 56.7 ± 7.16 | 12.6 |
ADF | 5 | 8.43 ± 1.12 | 13.2 | 1 | 8.02 | 2 | 7.40 ± 0.12 | 1.69 | 3 | 7.85 ± 3.25 | 41.4 | |
Chitin | 4 | 5.02 ± 0.33 | 6.51 | 1 | 4.60 | 4 | 3.67 ± 1.07 | 29.3 | 6 | 6.11 ± 2.14 | 35.0 | |
Crude fiber | 4 | 8.20 ± 1.96 | 23.9 | 2 | 7.43 ± 0.14 | 1.92 | 7 | 7.35 ± 3.04 | 41.4 | 1 | 7.16 | |
Minerals | ||||||||||||
Calcium | 2 | 0.44 ± 0.12 | 28.2 | 3 | 0.50 ± 0.16 | 32.2 | 10 | 24.1 ± 12.8 | 53.2 | 4 | 38.0 ± 29.5 | 77.5 |
Phosphorus | 4 | 7.80 ± 0.85 | 10.9 | 3 | 8.20 ± 0.73 | 8.95 | 10 | 6.01 ± 1.77 | 29.5 | 4 | 6.05 ± 3.19 | 52.7 |
Sodium | 2 | 1.05 ± 0.24 | 23.0 | 2 | 2.21 ± 0.21 | 9.40 | 7 | 0.69 ± 0.21 | 30.0 | 3 | 0.75 ± 0.48 | 64.2 |
EAA7 | ||||||||||||
Histidine | 9 | 3.09 ± 0.56 | 18.2 | 7 | 4.32 ± 1.35 | 31.2 | 10 | 3.12 ± 0.52 | 16.8 | 8 | 2.68 ± 0.43 | 16.1 |
Isoleucine | 8 | 4.25 ± 0.81 | 19.1 | 7 | 4.35 ± 0.33 | 7.50 | 10 | 4.37 ± 0.46 | 10.5 | 9 | 4.05 ± 0.58 | 14.4 |
Leucine | 8 | 6.76 ± 1.17 | 17.4 | 7 | 6.64 ± 0.43 | 6.50 | 10 | 6.72 ± 0.57 | 8.40 | 9 | 6.41 ± 0.92 | 14.4 |
Lysine | 9 | 5.60 ± 1.09 | 19.5 | 7 | 5.94 ± 1.04 | 17.5 | 10 | 6.22 ± 1.08 | 17.3 | 10 | 5.80 ± 1.52 | 26.3 |
Methionine | 9 | 1.38 ± 0.37 | 26.7 | 6 | 1.59 ± 0.54 | 34.1 | 10 | 1.93 ± 0.32 | 16.5 | 10 | 1.61 ± 0.53 | 32.9 |
Phenylalanine | 8 | 3.65 ± 0.64 | 17.6 | 6 | 4.41 ± 0.46 | 10.4 | 10 | 4.19 ± 0.37 | 8.90 | 7 | 3.41 ± 0.35 | 10.3 |
Threonine | 8 | 3.81 ± 0.59 | 15.6 | 6 | 3.99 ± 0.33 | 8.20 | 10 | 4.19 ± 0.37 | 9.00 | 10 | 3.80 ± 0.62 | 16.3 |
Tryptophan | 3 | 1.07 ± 0.38 | 35.5 | 5 | 1.16 ± 0.40 | 34.6 | 7 | 1.86 ± 0.18 | 9.60 | 5 | 0.82 ± 0.25 | 30.0 |
Valine | 8 | 5.85 ± 0.98 | 16.8 | 7 | 5.72 ± 0.41 | 7.20 | 10 | 5.38 ± 0.82 | 15.3 | 9 | 6.46 ± 2.04 | 31.6 |
NEAA8 | ||||||||||||
Arginine | 8 | 5.55 ± 1.12 | 20.2 | 7 | 5.57 ± 0.73 | 13.1 | 9 | 4.93 ± 0.68 | 13.8 | 8 | 5.06 ± 1.88 | 37.1 |
Alanine | 7 | 6.81 ± 0.89 | 13.1 | 6 | 7.02 ± 1.35 | 19.2 | 10 | 6.6 ± 1.14 | 17.3 | 4 | 6.90 ± 0.72 | 10.5 |
Aspartic acid | 8 | 6.67 ± 2.60 | 39.0 | 6 | 8.30 ± 0.67 | 8.00 | 10 | 8.86 ± 0.83 | 9.30 | 4 | 7.27 ± 0.80 | 11.0 |
Cysteine | 7 | 1.14 ± 0.81 | 71.3 | 5 | 1.03 ± 0.25 | 24.6 | 9 | 1.51 ± 1.79 | 119 | 9 | 0.50 ± 0.32 | 63.6 |
Glutamic acid | 7 | 10.8 ± 1.56 | 14.4 | 6 | 12.4 ± 1.12 | 9.00 | 10 | 10.7 ± 1.57 | 14.7 | 4 | 10.5 ± 1.30 | 12.3 |
Glycine | 8 | 7.29 ± 5.92 | 81.2 | 6 | 4.40 ± 0.22 | 4.90 | 10 | 5.14 ± 0.44 | 8.60 | 4 | 4.51 ± 0.17 | 3.86 |
Proline | 7 | 6.31 ± 1.16 | 18.4 | 6 | 5.89 ± 0.52 | 8.90 | 9 | 5.82 ± 1.68 | 28.8 | 5 | 4.91 ± 0.92 | 18.7 |
Serine | 7 | 4.14 ± 0.73 | 17.6 | 6 | 4.12 ± 0.39 | 9.40 | 10 | 4.20 ± 0.58 | 13.9 | 4 | 3.88 ± 0.20 | 5.13 |
Tyrosine | 7 | 6.23 ± 1.33 | 21.3 | 5 | 7.76 ± 0.49 | 6.30 | 6 | 6.74 ± 1.96 | 29.1 | 5 | 4.94 ± 0.84 | 16.9 |
∑AA | 7 | 88.0 | 6 | 91.3 | 10 | 88.4 | 4 | 79.4 | ||||
∑EAA | 7 | 34.5 | 7 | 36.4 | 10 | 37.4 | 5 | 31.1 | ||||
∑NEAA | 7 | 53.5 | 6 | 55.2 | 10 | 50.6 | 4 | 48.1 | ||||
EAA:NEAA | 7 | 0.64 | 6 | 0.66 | 6 | 0.69 | 3 | 0.67 |
Item | Ryegrass | Lucerne | Red Clover | ||||||
---|---|---|---|---|---|---|---|---|---|
N | Avg ± SD 2 | CV 3 | N | Avg ± SD | CV | N | Avg ± SD | CV | |
Crude ash | 6 | 10.7 ± 6.56 | 61.3 | 7 | 11.7 ± 4.58 | 39.9 | |||
Crude protein | 3 | 28.4 ± 7.13 | 25.1 | 10 | 47.4 ± 10.7 | 15.7 | 3 | 38.7 ± 5.35 | 13.8 |
EAA 4 | |||||||||
Histidine | 3 | 2.02 ± 0.17 | 8.48 | 7 | 2.21 ± 0.18 | 8.10 | 9 | 2.29 ± 0.29 | 12.5 |
Isoleucine | 3 | 4.74 ± 0.36 | 7.50 | 7 | 4.50 ± 0.72 | 16.0 | 10 | 4.88 ± 0.64 | 13.1 |
Leucine | 3 | 8.43 ± 0.53 | 6.32 | 7 | 7.74 ± 1.15 | 14.9 | 10 | 8.54 ± 0.98 | 11.4 |
Lysine | 3 | 5.48 ± 0.56 | 10.2 | 7 | 4.95 ± 1.17 | 23.6 | 10 | 5.70 ± 0.92 | 16.1 |
Methionine | 3 | 2.04 ± 0.19 | 9.31 | 7 | 1.76 ± 0.22 | 12.5 | 10 | 1.85 ± 0.27 | 14.7 |
Phenylalanine | 3 | 6.17 ± 0.95 | 15.3 | 7 | 5.54 ± 0.65 | 11.8 | 10 | 5.57 ± 0.76 | 13.7 |
Threonine | 3 | 4.65 ± 0.33 | 7.00 | 7 | 4.16 ± 0.78 | 18.8 | 10 | 4.66 ± 0.61 | 13.0 |
Tryptophan | − | − | − | − | − | − | − | − | − |
Valine | 3 | 6.27 ± 0.54 | 8.56 | 7 | 5.21 ± 0.97 | 18.6 | 10 | 6.01 ± 0.66 | 11.0 |
NEAA5 | |||||||||
Alanine | 2 | 6.73 ± 0.70 | 10.4 | 4 | 5.70 ± 0.55 | 9.73 | 9 | 5.80 ± 0.61 | 10.5 |
Arginine | 3 | 5.73 ± 0.39 | 6.81 | 7 | 4.61 ± 1.43 | 31.0 | 10 | 5.54 ± 0.77 | 13.9 |
Aspartic acid | 2 | 8.72 ± 0.70 | 8.03 | 5 | 9.24 ± 2.01 | 21.7 | 9 | 10.2 ± 1.72 | 16.9 |
Cysteine | 3 | 0.83 ± 0.11 | 13.6 | 7 | 0.99 ± 0.21 | 21.0 | 9 | 0.67 ± 0.24 | 36.0 |
Glutamic acid | 2 | 9.74 ± 0.79 | 8.13 | 5 | 8.62 ± 1.40 | 16.2 | 9 | 10.6 ± 1.65 | 15.6 |
Glycine | 3 | 5.42 ± 0.31 | 5.64 | 7 | 4.58 ± 0.83 | 18.1 | 10 | 5.16 ± 0.64 | 12.5 |
Proline | 2 | 4.63 ± 0.46 | 9.94 | 7 | 3.27 ± 0.83 | 22.3 | 9 | 4.51 ± 0.26 | 5.84 |
Serine | 3 | 4.34 ± 0.20 | 4.56 | 7 | 4.72 ± 0.52 | 10.9 | 10 | 4.31 ± 0.41 | 9.61 |
Tyrosine | − | − | − | 1 | 1.91 | 3 | 4.25 ± 0.92 | 21.6 | |
Met+Cys | 3 | 2.87 ± 0.30 | 22.9 | 7 | 2.75 ± 0.28 | 33.4 | 9 | 2.45 ± 0.56 | 22.9 |
∑AA | 85.92 | 80.15 | 90.49 | ||||||
∑EAA | 39.80 | 36.06 | 39.50 | ||||||
∑NEAA | 46.13 | 44.09 | 50.99 | ||||||
EAA:NEAA | 0.86 | 0.82 | 0.77 |
Type | Inclusion % | Control | Animal/Breed | Parameters | Effect | Reference |
---|---|---|---|---|---|---|
Starfish | 4, 8 | Fishmeal, Org. 1 | Laying hen/ Hisex white | Bird weight, FCR 2, ADFI 3 Egg weight, Laying % | No effect No effect No effect No effect No effect | [174] |
Starfish | 0, 5, 10 | Fishmeal | Weaned pig/ Danish Landrace/Yorkshire × Duroc | ADG 4, FCR, ADFI, | Reduced 10 Worsened 10 No effect | [63] |
Starfish | 0, 5, 7.5, 10 | Fishmeal | Weaned pig/ Danish Landrace/Yorshire × Duroc | FCR, ADG, ADFI | Worsened 7.5, 10 Reduced 7.5, 10 No effect | [78] |
Mussel | 0, 4, 8, 12 | Fishmeal, Org. | Laying hen/ Hisex white | ADFI, FCR, Egg weight, Laying % | No effect No effect No effect No effect | [174] |
Mussel | 0, 3, 6, 9 | Fishmeal, Org. | Laying hen/ Lohmann Selected leghorn | FCR, Egg weight, Laying % | No effect No effect No effect | [75] |
Mussel | 0, 3.5, 7.0 | Fishmeal, Org. | Laying hen/ Lohmann Selected leghorn and Hyline white W-98 | ADFI, Bird weight, FCR, Egg weight, Laying % | No effect No effect No effect No effect No effect | [175] |
Mussel | 0, 3, 6, 9, 12 | Fishmeal | Broiler/ Ross 308 | ADFI, FCR, Bird weight | No effect No effect No effect | [176] |
Mussel | 0, 5 | Commercial diet | Grower-finisher pig/ Yorkshire × Hampshire × Duroc | ADG | No effect | [177] |
Nutrient | Insect | Inclusion % | Control | Animal | Description | Effect Insect | Reference |
---|---|---|---|---|---|---|---|
CP, fat, DM/OM | HI defat. | 0, 5, 10 | Soya bean | Weaned pig | ATTD 1 | No effect | [186] |
CP, fat, DM/OM | HI full/defat. | 4−8 | Soya bean | Weaned pig | ATTD/AID 2 | No effect | [187] |
DM/OM | HI defat. | 0, 7.3, 14.6 | Soya bean | Laying hen | AID | Reduced at 14.6 | [188] |
CP, DM/OM | HI defat. | 17 | Soya bean | Laying hen | AID | Reduced | [151] |
CP | HI defat. (Met:Cys balanced) | 20 | Soya bean | Broiler | AID | No effect | [152] |
CP | HI full/defat. | 25 | Basal | Broiler | ATTD | Reduced | [189] |
AA | TM | 0, 5, 10 | Soya bean | Growing pig | Ileal dig. | Reduced at 10 | [190] |
CP, DM/OM | TM | 30 | Soya bean | Broilers | AID | Reduced | [126] |
Insect | Inclusion % | Control | Animal | Description | Effect Insect | Reference |
---|---|---|---|---|---|---|
TM | 0, 5, 10 | Soya bean | Growing pig/Piétrain × German Landrace × German Edelschwein | FCR 1, ADFI 2 | No effect No effect | [190] |
TM | 0, 5, 10 | Soya bean | Growing pig | ADG 3 | Reduced at 10 | |
HI defat. | 0, 5, 10 | Soya bean | Weaned pig Topigs | ADG, FCR, ADFI | No effect No effect No effect | [186] |
HI full/defat. | 4−8 | Soya bean | Weaned pig | ADG, ADFI, FCR | No effect No effect No effect | [187] |
HI full fat | 0, 4, 8 | Soya bean | Finishing pig/Duroc x Landrace x Large White | ADG, FCR | No effect at 8 Improved at 4 | [191] |
HI full fat | 0, 4, 8 | Soya bean | Finishing pig | ADFI | No effect | [191] |
HI full fat | 0, 1, 2, 4 | Fishmeal | Weaned pig/Duroc × Landrace × Large White | FCR, ADG | Improved at 2 Increased at 2 | [192] |
HI full fat | 0, 1, 2, 4 | Fishmeal | Weaned pig | ADFI | No effect | [192] |
TM | 0, 5, 10, 15 | Soya bean | Broiler/Ross 708 | ADFI | L 4 increase d. 1−25 | [127] |
TM | 0, 5, 10, 15 | Soya bean | Broiler | ADG | L increase d. 1−12 No effect d. 12−25 | [127] |
TM | 0, 5, 10, 15 | Soya bean | Broiler | FCR | L increase d. 12−25 No effect d. 1−12 | [127] |
TM | 0, 5, 10, 15 | Soya bean | Broiler | FCR, ADFI, ADG | No effect d. 25−40 No effect d. 25−40 No effect d. 25−40 | [127] |
TM | 7.5 | Gluten meal | Broiler/Hubbard hybrid JA57/S77CN (slow growing) | ADFI, FCR, BW | No effect No effect No effect | [193] |
TM | 8.0 | Soya bean | Broiler/Ross 308 | ADFI, FCR | Reduced Improved | [194] |
TM | 8.0 | Soya bean | Broiler | ADG | Increased | [194] |
TM | 30 | Soya bean | Broiler/Shaver brown | FCR | Reduced | [195] |
TM | 30 | Soya bean | Broiler | FCR, ADFI | No effect d. 30−45 Reduced d. 45−62 | [195] |
TM | 30 | Soya bean | Broiler | ADG | No effect d. 30−45 No effect d. 45−62 | [195] |
HI defat | 0, 5, 10, 15 | Soya bean | Broiler/Ross 708 | Liveweight, ADG | L and Q 5 effect L and Q effect | [196] |
ADFI | L and Q d. 1−10 | |||||
FCR | No effect d. 10−35 No effect d. 1−10 L effect d. 10−35 Q effect d. 10−24 | |||||
HI defat | ca. 20 | Soya bean | Broiler/Ross 308 | FCR | No effect d. 1−21 Reduced d. 21−35 | [152] |
HI defat | ca. 20 | Soya bean | Broiler | ADG | No effect d. 1−21 Reduced d. 21−35 | [152] |
HI defat | ca. 20 | Soya bean | Broiler | ADFI | Reduced d. 1−21 No effect d. 21−35 | [152] |
HI defat. | 0, 7.8 | Soya bean Org. 6 | Laying hen/Hubbard S757 (slow growing) | ADG | No effect | [197] |
HI defat. | 0, 7.3, 14.6 | Soya bean | Laying hen/Hy-line Brown | Egg weight, Bird gain, FCR, Laying % | No effect No effect No effect Increased 7.3 | [188] |
HI defat. | 0, 12, 24 | Soya bean Org. | Laying hen/Lohmann Selected Leghorn | Laying %, ADFI | No effect No effect | [146] |
HI defat. | 17 | Soya bean Org. | Laying hen/Lohmann Brown Classic | Live weight | Reduced | [151] |
HI defat | 17 | Soya bean Org. | Laying hen/Lohmann Brown Classic | ADG, ADFI, FCR | Reduced Reduced Reduced | [198] |
Egg weight, Laying % | Reduced Reduced |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
van der Heide, M.E.; Stødkilde, L.; Værum Nørgaard, J.; Studnitz, M. The Potential of Locally-Sourced European Protein Sources for Organic Monogastric Production: A Review of Forage Crop Extracts, Seaweed, Starfish, Mussel, and Insects. Sustainability 2021, 13, 2303. https://doi.org/10.3390/su13042303
van der Heide ME, Stødkilde L, Værum Nørgaard J, Studnitz M. The Potential of Locally-Sourced European Protein Sources for Organic Monogastric Production: A Review of Forage Crop Extracts, Seaweed, Starfish, Mussel, and Insects. Sustainability. 2021; 13(4):2303. https://doi.org/10.3390/su13042303
Chicago/Turabian Stylevan der Heide, Marleen Elise, Lene Stødkilde, Jan Værum Nørgaard, and Merete Studnitz. 2021. "The Potential of Locally-Sourced European Protein Sources for Organic Monogastric Production: A Review of Forage Crop Extracts, Seaweed, Starfish, Mussel, and Insects" Sustainability 13, no. 4: 2303. https://doi.org/10.3390/su13042303