Heavy Metal Contamination and Human Health Implications in the Chan Thnal Reservoir, Cambodia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Background of the Study Area
2.2. Samples Collection
2.3. Sample Preparation and Analysis
2.4. Quality Control and Assurance
2.5. Heavy Metal Pollution Indices
2.5.1. Geoaccumulation Index (Igeo)
2.5.2. Contamination Factor (CF)
2.5.3. Enrichment Factor (EF)
2.5.4. The Pollution Load Index (PLI)
2.5.5. The Modified Degree of Contamination (mCd), Pollution Index (PI), and the Modified Pollution Index (MPI)
2.5.6. Ecological Risks (ER) and Potential Ecological Risks (PER)
2.6. Human Health Risk Assessment
3. Results
3.1. Water Quality Parameters
3.2. Heavy Metal Concentrations in Water and Permissible Limits
3.3. Heavy Metal Concentrations in Sediments
3.4. Pollution Status and Ecological Risk Assessment
3.4.1. Geoaccumulation Index (Igeo)
3.4.2. Contamination Factor (CF) and Enrichment Factor (EF)
3.4.3. The Pollution Load Index (PLI), Pollution Index (PI), Modified Degree of Contamination (mCd), and Modified Pollution Index (MPI)
3.4.4. Ecological Risks (ER) and Potential Ecological Risks (PER)
3.5. Health Risk Assessment
3.6. Source Analysis of Metal Contaminations in Water
4. Discussion
4.1. Heavy Metals Contamination in the Water
4.2. Heavy Metals Contamination in the Sediment
4.3. Ecological Risk Assessment
4.4. Human Health Risk
5. Conclusions
- (1)
- The values above the unity of Igeo in all locations affirmed heavy metals contamination in this reservoir.
- (2)
- CF and EF implied that the high level of the concerned metal species is strongly influenced by anthropogenic activities around the reservoir.
- (3)
- The values of several indices indicated a significantly high level of metal pollution in L5 and L6. Overall, the average concentrations of the studied metals found in the water followed a decreasing order of Zn > Pb > Cu > Cd. Among the four metals, the water is highly contaminated with Pb. Even at the 10th percentile, the Pb levels in the water exceeded the WHO guideline for drinking water. This indicated that both in the wet and dry seasons the water from the Chan Thnal reservoir cannot be used as a water source for consumption purposes.
- (4)
- The statistical analysis revealed that the primary source of heavy metals is anthropogenic activities. The occurrence of Cd, Cu, and Zn in the water likely originates from agricultural runoff (i.e., the use of fertilizers) and urban runoff (i.e., improper wastewater treatment and waste disposal). Additional sources of Pb occurrence in the water are likely from aerial deposition and Pb sinkers used for fishing and fish catching.
- (5)
- Human health risk assessment revealed a serious non-carcinogenic risk of Pb in vulnerable groups, i.e., children and infants. Therefore, priority should be given to tackling Pb contamination. Appropriate control and protection strategies are urgently required to cut off the main Pb exposure pathway in children and infants.
- (6)
- The Chan Thnal reservoir is the main source of water and food supply for the Krang Chek commune. Improper waste disposal and lack of infrastructure development (i.e., public water purification and supply system and wastewater collection and treatment system) could trigger water pollution problems, especially metal pollution. In the longer run, a relatively high level of metal contamination in the reservoir would cause long-term health problems in the commune. This phenomenon could be an early call to attention for the local authorities to impose some kinds of administrative or mitigation intervention to rejuvenate the Chan Thnal reservoir and improve the environmental health conditions of this area.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jiang, Z.; Xu, N.; Liu, B.; Zhou, L.; Wang, J.; Wang, C.; Dai, B.; Xiong, W. Metal concentrations and risk assessment in water, sediment and economic fish species with various habitat preferences and trophic guilds from Lake Caizi, Southeast China. Ecotoxicol. Environ. Saf. 2018, 157, 1–8. [Google Scholar] [CrossRef]
- Ahmed, M.K.; Baki, M.A.; Islam, M.S.; Kundu, G.K.; Habibullah-Al-Mamun, M.; Sarkar, S.K.; Hossain, M.M. Human health risk assessment of heavy metals in tropical fish and shellfish collected from the river Buriganga, Bangladesh. Environ. Sci. Pollut. Res. 2015, 22, 15880–15890. [Google Scholar] [CrossRef] [PubMed]
- Bradl, H.B. Sources and Origins of Heavy Metals. In Interface Science and Technology; Bradl, H.B., Ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2005; pp. 1–27. [Google Scholar]
- Alengebawy, A.; Abdelkhalek, S.T.; Qureshi, S.R.; Wang, M.-Q. Heavy metals and pesticides toxicity in agricultural soil and plants: Ecological risks and human health implications. Toxics 2021, 9, 42. [Google Scholar] [CrossRef]
- Genchi, G.; Sinicropi, M.S.; Lauria, G.; Carocci, A.; Catalano, A. The Effects of Cadmium Toxicity. Int. J. Environ. Res. Public Health 2020, 17, 3782. [Google Scholar] [CrossRef]
- Ali, H.; Khan, E.; Ilahi, I. Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation. J. Chem. 2019, 2019, 6730305. [Google Scholar] [CrossRef][Green Version]
- Grant, C.A.; Sheppard, S.C. Fertilizer impacts on cadmium availability in agricultural soils and crops. Hum. Ecol. Risk Assess. 2008, 14, 210–228. [Google Scholar] [CrossRef]
- Zhao, H.; Xia, B.; Fan, C.; Zhao, P.; Shen, S. Human health risk from soil heavy metal contamination under different land uses near Dabaoshan Mine, Southern China. Sci. Total Environ. 2012, 417–418, 45–54. [Google Scholar] [CrossRef]
- Wani, A.L.; Ara, A.; Usmani, J.A. Lead toxicity: A review. Interdiscip. Toxicol. 2015, 8, 55–64. [Google Scholar] [CrossRef][Green Version]
- Telišman, S.; Čolak, B.; Pizent, A.; Jurasović, J.; Cvitković, P. Reproductive toxicity of low-level lead exposure in men. Environ. Res. 2007, 105, 256–266. [Google Scholar] [CrossRef]
- Abel, M.T.; Suedel, B.; Presley, S.M.; Mcdaniel, L.N.; Rigdon, R.; Goebel, T.; Lascano, R.J.; Zartman, R.; Anderson, T.A.; Cobb, G.P. Contribution of Soil Lead to Blood Lead in Children: A Study from New Orleans, LA. J. Environ. Prot. 2012, 3, 1704–1710. [Google Scholar] [CrossRef][Green Version]
- Fu, Z.; Wu, F.; Chen, L.; Xu, B.; Feng, C.; Bai, Y.; Liao, H.; Sun, S.; Giesy, J.P.; Guo, W. Copper and zinc, but not other priority toxic metals, pose risks to native aquatic species in a large urban lake in Eastern China. Environ. Pollut. 2016, 219, 1069–1076. [Google Scholar] [CrossRef]
- Korkmaz, C.; Ay, Ö.; Çolakfakioğlu, C.; Cicik, B.; Erdem, C. Heavy Metal Levels in Muscle Tissues of Solea solea, Mullus barbatus, and Sardina pilchardus Marketed for Consumption in Mersin, Turkey. Water Air Soil Pollut. 2017, 228, 315. [Google Scholar] [CrossRef]
- Adepoju-Bello, A.A.; Issa, O.A.; Oguntibeju, O.O.; Ayoola, G.A.; Adejumo, O.O. Analysis of some selected toxic metals in registered herbal products manufactured in Nigeria. Afr. J. Biotechnol. 2012, 11, 6918–6922. [Google Scholar] [CrossRef]
- Türkmen, A.; Türkmen, M.; Tepe, Y.; Akyurt, I. Heavy metals in three commercially valuable fish species from İskenderun Bay, Northern East Mediterranean Sea, Turkey. Food Chem. 2005, 91, 167–172. [Google Scholar] [CrossRef]
- Li, Q.; Zhao, X.; Lv, Q.; Liu, G. The determination of zinc in water by flame atomic absorption spectrometry after its separation and preconcentration by malachite green loaded microcrystalline triphenylmethane. Sep. Purif. Technol. 2007, 55, 76–81. [Google Scholar] [CrossRef]
- Agency for Toxic Substances and Disease Registry. Toxicological Profile for Zinc; U.S. Department of Health and Human Services: Washington, DC, USA, 2005.
- Perera, L.R.; Bonn, M.; Naren, T.; Sopheak, C.; Tiang, S.; Channarith, U.; Soveng, N.; Sokin, L.; Serey, S.; Sophorn, E.; et al. Towards Establishing a System of Monitoring and Evaluation for the Participatory Irrigation Management and Development Program in Cambodia; International Water Management Institute (IWMI): Colombo, Sri Lanka, 2007. [Google Scholar]
- Sriuttha, M.; Tengjaroenkul, B.; Intamat, S.; Phoonaploy, U.; Thanomsangad, P.; Neeratanaphan, L. Cadmium, chromium, and lead accumulation in aquatic plants and animals near a municipal landfill. Hum. Ecol. Risk Assess. 2017, 23, 350–363. [Google Scholar] [CrossRef]
- Ali, M.M.; Ali, M.L.; Islam, M.S.; Rahman, M.Z. Preliminary assessment of heavy metals in water and sediment of Karnaphuli River, Bangladesh. Environ. Nanotechnol. Monit. Manag. 2016, 5, 27–35. [Google Scholar] [CrossRef][Green Version]
- Akbulut, A.; Akbulut, N.E. The study of heavy metal pollution and accumulation in water, sediment, and fish tissue in Kizilirmak River Basin in Turkey. Environ. Monit. Assess. 2010, 167, 521–526. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.S.; Han, S.; Ahmed, M.K.; Masunaga, S. Assessment of Trace Metal Contamination in Water and Sediment of Some Rivers in Bangladesh. J. Water Environ. Technol. 2014, 12, 109–121. [Google Scholar] [CrossRef][Green Version]
- Su, S.; Xiao, R.; Mi, X.; Xu, X.; Zhang, Z.; Wu, J. Spatial determinants of hazardous chemicals in surface water of Qiantang River, China. Ecol. Indic. 2013, 24, 375–381. [Google Scholar] [CrossRef]
- Srebotnjak, T.; Carr, G.; De Sherbinin, A.; Rickwood, C. A global Water Quality Index and hot-deck imputation of missing data. Ecol. Indic. 2012, 17, 108–119. [Google Scholar] [CrossRef]
- Khan, S.; Cao, Q.; Zheng, Y.M.; Huang, Y.Z.; Zhu, Y.G. Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environ. Pollut. 2008, 152, 686–692. [Google Scholar] [CrossRef]
- Wilson, B.; Pyatt, F.B. Heavy metal dispersion, persistance, and bioccumulation around an ancient copper mine situated in Anglesey, UK. Ecotoxicol. Environ. Saf. 2007, 66, 224–231. [Google Scholar] [CrossRef]
- Ruchuwararak, P.; Intamat, S.; Tengjaroenkul, B.; Neeratanaphan, L. Bioaccumulation of heavy metals in local edible plants near a municipal landfill and the related human health risk assessment. Hum. Ecol. Risk Assess. 2019, 25, 1760–1772. [Google Scholar] [CrossRef]
- Islam, M.S.; Ahmed, M.K.; Raknuzzaman, M.; Al-Mamun, M.H.; Islam, M.K. Heavy metal pollution in surface water and sediment: A preliminary assessment of an urban river in a developing country. Ecol. Indic. 2015, 48, 282–291. [Google Scholar] [CrossRef]
- Demirak, A.; Yilmaz, F.; Tuna, A.L.; Ozdemir, N. Heavy metals in water, sediment and tissues of Leuciscus cephalus from a stream in southwestern Turkey. Chemosphere 2006, 63, 1451–1458. [Google Scholar] [CrossRef]
- Yi, Y.; Yang, Z.; Zhang, S. Ecological risk assessment of heavy metals in sediment and human health risk assessment of heavy metals in fishes in the middle and lower reaches of the Yangtze River basin. Environ. Pollut. 2011, 159, 2575–2585. [Google Scholar] [CrossRef]
- Martín, J.A.R.; De Arana, C.; Ramos-Miras, J.J.; Gil, C.; Boluda, R. Impact of 70 years urban growth associated with heavy metal pollution. Environ. Pollut. 2015, 196, 156–163. [Google Scholar] [CrossRef]
- Ebrahimpour, M.; Mushrifah, I. Heavy metal concentrations in water and sediments in Tasik Chini, a freshwater lake, Malaysia. Environ. Monit. Assess. 2008, 141, 297–307. [Google Scholar] [CrossRef]
- Karbassi, A.R.; Monavari, S.M.; Nabi Bidhendi, G.R.; Nouri, J.; Nematpour, K. Metal pollution assessment of sediment and water in the Shur River. Environ. Monit. Assess. 2008, 147, 107. [Google Scholar] [CrossRef]
- Ikenaka, Y.; Nakayama, S.M.M.; Muzandu, K.; Choongo, K.; Teraoka, H.; Mizuno, N.; Ishizuka, M. Heavy metal contamination of soil and sediment in Zambia. Afr. J. Environ. Sci. Technol. 2014, 4, 729–739. [Google Scholar] [CrossRef]
- Bhuyan, M.S.; Bakar, M.A.; Akhtar, A.; Hossain, M.B.; Ali, M.M.; Islam, M.S. Heavy metal contamination in surface water and sediment of the Meghna River, Bangladesh. Environ. Nanotechnol. Monit. Manag. 2017, 8, 273–279. [Google Scholar] [CrossRef]
- Rajeshkumar, S.; Li, X. Bioaccumulation of heavy metals in fish species from the Meiliang Bay, Taihu Lake, China. Toxicol. Rep. 2018, 5, 288–295. [Google Scholar] [CrossRef]
- Sovanna, M.; Koichi, U.; Masayuki, F. Level-set methods applied to the kinematic wave equation governing surface water flows. J. Environ. Manag. 2020, 269, 110784. [Google Scholar] [CrossRef]
- Chand, V.; Prasad, S. ICP-OES Assessment of Heavy Metal Contamination in Tropical Marine Sediments: A Comparative Study of Two Digestion Techniques. Microchem. J. 2013, 111, 53–61. [Google Scholar] [CrossRef]
- Birch, G. Use of sedimentary-metal indicators in assessment of estuarine system health. In Treatise on Geomorphology; Shroder, J., Switzer, A.D., Kennedy, D.M., Eds.; Academic Press: San Diego, CA, USA, 2013; pp. 282–291. [Google Scholar]
- Rostami, S.; Kamani, H.; Shahsavani, S.; Hoseini, M. Environmental monitoring and ecological risk assessment of heavy metals in farmland soils: Ecological risk assessment of heavy metals in Kamfiruz district. Hum. Ecol. Risk Assess. 2021, 7, 1–13. [Google Scholar] [CrossRef]
- Duncan, A.E.; de Vries, N.; Nyarko, K.B. Assessment of Heavy Metal Pollution in the Sediments of the River Pra and Its Tributaries. Water Air Soil Pollut. 2018, 229, 272. [Google Scholar] [CrossRef][Green Version]
- Genc, T.O.; Yilmaz, F. Metal pollution assessment in water and sediment of Sarıcay stream in Mugla-Turkey. J. Chem. Pharm. Res. 2016, 8, 786–794. [Google Scholar]
- Siddiqui, E.; Pandey, J. Assessment of heavy metal pollution in water and surface sediment and evaluation of ecological risks associated with sediment contamination in the Ganga River: A basin-scale study. Environ. Sci. Pollut. Res. 2019, 26, 10926–10940. [Google Scholar] [CrossRef]
- Shen, F.; Mao, L.; Sun, R.; Du, J.; Tan, Z.; Ding, M. Contamination evaluation and source identification of heavy metals in the sediments from the lishui river watershed, southern China. Int. J. Environ. Res. Public Health 2019, 16, 336. [Google Scholar] [CrossRef][Green Version]
- Ahamad, M.I.; Song, J.; Sun, H.; Wang, X.; Mehmood, M.S.; Sajid, M.; Su, P.; Khan, A.J.K. Contamination Level, Ecological Risk, and Source Identification of Heavy Metals in the Hyporheic Zone of the Weihe River, China. Int. J. Environ. Res. Public Health 2020, 17, 1070. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Bern, C.R.; Walton-Day, K.; Naftz, D.L. Improved enrichment factor calculations through principal component analysis: Examples from soils near breccia pipe uranium mines, Arizona, USA. Environ. Pollut. 2019, 248, 90–100. [Google Scholar] [CrossRef]
- Suresh, G.; Sutharsan, P.; Ramasamy, V.; Venkatachalapathy, R. Assessment of spatial distribution and potential ecological risk of the heavy metals in relation to granulometric contents of Veeranam lake sediments, India. Ecotoxicol. Environ. Saf. 2012, 84, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Duodu, G.O.; Goonetilleke, A.; Ayoko, A.G. Comparison of pollution indices for the assessment of heavy metal in Brisbane River sediment. Environ. Pollut. 2016, 219, 1077–1091. [Google Scholar] [CrossRef]
- Brady, J.P.; Ayoko, G.A.; Martens, W.N.; Goonetilleke, A. Development of a hybrid pollution index for heavy metals in marine and estuarine sediments. Environ. Monit. Assess. 2015, 187, 306. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Hakansonm, L. An ecological risk index for aquatic pollution control: A sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Chabukdhara, M.; Munjal, A.; Nema, K.A.; Gupta, K.S.; Kaushal, R. Heavy metal contamination in vegetables grown around peri-urban and urban-industrial clusters in Ghaziabad, India. Hum. Ecol. Risk Assess. 2016, 22, 736–752. [Google Scholar] [CrossRef]
- Rai, P.K.; Lee, S.S.; Zhang, M.; Tsang, Y.F.; Kim, K.H. Heavy metals in food crops: Health risks, fate, mechanisms, and management. Environ. Int. 2019, 125, 365–385. [Google Scholar] [CrossRef] [PubMed]
- US EPA Integrated Risk Information System of the US Environmental Protection Agency. Available online: https://cfpub.epa.gov/ncea/iris/search/index.cfm (accessed on 5 November 2021).
- World Health Organization. Guidelines for Drinking-Water Quality: Fourth Edition Incorporating the First Addendum; WHO: Geneva, Switzerland, 2017; ISBN 978-92-4-155001-7. [Google Scholar]
- Manickam, N.; Bhavan, P.S.; Santhanam, P.; Bhuvaneswari, R.; Muralisankar, T.; Srinivasan, V.; Asaikkutti, A.; Rajkumar, G.; Udayasuriyan, R.; Karthik, M. Impact of seasonal changes in zooplankton biodiversity in Ukkadam Lake, Coimbatore, Tamil Nadu, India, and potential future implications of climate change. J. Basic Appl. Zool. 2018, 79, 15. [Google Scholar] [CrossRef][Green Version]
- Adamu, C.I.; Nganje, T.N.; Edet, A. Heavy metal contamination and health risk assessment associated with abandoned barite mines in Cross River State, southeastern Nigeria. Environ. Nanotechnol. Monit. Manag. 2015, 3, 10–21. [Google Scholar] [CrossRef][Green Version]
- Mohiuddin, K.M.; Otomo, K.; Ogawa, Y.; Shikazono, N. Seasonal and spatial distribution of trace elements in the water and sediments of the Tsurumi River in Japan. Environ. Monit. Assess. 2012, 184, 265–279. [Google Scholar] [CrossRef]
- Zarcinas, A.B.; Pongsakul, P.; McLaughlin, J.M.; Cozens, G. Heavy metals in soils and crops in Southeast Asia. 2. Thailand. Environ. Geochem. Health 2004, 26, 359–371. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, D.D.; Ingersoll, C.G.; Berger, T.A. Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch. Environ. Contam. Toxicol. 2000, 39, 20–31. [Google Scholar] [CrossRef] [PubMed]
- Pollution Control Department Soil Quality Standards for Habitat and Agriculture. Available online: http://www.pcd.go.th/info_serv/%0Aen_reg_std_soil01.html (accessed on 16 July 2021).
- Thongyuan, S.; Aendo, P.; Binot, A.; Tulayakul, P. Ecological and health risk assessment, carcinogenic and non-carcinogenic effects of heavy metals contamination in the soil from municipal solid waste landfill in Central, Thailand. Hum. Ecol. Risk Assess. 2021, 27, 876–897. [Google Scholar] [CrossRef]
- Vongdala, N.; Tran, H.D.; Xuan, T.D.; Teschke, R.; Khanh, T.D. Heavy metal accumulation in water, soil, and plants of municipal solid waste landfill in Vientiane, Laos. Int. J. Environ. Res. Public Health 2019, 16, 22. [Google Scholar] [CrossRef][Green Version]
- Weber, P.; Behr, E.R.; Knorr, C.D.L.; Vendruscolo, D.S.; Flores, E.M.M.; Dressler, V.L.; Baldisserotto, B. Metals in the water, sediment, and tissues of two fish species from different trophic levels in a subtropical Brazilian river. Microchem. J. 2013, 106, 61–66. [Google Scholar] [CrossRef]
- Yan, A.; Wang, Y.; Tan, N.S.; Yusof, M.L.M.; Ghosh, S.; Chen, Z. Phytoremediation: A Promising Approach for Revegetation of Heavy Metal-Polluted Land. Front. Plant Sci. 2020, 11, 359. [Google Scholar] [CrossRef]
- Omwene, P.I.; Öncel, M.S.; Çelen, M.; Kobya, M. Heavy metal pollution and spatial distribution in surface sediments of Mustafakemalpaşa stream located in the world’s largest borate basin (Turkey). Chemosphere 2018, 208, 782–792. [Google Scholar] [CrossRef] [PubMed]
- Varol, M. Assessment of heavy metal contamination in sediments of the Tigris River (Turkey) using pollution indices and multivariate statistical techniques. J. Hazard. Mater. 2011, 195, 355–364. [Google Scholar] [CrossRef]
- Dwivedi, S.; Mishra, S.; Tripathi, R.D. Ganga water pollution: A potential health threat to inhabitants of Ganga basin. Environ. Int. 2018, 117, 327–338. [Google Scholar] [CrossRef]
- Pandey, J.; Yadav, A. Alternative alert system for Ganga river eutrophication using alkaline phosphatase as a level determinant. Ecol. Indic. 2017, 82, 327–343. [Google Scholar] [CrossRef]
- Yadav, A.; Pandey, J. Contribution of point sources and non-point sources to nutrient and carbon loads and their influence on the trophic status of the Ganga River at Varanasi, India. Environ. Monit. Assess. 2017, 189, 475. [Google Scholar] [CrossRef] [PubMed]
- Tchounwou, P.B.; Yedjou, C.G.; Anita, K.; Patlolla, A.K.; Dwayne, J.S. Heavy Metal Toxicity and the Environment. Exp. Suppl. 2012, 101, 133–164. [Google Scholar] [CrossRef][Green Version]
- Agency for Toxic Substances and Disease Registry. Toxicological Profile for Cadmium; U.S. Department of Health and Human Services: Washington, DC, USA, 2012.
- Agency for Toxic Substances and Disease Registry. Toxicology Profile for Copper; U.S. Department of Health and Human Services: Atlanta, GA, USA, 2004.
- Agency for Toxic Substances and Disease Registry. Toxicological Profile for Lead; U.S. Department of Health and Human Services: Washington, DC, USA, 2020.
Locations | Temperature (°C) | pH | DO (mg/L) | |||
---|---|---|---|---|---|---|
Wet Season | Dry Season | Wet Season | Dry Season | Wet Season | Dry Season | |
L1 | 25.3 | 25.0 | 6.1 | 7.5 | 7.20 | 6.00 |
L2 | 25.6 | 27.3 | 6.6 | 7.4 | 7.10 | 6.40 |
L3 | 27.7 | 24.7 | 6.5 | 6.9 | 7.20 | 6.40 |
L4 | 25.7 | 24.7 | 6.5 | 6.6 | 7.00 | 4.60 |
L5 | 27.7 | 23.2 | 6.6 | 7.0 | 6.00 | 5.60 |
L6 | 27.3 | 25.7 | 6.2 | 6.7 | 6.70 | 4.70 |
Permissible limits | <45 a,b, 25–30 d | <45 a,b, 25–30 d | 6–9 a, 5–9 b,c, 6.5–8.5 d | 6–9 a, 5–9 b,c, 6.5–8.5 d | 2.0 a, 1.0 b, 4.0 c | 2.0 a, 1.0 b, 4.0 c |
Mean ± SD | 26.6 ± 1.1 | 25.1 ± 1.4 | 6.4 ± 0.2 | 7.0 ± 0.4 | 6.9 ± 0.6 | 5.6 ± 1.2 |
Minimum | 23.2 | 6.1 | 4.6 | |||
Median | 25.7 | 6.6 | 6.4 | |||
Maximum | 27.7 | 7.5 | 7.2 | |||
Range | 4.5 | 1.4 | 2.6 | |||
IQR | 2.525 | 0.475 | 1.375 | |||
Skewness | −0.008 | −0.62 | −0.80 |
Mean Concentrations (µg/L) in Water Samples | ||||||||
---|---|---|---|---|---|---|---|---|
Locations | Cd | Cu | Zn | Pb | ||||
Wet | Dry | Wet | Dry | Wet | Dry | Wet | Dry | |
L1 | 1.28 b | 1.31 a | 10.01 e | 14.82 a | 42.72 f | 111.12 a | 51.55 d | 28.29 b |
L2 | 1.20 b | 1.17 b,c | 14.52 c | 6.04 b,c | 247.66 b | 66.93 b | 54.45 c | 25.29 b |
L3 | 1.79 a | 1.12 c | 50.41 a | 7.46 b | 636.17 a | 45.91 c | 75.72 a | 26.01 b |
L4 | 1.22 b | 1.28 a,b | 19.27 b | 6.42 b,c | 234.06 c | 36.65 c | 61.94 b | 51.43 a |
L5 | 1.15 b | 1.12 c | 12.26 d | 5.19 c | 66.46 e | 43.24 c | 52.29 d | 26.73 b |
L6 | 1.22 b | 1.17 b,c | 10.89 d,e | 5.45 c | 92.20 d | 70.74 b | 50.51 d | 26.86 b |
Average ± SD | 1.31 ± 0.24 | 1.19 ± 0.08 | 19.56 ± 15.47 | 7.56 ± 3.64 | 219.88 ± 221.58 | 62.43 ± 27.44 | 57.74 ± 9.71 | 30.77 ± 10.17 |
Overall | 1.25 ± 0.18 | 13.56 ± 12.411 | 141.15 ± 171.53 | 44.26 ± 16.98 * | ||||
10th percentile | 1.12 | 5.51 | 42.77 | 26.08 * | ||||
50th percentile | 1.21 | 10.45 | 68.84 | 50.97 * | ||||
90th percentile | 1.30 | 18.83 | 246.30 | 61.19 * | ||||
WHO 1 | 3 | 2000 | 5000 | 10 | ||||
Mean concentrations (mg/kg) in sediment samples | ||||||||
L1 | ND | ND | 13.972 c | 8.676 d | 24.331 b,c | 16.194 c | 4.290 c | 2.346 d |
L2 | ND | ND | 3.515 f | 7.366 e | 6.982 d | 18.220 c | 3.360 c | 2.493 d |
L3 | ND | ND | 7.270 e | 8.794 d | 9.226 d | 12.713 d | 6.160 b | 8.666 a |
L4 | ND | ND | 9.381 d | 10.768 b | 24.078 c | 22.197 b | 5.702 b | 9.315 a |
L5 | ND | ND | 15.542 b | 13.140 a | 26.450 b | 25.443 a | 8.374 a | 4.191 c |
L6 | ND | ND | 25.354 a | 10.341 c | 39.697 a | 16.615 c | 9.351 a | 5.633 b |
Average ± SD | ND | ND | 12.506 ± 0.509 | 9.848 ± 0.219 | 21.794 ± 0.988 | 18.564 ± 1.348 | 6.206 ± 0.550 | 5.441 ± 0.356 |
Overall | - | 11.18 ± 5.53 | 20.18 ± 8.88 | 5.86 ± 2.54 | ||||
10th percentile | - | 7.28 | 9.57 | 2.98 | ||||
50th percentile | - | 9.86 | 20.21 | 5.67 | ||||
90th percentile | - | 15.39 | 26.35 | 9.25 | ||||
Earth’s crust 2 | 0.09 | 28 | 67 | 17 | ||||
Background concentration of metals in soil 3 | 0.01 | 2.3 | 3.6 | 4.9 | ||||
CT 4 | 4.98 | 149 | 459 | 128 | ||||
Standard 5 | 0.15 | 45 | 70 | 55 | ||||
WHO 6 | 0.80 | 36 | 40 | 85 |
Metals | Parameters | Values | Interpretation |
---|---|---|---|
Cu | Igeo | 1.55 | moderately contaminated |
CF | 4.86 | considerable level of contamination | |
EF | 9.56 | severe enrichment | |
ER | 24.30 | low ecological risk | |
Zn | Igeo | 1.76 | moderately contaminated |
CF | 5.61 | considerable level of contamination | |
EF | 11.03 | very severe enrichment | |
ER | 28.03 | low ecological risk | |
Pb | Igeo | −0.48 | uncontaminated to moderately contaminated |
CF | 1.20 | moderate level of contamination | |
EF | 2.35 | minor enrichment | |
ER | 5.98 | low ecological risk | |
PLI | 3.19 | progressive deterioration or pollution | |
PI | 8.27 | heavily polluted | |
MPI | 4.25 | moderately to heavily polluted | |
mCd | 3.89 | moderately contaminated | |
PER | 35.88 | low risk (based on only four metal species) |
Parameters | Adults-Male | Adults-Female | Children | Infants |
---|---|---|---|---|
IR * (L/day) | 2 | 2 | 1 | 0.5 |
ED (years) | 67 | 72 | 10 | 1 |
EF (days/year) | 365 | 365 | 365 | 365 |
ABW (kg) | 60 | 50 | 10 | 5 |
AT (days) | 24,455 | 26,280 | 3650 | 365 |
HQPb | 0.42 | 0.51 | 1.26 | 1.26 |
HQZn | 0.02 | 0.02 | 0.05 | 0.05 |
HQCu | 0.01 | 0.01 | 0.04 | 0.04 |
HQCd | <0.001 | <0.001 | <0.001 | <0.001 |
Heavy Metals | Cd | Cu | Zn | Pb |
---|---|---|---|---|
Cd | 1.00 | |||
Cu | 0.925 | 1.00 | ||
Zn | 0.874 | 0.969 | 1.00 | |
Pb | 0.653 | 0.728 | 0.702 | 1.00 |
Heavy Metals | Factor 1 | Factor 2 | Factor 3 | Communality |
---|---|---|---|---|
Cd | 0.937 | −0.219 | −0.271 | 1.00 |
Cu | 0.982 | −0.131 | 0.070 | 0.99 |
Zn | 0.962 | −0.140 | 0.222 | 0.99 |
Pb | 0.820 | 0.571 | −0.034 | 1.00 |
Variance | 3.439 | 0.411 | 0.129 | 3.979 |
% Cumulative | 86.0 | 10.3 | 3.2 | 99.5 |
Heavy Metals | Sources | References |
---|---|---|
Cd | Natural weathering processes, Discharge from industrial facilities or sewage treatment plants, Leaching from landfills or soil, Urban runoff, Agricultural runoff (i.e., fertilizers) | [71] |
Cu | Natural weathering processes, Sewage effluent, Leachate from municipal landfills, Urban runoff, Agricultural runoff (i.e., fertilizers) | [72] |
Zn | Natural weathering processes, Urban runoff, Municipal and industrial effluents, Agricultural runoff (i.e., fertilizers) | [17] |
Pb | Discharge from industrial facilities, Urban runoff, Atmospheric deposition, Agricultural runoff (i.e., pesticide), Direct sources (e.g., Pb shots and Pb sinkers) | [73] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chheang, L.; Thongkon, N.; Sriwiriyarat, T.; Thanasupsin, S.P. Heavy Metal Contamination and Human Health Implications in the Chan Thnal Reservoir, Cambodia. Sustainability 2021, 13, 13538. https://doi.org/10.3390/su132413538
Chheang L, Thongkon N, Sriwiriyarat T, Thanasupsin SP. Heavy Metal Contamination and Human Health Implications in the Chan Thnal Reservoir, Cambodia. Sustainability. 2021; 13(24):13538. https://doi.org/10.3390/su132413538
Chicago/Turabian StyleChheang, Lita, Nisakorn Thongkon, Tongchai Sriwiriyarat, and Sudtida Pliankarom Thanasupsin. 2021. "Heavy Metal Contamination and Human Health Implications in the Chan Thnal Reservoir, Cambodia" Sustainability 13, no. 24: 13538. https://doi.org/10.3390/su132413538